Logo Search packages:      
Sourcecode: linux version File versions  Download package

rtas-proc.c

/*
 *   Copyright (C) 2000 Tilmann Bitterberg
 *   (tilmann@bitterberg.de)
 *
 *   RTAS (Runtime Abstraction Services) stuff
 *   Intention is to provide a clean user interface
 *   to use the RTAS.
 *
 *   TODO:
 *   Split off a header file and maybe move it to a different
 *   location. Write Documentation on what the /proc/rtas/ entries
 *   actually do.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/ctype.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/bitops.h>
#include <linux/rtc.h>

#include <asm/uaccess.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/machdep.h> /* for ppc_md */
#include <asm/time.h>

/* Token for Sensors */
#define KEY_SWITCH            0x0001
#define ENCLOSURE_SWITCH      0x0002
#define THERMAL_SENSOR        0x0003
#define LID_STATUS            0x0004
#define POWER_SOURCE          0x0005
#define BATTERY_VOLTAGE       0x0006
#define BATTERY_REMAINING     0x0007
#define BATTERY_PERCENTAGE    0x0008
#define EPOW_SENSOR           0x0009
#define BATTERY_CYCLESTATE    0x000a
#define BATTERY_CHARGING      0x000b

/* IBM specific sensors */
#define IBM_SURVEILLANCE      0x2328 /* 9000 */
#define IBM_FANRPM            0x2329 /* 9001 */
#define IBM_VOLTAGE           0x232a /* 9002 */
#define IBM_DRCONNECTOR       0x232b /* 9003 */
#define IBM_POWERSUPPLY       0x232c /* 9004 */

/* Status return values */
#define SENSOR_CRITICAL_HIGH  13
#define SENSOR_WARNING_HIGH   12
#define SENSOR_NORMAL         11
#define SENSOR_WARNING_LOW    10
#define SENSOR_CRITICAL_LOW    9
#define SENSOR_SUCCESS         0
#define SENSOR_HW_ERROR       -1
#define SENSOR_BUSY           -2
#define SENSOR_NOT_EXIST      -3
#define SENSOR_DR_ENTITY      -9000

/* Location Codes */
#define LOC_SCSI_DEV_ADDR     'A'
#define LOC_SCSI_DEV_LOC      'B'
#define LOC_CPU               'C'
#define LOC_DISKETTE          'D'
#define LOC_ETHERNET          'E'
#define LOC_FAN               'F'
#define LOC_GRAPHICS          'G'
/* reserved / not used        'H' */
#define LOC_IO_ADAPTER        'I'
/* reserved / not used        'J' */
#define LOC_KEYBOARD          'K'
#define LOC_LCD               'L'
#define LOC_MEMORY            'M'
#define LOC_NV_MEMORY         'N'
#define LOC_MOUSE       'O'
#define LOC_PLANAR            'P'
#define LOC_OTHER_IO          'Q'
#define LOC_PARALLEL          'R'
#define LOC_SERIAL            'S'
#define LOC_DEAD_RING         'T'
#define LOC_RACKMOUNTED       'U' /* for _u_nit is rack mounted */
#define LOC_VOLTAGE           'V'
#define LOC_SWITCH_ADAPTER    'W'
#define LOC_OTHER       'X'
#define LOC_FIRMWARE          'Y'
#define LOC_SCSI        'Z'

/* Tokens for indicators */
#define TONE_FREQUENCY        0x0001 /* 0 - 1000 (HZ)*/
#define TONE_VOLUME           0x0002 /* 0 - 100 (%) */
#define SYSTEM_POWER_STATE    0x0003 
#define WARNING_LIGHT         0x0004
#define DISK_ACTIVITY_LIGHT   0x0005
#define HEX_DISPLAY_UNIT      0x0006
#define BATTERY_WARNING_TIME  0x0007
#define CONDITION_CYCLE_REQUEST     0x0008
#define SURVEILLANCE_INDICATOR      0x2328 /* 9000 */
#define DR_ACTION       0x2329 /* 9001 */
#define DR_INDICATOR          0x232a /* 9002 */
/* 9003 - 9004: Vendor specific */
/* 9006 - 9999: Vendor specific */

