Logo Search packages:      
Sourcecode: linux version File versions  Download package

sa1100_ir.c

/*
 *  linux/drivers/net/irda/sa1100_ir.c
 *
 *  Copyright (C) 2000-2001 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  Infra-red driver for the StrongARM SA1100 embedded microprocessor
 *
 *  Note that we don't have to worry about the SA1111's DMA bugs in here,
 *  so we use the straight forward dma_map_* functions with a null pointer.
 *
 *  This driver takes one kernel command line parameter, sa1100ir=, with
 *  the following options:
 *    max_rate:baudrate - set the maximum baud rate
 *    power_leve:level  - set the transmitter power level
 *    tx_lpm:0|1        - set transmit low power mode
 */
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>

#include <net/irda/irda.h>
#include <net/irda/wrapper.h>
#include <net/irda/irda_device.h>

#include <asm/irq.h>
#include <asm/dma.h>
#include <asm/hardware.h>
#include <asm/mach/irda.h>

static int power_level = 3;
static int tx_lpm;
static int max_rate = 4000000;

struct sa1100_irda {
      unsigned char           hscr0;
      unsigned char           utcr4;
      unsigned char           power;
      unsigned char           open;

      int               speed;
      int               newspeed;

      struct sk_buff          *txskb;
      struct sk_buff          *rxskb;
      dma_addr_t        txbuf_dma;
      dma_addr_t        rxbuf_dma;
      dma_regs_t        *txdma;
      dma_regs_t        *rxdma;

      struct net_device_stats stats;
      struct device           *dev;
      struct irda_platform_data *pdata;
      struct irlap_cb         *irlap;
      struct qos_info         qos;

      iobuff_t          tx_buff;
      iobuff_t          rx_buff;
};

#define IS_FIR(si)            ((si)->speed >= 4000000)

#define HPSIR_MAX_RXLEN       2047

/*
 * Allocate and map the receive buffer, unless it is already allocated.
 */
static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
{
      if (si->rxskb)
            return 0;

      si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);

      if (!si->rxskb) {
            printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
            return -ENOMEM;
      }

      /*
       * Align any IP headers that may be contained
       * within the frame.
       */
      skb_reserve(si->rxskb, 1);

      si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
                              HPSIR_MAX_RXLEN,
                              DMA_FROM_DEVICE);
      return 0;
}

/*
 * We want to get here as soon as possible, and get the receiver setup.
 * We use the existing buffer.
 */
static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
{
      if (!si->rxskb) {
            printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
            return;
      }

      /*
       * First empty receive FIFO
       */
      Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;

      /*
       * Enable the DMA, receiver and receive interrupt.
       */
      sa1100_clear_dma(si->rxdma);
      sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN);
      Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;
}

/*
 * Set the IrDA communications speed.
 */
static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
{
      unsigned long flags;
      int brd, ret = -EINVAL;

      switch (speed) {
      case 9600:  case 19200: case 38400:
      case 57600: case 115200:
            brd = 3686400 / (16 * speed) - 1;

            /*
             * Stop the receive DMA.
             */
            if (IS_FIR(si))
                  sa1100_stop_dma(si->rxdma);

            local_irq_save(flags);

            Ser2UTCR3 = 0;
            Ser2HSCR0 = HSCR0_UART;

            Ser2UTCR1 = brd >> 8;
            Ser2UTCR2 = brd;

            /*
             * Clear status register
             */
            Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
            Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;

            if (si->pdata->set_speed)
                  si->pdata->set_speed(si->dev, speed);

            si->speed = speed;

            local_irq_restore(flags);
            ret = 0;
            break;

      case 4000000:
            local_irq_save(flags);

            si->hscr0 = 0;

