Logo Search packages:      
Sourcecode: linux version File versions  Download package

sas_expander.c

/*
 * Serial Attached SCSI (SAS) Expander discovery and configuration
 *
 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
 *
 * This file is licensed under GPLv2.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/scatterlist.h>
#include <linux/blkdev.h>

#include "sas_internal.h"

#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_sas.h>
#include "../scsi_sas_internal.h"

static int sas_discover_expander(struct domain_device *dev);
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
static int sas_configure_phy(struct domain_device *dev, int phy_id,
                       u8 *sas_addr, int include);
static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);

/* ---------- SMP task management ---------- */

static void smp_task_timedout(unsigned long _task)
{
      struct sas_task *task = (void *) _task;
      unsigned long flags;

      spin_lock_irqsave(&task->task_state_lock, flags);
      if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
            task->task_state_flags |= SAS_TASK_STATE_ABORTED;
      spin_unlock_irqrestore(&task->task_state_lock, flags);

      complete(&task->completion);
}

static void smp_task_done(struct sas_task *task)
{
      if (!del_timer(&task->timer))
            return;
      complete(&task->completion);
}

/* Give it some long enough timeout. In seconds. */
#define SMP_TIMEOUT 10

static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
                      void *resp, int resp_size)
{
      int res, retry;
      struct sas_task *task = NULL;
      struct sas_internal *i =
            to_sas_internal(dev->port->ha->core.shost->transportt);

      for (retry = 0; retry < 3; retry++) {
            task = sas_alloc_task(GFP_KERNEL);
            if (!task)
                  return -ENOMEM;

            task->dev = dev;
            task->task_proto = dev->tproto;
            sg_init_one(&task->smp_task.smp_req, req, req_size);
            sg_init_one(&task->smp_task.smp_resp, resp, resp_size);

            task->task_done = smp_task_done;

            task->timer.data = (unsigned long) task;
            task->timer.function = smp_task_timedout;
            task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
            add_timer(&task->timer);

            res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);

            if (res) {
                  del_timer(&task->timer);
                  SAS_DPRINTK("executing SMP task failed:%d\n", res);
                  goto ex_err;
            }

            wait_for_completion(&task->completion);
            res = -ETASK;
            if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
                  SAS_DPRINTK("smp task timed out or aborted\n");
                  i->dft->lldd_abort_task(task);
                  if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
                        SAS_DPRINTK("SMP task aborted and not done\n");
                        goto ex_err;
                  }
            }
            if (task->task_status.resp == SAS_TASK_COMPLETE &&
                task->task_status.stat == SAM_GOOD) {
                  res = 0;
                  break;
            } else {
                  SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
                            "status 0x%x\n", __FUNCTION__,
                            SAS_ADDR(dev->sas_addr),
                            task->task_status.resp,
                            task->task_status.stat);
                  sas_free_task(task);
                  task = NULL;
            }
      }
ex_err:
      BUG_ON(retry == 3 && task != NULL);
      if (task != NULL) {
            sas_free_task(task);
      }
      return res;
}

/* ---------- Allocations ---------- */

static inline void *alloc_smp_req(int size)
{
      u8 *p = kzalloc(size, GFP_KERNEL);
      if (p)
            p[0] = SMP_REQUEST;
      return p;
}

static inline void *alloc_smp_resp(int size)
{
      return kzalloc(size, GFP_KERNEL);
}

/* ---------- Expander configuration ---------- */

static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
                     void *disc_resp)
{
      struct expander_device *ex = &dev->ex_dev;
      struct ex_phy *phy = &ex->ex_phy[phy_id];
      struct smp_resp *resp = disc_resp;
      struct discover_resp *dr = &resp->disc;
      struct sas_rphy *rphy = dev->rphy;
      int rediscover = (phy->phy != NULL);

      if (!rediscover) {
            phy->phy = sas_phy_alloc(&rphy->dev, phy_id);