/* other */
#define MAX_SENSORS            17  /* I only know of 17 sensors */    
#define MAX_LINELENGTH          256
#define SENSOR_PREFIX         "ibm,sensor-"
#define cel_to_fahr(x)        ((x*9/5)+32)


/* Globals */
static struct rtas_sensors sensors;
static struct device_node *rtas_node = NULL;
static unsigned long power_on_time = 0; /* Save the time the user set */
static char progress_led[MAX_LINELENGTH];

static unsigned long rtas_tone_frequency = 1000;
static unsigned long rtas_tone_volume = 0;

/* ****************STRUCTS******************************************* */
struct individual_sensor {
      unsigned int token;
      unsigned int quant;
};

struct rtas_sensors {
        struct individual_sensor sensor[MAX_SENSORS];
      unsigned int quant;
};

/* ****************************************************************** */
/* Declarations */
static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
static int ppc_rtas_clock_show(struct seq_file *m, void *v);
static ssize_t ppc_rtas_clock_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos);
static int ppc_rtas_progress_show(struct seq_file *m, void *v);
static ssize_t ppc_rtas_progress_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos);
static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
static ssize_t ppc_rtas_poweron_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos);

static ssize_t ppc_rtas_tone_freq_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos);
static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
static ssize_t ppc_rtas_tone_volume_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos);
static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);

static int sensors_open(struct inode *inode, struct file *file)
{
      return single_open(file, ppc_rtas_sensors_show, NULL);
}

const struct file_operations ppc_rtas_sensors_operations = {
      .open       = sensors_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .release    = single_release,
};

static int poweron_open(struct inode *inode, struct file *file)
{
      return single_open(file, ppc_rtas_poweron_show, NULL);
}

const struct file_operations ppc_rtas_poweron_operations = {
      .open       = poweron_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .write            = ppc_rtas_poweron_write,
      .release    = single_release,
};

static int progress_open(struct inode *inode, struct file *file)
{
      return single_open(file, ppc_rtas_progress_show, NULL);
}

const struct file_operations ppc_rtas_progress_operations = {
      .open       = progress_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .write            = ppc_rtas_progress_write,
      .release    = single_release,
};

static int clock_open(struct inode *inode, struct file *file)
{
      return single_open(file, ppc_rtas_clock_show, NULL);
}

const struct file_operations ppc_rtas_clock_operations = {
      .open       = clock_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .write            = ppc_rtas_clock_write,
      .release    = single_release,
};

static int tone_freq_open(struct inode *inode, struct file *file)
{
      return single_open(file, ppc_rtas_tone_freq_show, NULL);
}

const struct file_operations ppc_rtas_tone_freq_operations = {
      .open       = tone_freq_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .write            = ppc_rtas_tone_freq_write,
      .release    = single_release,
};

static int tone_volume_open(struct inode *inode, struct file *file)
{
      return single_open(file, ppc_rtas_tone_volume_show, NULL);
}

const struct file_operations ppc_rtas_tone_volume_operations = {
      .open       = tone_volume_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .write            = ppc_rtas_tone_volume_write,
      .release    = single_release,
};

static int rmo_buf_open(struct inode *inode, struct file *file)
{
      return single_open(file, ppc_rtas_rmo_buf_show, NULL);
}

const struct file_operations ppc_rtas_rmo_buf_ops = {
      .open       = rmo_buf_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .release    = single_release,
};