            Ser2HSSR0 = 0xff;
            Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
            Ser2UTCR3 = 0;

            si->speed = speed;

            if (si->pdata->set_speed)
                  si->pdata->set_speed(si->dev, speed);

            sa1100_irda_rx_alloc(si);
            sa1100_irda_rx_dma_start(si);

            local_irq_restore(flags);

            break;

      default:
            break;
      }

      return ret;
}

/*
 * Control the power state of the IrDA transmitter.
 * State:
 *  0 - off
 *  1 - short range, lowest power
 *  2 - medium range, medium power
 *  3 - maximum range, high power
 *
 * Currently, only assabet is known to support this.
 */
static int
__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
{
      int ret = 0;
      if (si->pdata->set_power)
            ret = si->pdata->set_power(si->dev, state);
      return ret;
}

static inline int
sa1100_set_power(struct sa1100_irda *si, unsigned int state)
{
      int ret;

      ret = __sa1100_irda_set_power(si, state);
      if (ret == 0)
            si->power = state;

      return ret;
}

static int sa1100_irda_startup(struct sa1100_irda *si)
{
      int ret;

      /*
       * Ensure that the ports for this device are setup correctly.
       */
      if (si->pdata->startup)
            si->pdata->startup(si->dev);

      /*
       * Configure PPC for IRDA - we want to drive TXD2 low.
       * We also want to drive this pin low during sleep.
       */
      PPSR &= ~PPC_TXD2;
      PSDR &= ~PPC_TXD2;
      PPDR |= PPC_TXD2;

      /*
       * Enable HP-SIR modulation, and ensure that the port is disabled.
       */
      Ser2UTCR3 = 0;
      Ser2HSCR0 = HSCR0_UART;
      Ser2UTCR4 = si->utcr4;
      Ser2UTCR0 = UTCR0_8BitData;
      Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;

      /*
       * Clear status register
       */
      Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;

      ret = sa1100_irda_set_speed(si, si->speed = 9600);
      if (ret) {
            Ser2UTCR3 = 0;
            Ser2HSCR0 = 0;

            if (si->pdata->shutdown)
                  si->pdata->shutdown(si->dev);
      }

      return ret;
}

static void sa1100_irda_shutdown(struct sa1100_irda *si)
{
      /*
       * Stop all DMA activity.
       */
      sa1100_stop_dma(si->rxdma);
      sa1100_stop_dma(si->txdma);

      /* Disable the port. */
      Ser2UTCR3 = 0;
      Ser2HSCR0 = 0;

      if (si->pdata->shutdown)
            si->pdata->shutdown(si->dev);
}

#ifdef CONFIG_PM
/*
 * Suspend the IrDA interface.
 */
static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
{
      struct net_device *dev = platform_get_drvdata(pdev);
      struct sa1100_irda *si;

      if (!dev)
            return 0;

      si = dev->priv;
      if (si->open) {
            /*
             * Stop the transmit queue
             */
            netif_device_detach(dev);
            disable_irq(dev->irq);
            sa1100_irda_shutdown(si);
            __sa1100_irda_set_power(si, 0);
      }

      return 0;
}

/*
 * Resume the IrDA interface.
 */
static int sa1100_irda_resume(struct platform_device *pdev)
{
      struct net_device *dev = platform_get_drvdata(pdev);
      struct sa1100_irda *si;

      if (!dev)
            return 0;

      si = dev->priv;
      if (si->open) {
            /*
             * If we missed a speed change, initialise at the new speed
             * directly.  It is debatable whether this is actually
             * required, but in the interests of continuing from where
             * we left off it is desireable.  The converse argument is
             * that we should re-negotiate at 9600 baud again.
             */
            if (si->newspeed) {
                  si->speed = si->newspeed;
                  si->newspeed = 0;
            }

            sa1100_irda_startup(si);
            __sa1100_irda_set_power(si, si->power);
            enable_irq(dev->irq);

            /*
             * This automatically wakes up the queue
             */
            netif_device_attach(dev);
      }

      return 0;
}
#else
#define sa1100_irda_suspend   NULL
#define sa1100_irda_resume    NULL
#endif

/*
 * HP-SIR format interrupt service routines.
 */
static void sa1100_irda_hpsir_irq(struct net_device *dev)
{
      struct sa1100_irda *si = dev->priv;
      int status;

      status = Ser2UTSR0;