            /* FIXME: error_handling */
            BUG_ON(!phy->phy);
      }

      switch (resp->result) {
      case SMP_RESP_PHY_VACANT:
            phy->phy_state = PHY_VACANT;
            return;
      default:
            phy->phy_state = PHY_NOT_PRESENT;
            return;
      case SMP_RESP_FUNC_ACC:
            phy->phy_state = PHY_EMPTY; /* do not know yet */
            break;
      }

      phy->phy_id = phy_id;
      phy->attached_dev_type = dr->attached_dev_type;
      phy->linkrate = dr->linkrate;
      phy->attached_sata_host = dr->attached_sata_host;
      phy->attached_sata_dev  = dr->attached_sata_dev;
      phy->attached_sata_ps   = dr->attached_sata_ps;
      phy->attached_iproto = dr->iproto << 1;
      phy->attached_tproto = dr->tproto << 1;
      memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
      phy->attached_phy_id = dr->attached_phy_id;
      phy->phy_change_count = dr->change_count;
      phy->routing_attr = dr->routing_attr;
      phy->virtual = dr->virtual;
      phy->last_da_index = -1;

      phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
      phy->phy->identify.target_port_protocols = phy->attached_tproto;
      phy->phy->identify.phy_identifier = phy_id;
      phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
      phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
      phy->phy->minimum_linkrate = dr->pmin_linkrate;
      phy->phy->maximum_linkrate = dr->pmax_linkrate;
      phy->phy->negotiated_linkrate = phy->linkrate;

      if (!rediscover)
            sas_phy_add(phy->phy);

      SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
                SAS_ADDR(dev->sas_addr), phy->phy_id,
                phy->routing_attr == TABLE_ROUTING ? 'T' :
                phy->routing_attr == DIRECT_ROUTING ? 'D' :
                phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
                SAS_ADDR(phy->attached_sas_addr));

      return;
}

#define DISCOVER_REQ_SIZE  16
#define DISCOVER_RESP_SIZE 56

static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
                              u8 *disc_resp, int single)
{
      int i, res;

      disc_req[9] = single;
      for (i = 1 ; i < 3; i++) {
            struct discover_resp *dr;

            res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
                               disc_resp, DISCOVER_RESP_SIZE);
            if (res)
                  return res;
            /* This is detecting a failure to transmit inital
             * dev to host FIS as described in section G.5 of
             * sas-2 r 04b */
            dr = &((struct smp_resp *)disc_resp)->disc;
            if (!(dr->attached_dev_type == 0 &&
                  dr->attached_sata_dev))
                  break;
            /* In order to generate the dev to host FIS, we
             * send a link reset to the expander port */
            sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
            /* Wait for the reset to trigger the negotiation */
            msleep(500);
      }
      sas_set_ex_phy(dev, single, disc_resp);
      return 0;
}

static int sas_ex_phy_discover(struct domain_device *dev, int single)
{
      struct expander_device *ex = &dev->ex_dev;
      int  res = 0;
      u8   *disc_req;
      u8   *disc_resp;

      disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
      if (!disc_req)
            return -ENOMEM;

      disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
      if (!disc_resp) {
            kfree(disc_req);
            return -ENOMEM;
      }

      disc_req[1] = SMP_DISCOVER;

      if (0 <= single && single < ex->num_phys) {
            res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
      } else {
            int i;

            for (i = 0; i < ex->num_phys; i++) {
                  res = sas_ex_phy_discover_helper(dev, disc_req,
                                           disc_resp, i);
                  if (res)
                        goto out_err;
            }
      }
out_err:
      kfree(disc_resp);
      kfree(disc_req);
      return res;
}

static int sas_expander_discover(struct domain_device *dev)
{
      struct expander_device *ex = &dev->ex_dev;
      int res = -ENOMEM;

      ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
      if (!ex->ex_phy)
            return -ENOMEM;

      res = sas_ex_phy_discover(dev, -1);
      if (res)
            goto out_err;

      return 0;
 out_err:
      kfree(ex->ex_phy);
      ex->ex_phy = NULL;
      return res;
}