static int ppc_rtas_find_all_sensors(void);
static void ppc_rtas_process_sensor(struct seq_file *m,
      struct individual_sensor *s, int state, int error, const char *loc);
static char *ppc_rtas_process_error(int error);
static void get_location_code(struct seq_file *m,
      struct individual_sensor *s, const char *loc);
static void check_location_string(struct seq_file *m, const char *c);
static void check_location(struct seq_file *m, const char *c);

static int __init proc_rtas_init(void)
{
      struct proc_dir_entry *entry;

      if (!machine_is(pseries))
            return -ENODEV;

      rtas_node = of_find_node_by_name(NULL, "rtas");
      if (rtas_node == NULL)
            return -ENODEV;

      entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
      if (entry)
            entry->proc_fops = &ppc_rtas_progress_operations;

      entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
      if (entry)
            entry->proc_fops = &ppc_rtas_clock_operations;

      entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
      if (entry)
            entry->proc_fops = &ppc_rtas_poweron_operations;

      entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
      if (entry)
            entry->proc_fops = &ppc_rtas_sensors_operations;

      entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
                          NULL);
      if (entry)
            entry->proc_fops = &ppc_rtas_tone_freq_operations;

      entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
      if (entry)
            entry->proc_fops = &ppc_rtas_tone_volume_operations;

      entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
      if (entry)
            entry->proc_fops = &ppc_rtas_rmo_buf_ops;

      return 0;
}

__initcall(proc_rtas_init);

static int parse_number(const char __user *p, size_t count, unsigned long *val)
{
      char buf[40];
      char *end;

      if (count > 39)
            return -EINVAL;

      if (copy_from_user(buf, p, count))
            return -EFAULT;

      buf[count] = 0;

      *val = simple_strtoul(buf, &end, 10);
      if (*end && *end != '\n')
            return -EINVAL;

      return 0;
}

/* ****************************************************************** */
/* POWER-ON-TIME                                                      */
/* ****************************************************************** */
static ssize_t ppc_rtas_poweron_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos)
{
      struct rtc_time tm;
      unsigned long nowtime;
      int error = parse_number(buf, count, &nowtime);
      if (error)
            return error;

      power_on_time = nowtime; /* save the time */

      to_tm(nowtime, &tm);

      error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
                  tm.tm_year, tm.tm_mon, tm.tm_mday, 
                  tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
      if (error)
            printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
                        ppc_rtas_process_error(error));
      return count;
}
/* ****************************************************************** */
static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
{
      if (power_on_time == 0)
            seq_printf(m, "Power on time not set\n");
      else
            seq_printf(m, "%lu\n",power_on_time);
      return 0;
}

/* ****************************************************************** */
/* PROGRESS                                                           */
/* ****************************************************************** */
static ssize_t ppc_rtas_progress_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos)
{
      unsigned long hex;

      if (count >= MAX_LINELENGTH)
            count = MAX_LINELENGTH -1;
      if (copy_from_user(progress_led, buf, count)) { /* save the string */
            return -EFAULT;
      }
      progress_led[count] = 0;

      /* Lets see if the user passed hexdigits */
      hex = simple_strtoul(progress_led, NULL, 10);

      rtas_progress ((char *)progress_led, hex);
      return count;

      /* clear the line */
      /* rtas_progress("                   ", 0xffff);*/
}
/* ****************************************************************** */
static int ppc_rtas_progress_show(struct seq_file *m, void *v)
{
      if (progress_led[0])
            seq_printf(m, "%s\n", progress_led);
      return 0;
}