      /*
       * Deal with any receive errors first.  The bytes in error may be
       * the only bytes in the receive FIFO, so we do this first.
       */
      while (status & UTSR0_EIF) {
            int stat, data;

            stat = Ser2UTSR1;
            data = Ser2UTDR;

            if (stat & (UTSR1_FRE | UTSR1_ROR)) {
                  si->stats.rx_errors++;
                  if (stat & UTSR1_FRE)
                        si->stats.rx_frame_errors++;
                  if (stat & UTSR1_ROR)
                        si->stats.rx_fifo_errors++;
            } else
                  async_unwrap_char(dev, &si->stats, &si->rx_buff, data);

            status = Ser2UTSR0;
      }

      /*
       * We must clear certain bits.
       */
      Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);

      if (status & UTSR0_RFS) {
            /*
             * There are at least 4 bytes in the FIFO.  Read 3 bytes
             * and leave the rest to the block below.
             */
            async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
            async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
            async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
      }

      if (status & (UTSR0_RFS | UTSR0_RID)) {
            /*
             * Fifo contains more than 1 character.
             */
            do {
                  async_unwrap_char(dev, &si->stats, &si->rx_buff,
                                Ser2UTDR);
            } while (Ser2UTSR1 & UTSR1_RNE);

            dev->last_rx = jiffies;
      }

      if (status & UTSR0_TFS && si->tx_buff.len) {
            /*
             * Transmitter FIFO is not full
             */
            do {
                  Ser2UTDR = *si->tx_buff.data++;
                  si->tx_buff.len -= 1;
            } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);

            if (si->tx_buff.len == 0) {
                  si->stats.tx_packets++;
                  si->stats.tx_bytes += si->tx_buff.data -
                                    si->tx_buff.head;

                  /*
                   * We need to ensure that the transmitter has
                   * finished.
                   */
                  do
                        rmb();
                  while (Ser2UTSR1 & UTSR1_TBY);

                  /*
                   * Ok, we've finished transmitting.  Now enable
                   * the receiver.  Sometimes we get a receive IRQ
                   * immediately after a transmit...
                   */
                  Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
                  Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;

                  if (si->newspeed) {
                        sa1100_irda_set_speed(si, si->newspeed);
                        si->newspeed = 0;
                  }

                  /* I'm hungry! */
                  netif_wake_queue(dev);
            }
      }
}

static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
{
      struct sk_buff *skb = si->rxskb;
      dma_addr_t dma_addr;
      unsigned int len, stat, data;

      if (!skb) {
            printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
            return;
      }

      /*
       * Get the current data position.
       */
      dma_addr = sa1100_get_dma_pos(si->rxdma);
      len = dma_addr - si->rxbuf_dma;
      if (len > HPSIR_MAX_RXLEN)
            len = HPSIR_MAX_RXLEN;
      dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE);

      do {
            /*
             * Read Status, and then Data.
             */
            stat = Ser2HSSR1;
            rmb();
            data = Ser2HSDR;

            if (stat & (HSSR1_CRE | HSSR1_ROR)) {
                  si->stats.rx_errors++;
                  if (stat & HSSR1_CRE)
                        si->stats.rx_crc_errors++;
                  if (stat & HSSR1_ROR)
                        si->stats.rx_frame_errors++;
            } else
                  skb->data[len++] = data;

            /*
             * If we hit the end of frame, there's
             * no point in continuing.
             */
            if (stat & HSSR1_EOF)
                  break;
      } while (Ser2HSSR0 & HSSR0_EIF);

      if (stat & HSSR1_EOF) {
            si->rxskb = NULL;

            skb_put(skb, len);
            skb->dev = dev;
            skb_reset_mac_header(skb);
            skb->protocol = htons(ETH_P_IRDA);
            si->stats.rx_packets++;
            si->stats.rx_bytes += len;

            /*
             * Before we pass the buffer up, allocate a new one.
             */
            sa1100_irda_rx_alloc(si);

            netif_rx(skb);
            dev->last_rx = jiffies;
      } else {
            /*
             * Remap the buffer.
             */
            si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
                                    HPSIR_MAX_RXLEN,
                                    DMA_FROM_DEVICE);
      }
}

/*
 * FIR format interrupt service routine.  We only have to
 * handle RX events; transmit events go via the TX DMA handler.
 *
 * No matter what, we disable RX, process, and the restart RX.
 */
static void sa1100_irda_fir_irq(struct net_device *dev)
{
      struct sa1100_irda *si = dev->priv;

      /*
       * Stop RX DMA
       */
      sa1100_stop_dma(si->rxdma);