#define MAX_EXPANDER_PHYS 128

static void ex_assign_report_general(struct domain_device *dev,
                                  struct smp_resp *resp)
{
      struct report_general_resp *rg = &resp->rg;

      dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
      dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
      dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
      dev->ex_dev.conf_route_table = rg->conf_route_table;
      dev->ex_dev.configuring = rg->configuring;
      memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
}

#define RG_REQ_SIZE   8
#define RG_RESP_SIZE 32

static int sas_ex_general(struct domain_device *dev)
{
      u8 *rg_req;
      struct smp_resp *rg_resp;
      int res;
      int i;

      rg_req = alloc_smp_req(RG_REQ_SIZE);
      if (!rg_req)
            return -ENOMEM;

      rg_resp = alloc_smp_resp(RG_RESP_SIZE);
      if (!rg_resp) {
            kfree(rg_req);
            return -ENOMEM;
      }

      rg_req[1] = SMP_REPORT_GENERAL;

      for (i = 0; i < 5; i++) {
            res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
                               RG_RESP_SIZE);

            if (res) {
                  SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
                            SAS_ADDR(dev->sas_addr), res);
                  goto out;
            } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
                  SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
                            SAS_ADDR(dev->sas_addr), rg_resp->result);
                  res = rg_resp->result;
                  goto out;
            }

            ex_assign_report_general(dev, rg_resp);

            if (dev->ex_dev.configuring) {
                  SAS_DPRINTK("RG: ex %llx self-configuring...\n",
                            SAS_ADDR(dev->sas_addr));
                  schedule_timeout_interruptible(5*HZ);
            } else
                  break;
      }
out:
      kfree(rg_req);
      kfree(rg_resp);
      return res;
}

static void ex_assign_manuf_info(struct domain_device *dev, void
                              *_mi_resp)
{
      u8 *mi_resp = _mi_resp;
      struct sas_rphy *rphy = dev->rphy;
      struct sas_expander_device *edev = rphy_to_expander_device(rphy);

      memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
      memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
      memcpy(edev->product_rev, mi_resp + 36,
             SAS_EXPANDER_PRODUCT_REV_LEN);

      if (mi_resp[8] & 1) {
            memcpy(edev->component_vendor_id, mi_resp + 40,
                   SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
            edev->component_id = mi_resp[48] << 8 | mi_resp[49];
            edev->component_revision_id = mi_resp[50];
      }
}

#define MI_REQ_SIZE   8
#define MI_RESP_SIZE 64

static int sas_ex_manuf_info(struct domain_device *dev)
{
      u8 *mi_req;
      u8 *mi_resp;
      int res;

      mi_req = alloc_smp_req(MI_REQ_SIZE);
      if (!mi_req)
            return -ENOMEM;

      mi_resp = alloc_smp_resp(MI_RESP_SIZE);
      if (!mi_resp) {
            kfree(mi_req);
            return -ENOMEM;
      }

      mi_req[1] = SMP_REPORT_MANUF_INFO;

      res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
      if (res) {
            SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
                      SAS_ADDR(dev->sas_addr), res);
            goto out;
      } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
            SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
                      SAS_ADDR(dev->sas_addr), mi_resp[2]);
            goto out;
      }

      ex_assign_manuf_info(dev, mi_resp);
out:
      kfree(mi_req);
      kfree(mi_resp);
      return res;
}

#define PC_REQ_SIZE  44
#define PC_RESP_SIZE 8

int sas_smp_phy_control(struct domain_device *dev, int phy_id,
                  enum phy_func phy_func,
                  struct sas_phy_linkrates *rates)
{
      u8 *pc_req;
      u8 *pc_resp;
      int res;

      pc_req = alloc_smp_req(PC_REQ_SIZE);
      if (!pc_req)
            return -ENOMEM;

      pc_resp = alloc_smp_resp(PC_RESP_SIZE);
      if (!pc_resp) {
            kfree(pc_req);
            return -ENOMEM;
      }

      pc_req[1] = SMP_PHY_CONTROL;
      pc_req[9] = phy_id;
      pc_req[10]= phy_func;
      if (rates) {
            pc_req[32] = rates->minimum_linkrate << 4;
            pc_req[33] = rates->maximum_linkrate << 4;
      }