/* ****************************************************************** */
/* CLOCK                                                              */
/* ****************************************************************** */
static ssize_t ppc_rtas_clock_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos)
{
      struct rtc_time tm;
      unsigned long nowtime;
      int error = parse_number(buf, count, &nowtime);
      if (error)
            return error;

      to_tm(nowtime, &tm);
      error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
                  tm.tm_year, tm.tm_mon, tm.tm_mday, 
                  tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
      if (error)
            printk(KERN_WARNING "error: setting the clock returned: %s\n", 
                        ppc_rtas_process_error(error));
      return count;
}
/* ****************************************************************** */
static int ppc_rtas_clock_show(struct seq_file *m, void *v)
{
      int ret[8];
      int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);

      if (error) {
            printk(KERN_WARNING "error: reading the clock returned: %s\n", 
                        ppc_rtas_process_error(error));
            seq_printf(m, "0");
      } else { 
            unsigned int year, mon, day, hour, min, sec;
            year = ret[0]; mon  = ret[1]; day  = ret[2];
            hour = ret[3]; min  = ret[4]; sec  = ret[5];
            seq_printf(m, "%lu\n",
                        mktime(year, mon, day, hour, min, sec));
      }
      return 0;
}

/* ****************************************************************** */
/* SENSOR STUFF                                                       */
/* ****************************************************************** */
static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
{
      int i,j;
      int state, error;
      int get_sensor_state = rtas_token("get-sensor-state");

      seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
      seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
      seq_printf(m, "********************************************************\n");

      if (ppc_rtas_find_all_sensors() != 0) {
            seq_printf(m, "\nNo sensors are available\n");
            return 0;
      }

      for (i=0; i<sensors.quant; i++) {
            struct individual_sensor *p = &sensors.sensor[i];
            char rstr[64];
            const char *loc;
            int llen, offs;

            sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
            loc = of_get_property(rtas_node, rstr, &llen);

            /* A sensor may have multiple instances */
            for (j = 0, offs = 0; j <= p->quant; j++) {
                  error =     rtas_call(get_sensor_state, 2, 2, &state, 
                                p->token, j);

                  ppc_rtas_process_sensor(m, p, state, error, loc);
                  seq_putc(m, '\n');
                  if (loc) {
                        offs += strlen(loc) + 1;
                        loc += strlen(loc) + 1;
                        if (offs >= llen)
                              loc = NULL;
                  }
            }
      }
      return 0;
}

/* ****************************************************************** */

static int ppc_rtas_find_all_sensors(void)
{
      const unsigned int *utmp;
      int len, i;

      utmp = of_get_property(rtas_node, "rtas-sensors", &len);
      if (utmp == NULL) {
            printk (KERN_ERR "error: could not get rtas-sensors\n");
            return 1;
      }

      sensors.quant = len / 8;      /* int + int */

      for (i=0; i<sensors.quant; i++) {
            sensors.sensor[i].token = *utmp++;
            sensors.sensor[i].quant = *utmp++;
      }
      return 0;
}

/* ****************************************************************** */
/*
 * Builds a string of what rtas returned
 */
static char *ppc_rtas_process_error(int error)
{
      switch (error) {
            case SENSOR_CRITICAL_HIGH:
                  return "(critical high)";
            case SENSOR_WARNING_HIGH:
                  return "(warning high)";
            case SENSOR_NORMAL:
                  return "(normal)";
            case SENSOR_WARNING_LOW:
                  return "(warning low)";
            case SENSOR_CRITICAL_LOW:
                  return "(critical low)";
            case SENSOR_SUCCESS:
                  return "(read ok)";
            case SENSOR_HW_ERROR:
                  return "(hardware error)";
            case SENSOR_BUSY:
                  return "(busy)";
            case SENSOR_NOT_EXIST:
                  return "(non existent)";
            case SENSOR_DR_ENTITY:
                  return "(dr entity removed)";
            default:
                  return "(UNKNOWN)";
      }
}