      /*
       * Framing error - we throw away the packet completely.
       * Clearing RXE flushes the error conditions and data
       * from the fifo.
       */
      if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
            si->stats.rx_errors++;

            if (Ser2HSSR0 & HSSR0_FRE)
                  si->stats.rx_frame_errors++;

            /*
             * Clear out the DMA...
             */
            Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;

            /*
             * Clear selected status bits now, so we
             * don't miss them next time around.
             */
            Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
      }

      /*
       * Deal with any receive errors.  The any of the lowest
       * 8 bytes in the FIFO may contain an error.  We must read
       * them one by one.  The "error" could even be the end of
       * packet!
       */
      if (Ser2HSSR0 & HSSR0_EIF)
            sa1100_irda_fir_error(si, dev);

      /*
       * No matter what happens, we must restart reception.
       */
      sa1100_irda_rx_dma_start(si);
}

static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
{
      struct net_device *dev = dev_id;
      if (IS_FIR(((struct sa1100_irda *)dev->priv)))
            sa1100_irda_fir_irq(dev);
      else
            sa1100_irda_hpsir_irq(dev);
      return IRQ_HANDLED;
}

/*
 * TX DMA completion handler.
 */
static void sa1100_irda_txdma_irq(void *id)
{
      struct net_device *dev = id;
      struct sa1100_irda *si = dev->priv;
      struct sk_buff *skb = si->txskb;

      si->txskb = NULL;

      /*
       * Wait for the transmission to complete.  Unfortunately,
       * the hardware doesn't give us an interrupt to indicate
       * "end of frame".
       */
      do
            rmb();
      while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);

      /*
       * Clear the transmit underrun bit.
       */
      Ser2HSSR0 = HSSR0_TUR;

      /*
       * Do we need to change speed?  Note that we're lazy
       * here - we don't free the old rxskb.  We don't need
       * to allocate a buffer either.
       */
      if (si->newspeed) {
            sa1100_irda_set_speed(si, si->newspeed);
            si->newspeed = 0;
      }

      /*
       * Start reception.  This disables the transmitter for
       * us.  This will be using the existing RX buffer.
       */
      sa1100_irda_rx_dma_start(si);

      /*
       * Account and free the packet.
       */
      if (skb) {
            dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE);
            si->stats.tx_packets ++;
            si->stats.tx_bytes += skb->len;
            dev_kfree_skb_irq(skb);
      }

      /*
       * Make sure that the TX queue is available for sending
       * (for retries).  TX has priority over RX at all times.
       */
      netif_wake_queue(dev);
}

static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
{
      struct sa1100_irda *si = dev->priv;
      int speed = irda_get_next_speed(skb);

      /*
       * Does this packet contain a request to change the interface
       * speed?  If so, remember it until we complete the transmission
       * of this frame.
       */
      if (speed != si->speed && speed != -1)
            si->newspeed = speed;

      /*
       * If this is an empty frame, we can bypass a lot.
       */
      if (skb->len == 0) {
            if (si->newspeed) {
                  si->newspeed = 0;
                  sa1100_irda_set_speed(si, speed);
            }
            dev_kfree_skb(skb);
            return 0;
      }

      if (!IS_FIR(si)) {
            netif_stop_queue(dev);

            si->tx_buff.data = si->tx_buff.head;
            si->tx_buff.len  = async_wrap_skb(skb, si->tx_buff.data,
                                      si->tx_buff.truesize);

            /*
             * Set the transmit interrupt enable.  This will fire
             * off an interrupt immediately.  Note that we disable
             * the receiver so we won't get spurious characteres
             * received.
             */
            Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;

            dev_kfree_skb(skb);
      } else {
            int mtt = irda_get_mtt(skb);

            /*
             * We must not be transmitting...
             */
            BUG_ON(si->txskb);

            netif_stop_queue(dev);

            si->txskb = skb;
            si->txbuf_dma = dma_map_single(si->dev, skb->data,
                               skb->len, DMA_TO_DEVICE);

            sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);

            /*
             * If we have a mean turn-around time, impose the specified
             * specified delay.  We could shorten this by timing from
             * the point we received the packet.
             */
            if (mtt)
                  udelay(mtt);

            Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE;
      }

      dev->trans_start = jiffies;

      return 0;
}

static int
sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
{
      struct if_irda_req *rq = (struct if_irda_req *)ifreq;
      struct sa1100_irda *si = dev->priv;
      int ret = -EOPNOTSUPP;

      switch (cmd) {
      case SIOCSBANDWIDTH:
            if (capable(CAP_NET_ADMIN)) {
                  /*
                   * We are unable to set the speed if the
                   * device is not running.
                   */
                  if (si->open) {
                        ret = sa1100_irda_set_speed(si,
                                    rq->ifr_baudrate);
                  } else {
                        printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
                        ret = 0;
                  }
            }
            break;

      case SIOCSMEDIABUSY:
            ret = -EPERM;
            if (capable(CAP_NET_ADMIN)) {
                  irda_device_set_media_busy(dev, TRUE);
                  ret = 0;
            }
            break;

      case SIOCGRECEIVING:
            rq->ifr_receiving = IS_FIR(si) ? 0
                              : si->rx_buff.state != OUTSIDE_FRAME;
            break;

      default:
            break;
      }
            
      return ret;
}

static struct net_device_stats *sa1100_irda_stats(struct net_device *dev)
{
      struct sa1100_irda *si = dev->priv;
      return &si->stats;
}

static int sa1100_irda_start(struct net_device *dev)
{
      struct sa1100_irda *si = dev->priv;
      int err;

      si->speed = 9600;

      err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
      if (err)
            goto err_irq;

      err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
                         NULL, NULL, &si->rxdma);
      if (err)
            goto err_rx_dma;

      err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit",
                         sa1100_irda_txdma_irq, dev, &si->txdma);
      if (err)
            goto err_tx_dma;

      /*
       * The interrupt must remain disabled for now.
       */
      disable_irq(dev->irq);

      /*
       * Setup the serial port for the specified speed.
       */
      err = sa1100_irda_startup(si);
      if (err)
            goto err_startup;

      /*
       * Open a new IrLAP layer instance.
       */
      si->irlap = irlap_open(dev, &si->qos, "sa1100");
      err = -ENOMEM;
      if (!si->irlap)
            goto err_irlap;

      /*
       * Now enable the interrupt and start the queue
       */
      si->open = 1;
      sa1100_set_power(si, power_level); /* low power mode */
      enable_irq(dev->irq);
      netif_start_queue(dev);
      return 0;

err_irlap:
      si->open = 0;
      sa1100_irda_shutdown(si);
err_startup:
      sa1100_free_dma(si->txdma);
err_tx_dma:
      sa1100_free_dma(si->rxdma);
err_rx_dma:
      free_irq(dev->irq, dev);
err_irq:
      return err;
}

static int sa1100_irda_stop(struct net_device *dev)
{
      struct sa1100_irda *si = dev->priv;

      disable_irq(dev->irq);
      sa1100_irda_shutdown(si);

      /*
       * If we have been doing DMA receive, make sure we
       * tidy that up cleanly.
       */
      if (si->rxskb) {
            dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN,
                         DMA_FROM_DEVICE);
            dev_kfree_skb(si->rxskb);
            si->rxskb = NULL;
      }

      /* Stop IrLAP */
      if (si->irlap) {
            irlap_close(si->irlap);
            si->irlap = NULL;
      }

      netif_stop_queue(dev);
      si->open = 0;

      /*
       * Free resources
       */
      sa1100_free_dma(si->txdma);
      sa1100_free_dma(si->rxdma);
      free_irq(dev->irq, dev);

      sa1100_set_power(si, 0);

      return 0;
}

static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
{
      io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
      if (io->head != NULL) {
            io->truesize = size;
            io->in_frame = FALSE;
            io->state    = OUTSIDE_FRAME;
            io->data     = io->head;
      }
      return io->head ? 0 : -ENOMEM;
}

static int sa1100_irda_probe(struct platform_device *pdev)
{
      struct net_device *dev;
      struct sa1100_irda *si;
      unsigned int baudrate_mask;
      int err;

      if (!pdev->dev.platform_data)
            return -EINVAL;

      err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
      if (err)
            goto err_mem_1;
      err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
      if (err)
            goto err_mem_2;
      err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
      if (err)
            goto err_mem_3;

      dev = alloc_irdadev(sizeof(struct sa1100_irda));
      if (!dev)
            goto err_mem_4;

      si = dev->priv;
      si->dev = &pdev->dev;
      si->pdata = pdev->dev.platform_data;