/* ****************************************************************** */
/*
 * Builds a string out of what the sensor said
 */

static void ppc_rtas_process_sensor(struct seq_file *m,
      struct individual_sensor *s, int state, int error, const char *loc)
{
      /* Defined return vales */
      const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
                                    "Maintenance" };
      const char * enclosure_switch[]  = { "Closed", "Open" };
      const char * lid_status[]        = { " ", "Open", "Closed" };
      const char * power_source[]      = { "AC\t", "Battery", 
                                    "AC & Battery" };
      const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
      const char * epow_sensor[]       = { 
            "EPOW Reset", "Cooling warning", "Power warning",
            "System shutdown", "System halt", "EPOW main enclosure",
            "EPOW power off" };
      const char * battery_cyclestate[]  = { "None", "In progress", 
                                    "Requested" };
      const char * battery_charging[]    = { "Charging", "Discharching", 
                                    "No current flow" };
      const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
                                    "Exchange" };

      int have_strings = 0;
      int num_states = 0;
      int temperature = 0;
      int unknown = 0;

      /* What kind of sensor do we have here? */
      
      switch (s->token) {
            case KEY_SWITCH:
                  seq_printf(m, "Key switch:\t");
                  num_states = sizeof(key_switch) / sizeof(char *);
                  if (state < num_states) {
                        seq_printf(m, "%s\t", key_switch[state]);
                        have_strings = 1;
                  }
                  break;
            case ENCLOSURE_SWITCH:
                  seq_printf(m, "Enclosure switch:\t");
                  num_states = sizeof(enclosure_switch) / sizeof(char *);
                  if (state < num_states) {
                        seq_printf(m, "%s\t", 
                                    enclosure_switch[state]);
                        have_strings = 1;
                  }
                  break;
            case THERMAL_SENSOR:
                  seq_printf(m, "Temp. (C/F):\t");
                  temperature = 1;
                  break;
            case LID_STATUS:
                  seq_printf(m, "Lid status:\t");
                  num_states = sizeof(lid_status) / sizeof(char *);
                  if (state < num_states) {
                        seq_printf(m, "%s\t", lid_status[state]);
                        have_strings = 1;
                  }
                  break;
            case POWER_SOURCE:
                  seq_printf(m, "Power source:\t");
                  num_states = sizeof(power_source) / sizeof(char *);
                  if (state < num_states) {
                        seq_printf(m, "%s\t", 
                                    power_source[state]);
                        have_strings = 1;
                  }
                  break;
            case BATTERY_VOLTAGE:
                  seq_printf(m, "Battery voltage:\t");
                  break;
            case BATTERY_REMAINING:
                  seq_printf(m, "Battery remaining:\t");
                  num_states = sizeof(battery_remaining) / sizeof(char *);
                  if (state < num_states)
                  {
                        seq_printf(m, "%s\t", 
                                    battery_remaining[state]);
                        have_strings = 1;
                  }
                  break;
            case BATTERY_PERCENTAGE:
                  seq_printf(m, "Battery percentage:\t");
                  break;
            case EPOW_SENSOR:
                  seq_printf(m, "EPOW Sensor:\t");
                  num_states = sizeof(epow_sensor) / sizeof(char *);
                  if (state < num_states) {
                        seq_printf(m, "%s\t", epow_sensor[state]);
                        have_strings = 1;
                  }
                  break;
            case BATTERY_CYCLESTATE:
                  seq_printf(m, "Battery cyclestate:\t");
                  num_states = sizeof(battery_cyclestate) / 
                              sizeof(char *);
                  if (state < num_states) {
                        seq_printf(m, "%s\t", 
                                    battery_cyclestate[state]);
                        have_strings = 1;
                  }
                  break;
            case BATTERY_CHARGING:
                  seq_printf(m, "Battery Charging:\t");
                  num_states = sizeof(battery_charging) / sizeof(char *);
                  if (state < num_states) {
                        seq_printf(m, "%s\t", 
                                    battery_charging[state]);
                        have_strings = 1;
                  }
                  break;
            case IBM_SURVEILLANCE:
                  seq_printf(m, "Surveillance:\t");
                  break;
            case IBM_FANRPM:
                  seq_printf(m, "Fan (rpm):\t");
                  break;
            case IBM_VOLTAGE:
                  seq_printf(m, "Voltage (mv):\t");
                  break;
            case IBM_DRCONNECTOR:
                  seq_printf(m, "DR connector:\t");
                  num_states = sizeof(ibm_drconnector) / sizeof(char *);
                  if (state < num_states) {
                        seq_printf(m, "%s\t", 
                                    ibm_drconnector[state]);
                        have_strings = 1;
                  }
                  break;
            case IBM_POWERSUPPLY:
                  seq_printf(m, "Powersupply:\t");
                  break;
            default:
                  seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
                              s->token);
                  unknown = 1;
                  have_strings = 1;
                  break;
      }
      if (have_strings == 0) {
            if (temperature) {
                  seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
            } else
                  seq_printf(m, "%10d\t", state);
      }
      if (unknown == 0) {
            seq_printf(m, "%s\t", ppc_rtas_process_error(error));
            get_location_code(m, s, loc);
      }
}