      /*
       * Initialise the HP-SIR buffers
       */
      err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
      if (err)
            goto err_mem_5;
      err = sa1100_irda_init_iobuf(&si->tx_buff, 4000);
      if (err)
            goto err_mem_5;

      dev->hard_start_xmit    = sa1100_irda_hard_xmit;
      dev->open         = sa1100_irda_start;
      dev->stop         = sa1100_irda_stop;
      dev->do_ioctl           = sa1100_irda_ioctl;
      dev->get_stats          = sa1100_irda_stats;
      dev->irq          = IRQ_Ser2ICP;

      irda_init_max_qos_capabilies(&si->qos);

      /*
       * We support original IRDA up to 115k2. (we don't currently
       * support 4Mbps).  Min Turn Time set to 1ms or greater.
       */
      baudrate_mask = IR_9600;

      switch (max_rate) {
      case 4000000:           baudrate_mask |= IR_4000000 << 8;
      case 115200:            baudrate_mask |= IR_115200;
      case 57600:       baudrate_mask |= IR_57600;
      case 38400:       baudrate_mask |= IR_38400;
      case 19200:       baudrate_mask |= IR_19200;
      }
            
      si->qos.baud_rate.bits &= baudrate_mask;
      si->qos.min_turn_time.bits = 7;

      irda_qos_bits_to_value(&si->qos);

      si->utcr4 = UTCR4_HPSIR;
      if (tx_lpm)
            si->utcr4 |= UTCR4_Z1_6us;

      /*
       * Initially enable HP-SIR modulation, and ensure that the port
       * is disabled.
       */
      Ser2UTCR3 = 0;
      Ser2UTCR4 = si->utcr4;
      Ser2HSCR0 = HSCR0_UART;

      err = register_netdev(dev);
      if (err == 0)
            platform_set_drvdata(pdev, dev);

      if (err) {
 err_mem_5:
            kfree(si->tx_buff.head);
            kfree(si->rx_buff.head);
            free_netdev(dev);
 err_mem_4:
            release_mem_region(__PREG(Ser2HSCR2), 0x04);
 err_mem_3:
            release_mem_region(__PREG(Ser2HSCR0), 0x1c);
 err_mem_2:
            release_mem_region(__PREG(Ser2UTCR0), 0x24);
      }
 err_mem_1:
      return err;
}

static int sa1100_irda_remove(struct platform_device *pdev)
{
      struct net_device *dev = platform_get_drvdata(pdev);

      if (dev) {
            struct sa1100_irda *si = dev->priv;
            unregister_netdev(dev);
            kfree(si->tx_buff.head);
            kfree(si->rx_buff.head);
            free_netdev(dev);
      }

      release_mem_region(__PREG(Ser2HSCR2), 0x04);
      release_mem_region(__PREG(Ser2HSCR0), 0x1c);
      release_mem_region(__PREG(Ser2UTCR0), 0x24);

      return 0;
}

static struct platform_driver sa1100ir_driver = {
      .probe            = sa1100_irda_probe,
      .remove           = sa1100_irda_remove,
      .suspend    = sa1100_irda_suspend,
      .resume           = sa1100_irda_resume,
      .driver           = {
            .name = "sa11x0-ir",
      },
};

static int __init sa1100_irda_init(void)
{
      /*
       * Limit power level a sensible range.
       */
      if (power_level < 1)
            power_level = 1;
      if (power_level > 3)
            power_level = 3;

      return platform_driver_register(&sa1100ir_driver);
}

static void __exit sa1100_irda_exit(void)
{
      platform_driver_unregister(&sa1100ir_driver);
}

module_init(sa1100_irda_init);
module_exit(sa1100_irda_exit);
module_param(power_level, int, 0);
module_param(tx_lpm, int, 0);
module_param(max_rate, int, 0);

MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
MODULE_LICENSE("GPL");
MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");

Generated by  Doxygen 1.6.0   Back to index