/* ****************************************************************** */

static void check_location(struct seq_file *m, const char *c)
{
      switch (c[0]) {
            case LOC_PLANAR:
                  seq_printf(m, "Planar #%c", c[1]);
                  break;
            case LOC_CPU:
                  seq_printf(m, "CPU #%c", c[1]);
                  break;
            case LOC_FAN:
                  seq_printf(m, "Fan #%c", c[1]);
                  break;
            case LOC_RACKMOUNTED:
                  seq_printf(m, "Rack #%c", c[1]);
                  break;
            case LOC_VOLTAGE:
                  seq_printf(m, "Voltage #%c", c[1]);
                  break;
            case LOC_LCD:
                  seq_printf(m, "LCD #%c", c[1]);
                  break;
            case '.':
                  seq_printf(m, "- %c", c[1]);
                  break;
            default:
                  seq_printf(m, "Unknown location");
                  break;
      }
}


/* ****************************************************************** */
/* 
 * Format: 
 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
 * the '.' may be an abbrevation
 */
static void check_location_string(struct seq_file *m, const char *c)
{
      while (*c) {
            if (isalpha(*c) || *c == '.')
                  check_location(m, c);
            else if (*c == '/' || *c == '-')
                  seq_printf(m, " at ");
            c++;
      }
}


/* ****************************************************************** */

static void get_location_code(struct seq_file *m, struct individual_sensor *s,
            const char *loc)
{
      if (!loc || !*loc) {
            seq_printf(m, "---");/* does not have a location */
      } else {
            check_location_string(m, loc);
      }
      seq_putc(m, ' ');
}
/* ****************************************************************** */
/* INDICATORS - Tone Frequency                                        */
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_freq_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos)
{
      unsigned long freq;
      int error = parse_number(buf, count, &freq);
      if (error)
            return error;

      rtas_tone_frequency = freq; /* save it for later */
      error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
                  TONE_FREQUENCY, 0, freq);
      if (error)
            printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
                        ppc_rtas_process_error(error));
      return count;
}
/* ****************************************************************** */
static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
{
      seq_printf(m, "%lu\n", rtas_tone_frequency);
      return 0;
}
/* ****************************************************************** */
/* INDICATORS - Tone Volume                                           */
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_volume_write(struct file *file,
            const char __user *buf, size_t count, loff_t *ppos)
{
      unsigned long volume;
      int error = parse_number(buf, count, &volume);
      if (error)
            return error;

      if (volume > 100)
            volume = 100;
      
        rtas_tone_volume = volume; /* save it for later */
      error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
                  TONE_VOLUME, 0, volume);
      if (error)
            printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
                        ppc_rtas_process_error(error));
      return count;
}
/* ****************************************************************** */
static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
{
      seq_printf(m, "%lu\n", rtas_tone_volume);
      return 0;
}

#define RMO_READ_BUF_MAX 30

/* RTAS Userspace access */
static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
{
      seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
      return 0;
}

Generated by  Doxygen 1.6.0   Back to index