      res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);

      kfree(pc_resp);
      kfree(pc_req);
      return res;
}

static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
{
      struct expander_device *ex = &dev->ex_dev;
      struct ex_phy *phy = &ex->ex_phy[phy_id];

      sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
      phy->linkrate = SAS_PHY_DISABLED;
}

static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
{
      struct expander_device *ex = &dev->ex_dev;
      int i;

      for (i = 0; i < ex->num_phys; i++) {
            struct ex_phy *phy = &ex->ex_phy[i];

            if (phy->phy_state == PHY_VACANT ||
                phy->phy_state == PHY_NOT_PRESENT)
                  continue;

            if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
                  sas_ex_disable_phy(dev, i);
      }
}

static int sas_dev_present_in_domain(struct asd_sas_port *port,
                                  u8 *sas_addr)
{
      struct domain_device *dev;

      if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
            return 1;
      list_for_each_entry(dev, &port->dev_list, dev_list_node) {
            if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
                  return 1;
      }
      return 0;
}

#define RPEL_REQ_SIZE   16
#define RPEL_RESP_SIZE  32
int sas_smp_get_phy_events(struct sas_phy *phy)
{
      int res;
      u8 *req;
      u8 *resp;
      struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
      struct domain_device *dev = sas_find_dev_by_rphy(rphy);

      req = alloc_smp_req(RPEL_REQ_SIZE);
      if (!req)
            return -ENOMEM;

      resp = alloc_smp_resp(RPEL_RESP_SIZE);
      if (!resp) {
            kfree(req);
            return -ENOMEM;
      }

      req[1] = SMP_REPORT_PHY_ERR_LOG;
      req[9] = phy->number;

      res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
                              resp, RPEL_RESP_SIZE);

      if (!res)
            goto out;

      phy->invalid_dword_count = scsi_to_u32(&resp[12]);
      phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
      phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
      phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);

 out:
      kfree(resp);
      return res;

}

#ifdef CONFIG_SCSI_SAS_ATA

#define RPS_REQ_SIZE  16
#define RPS_RESP_SIZE 60

static int sas_get_report_phy_sata(struct domain_device *dev,
                                int phy_id,
                                struct smp_resp *rps_resp)
{
      int res;
      u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
      u8 *resp = (u8 *)rps_resp;

      if (!rps_req)
            return -ENOMEM;

      rps_req[1] = SMP_REPORT_PHY_SATA;
      rps_req[9] = phy_id;

      res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
                              rps_resp, RPS_RESP_SIZE);

      /* 0x34 is the FIS type for the D2H fis.  There's a potential
       * standards cockup here.  sas-2 explicitly specifies the FIS
       * should be encoded so that FIS type is in resp[24].
       * However, some expanders endian reverse this.  Undo the
       * reversal here */
      if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
            int i;

            for (i = 0; i < 5; i++) {
                  int j = 24 + (i*4);
                  u8 a, b;
                  a = resp[j + 0];
                  b = resp[j + 1];
                  resp[j + 0] = resp[j + 3];
                  resp[j + 1] = resp[j + 2];
                  resp[j + 2] = b;
                  resp[j + 3] = a;
            }
      }

      kfree(rps_req);
      return res;
}
#endif

static void sas_ex_get_linkrate(struct domain_device *parent,
                               struct domain_device *child,
                               struct ex_phy *parent_phy)
{
      struct expander_device *parent_ex = &parent->ex_dev;
      struct sas_port *port;
      int i;

      child->pathways = 0;

      port = parent_phy->port;

      for (i = 0; i < parent_ex->num_phys; i++) {
            struct ex_phy *phy = &parent_ex->ex_phy[i];

            if (phy->phy_state == PHY_VACANT ||
                phy->phy_state == PHY_NOT_PRESENT)
                  continue;

            if (SAS_ADDR(phy->attached_sas_addr) ==
                SAS_ADDR(child->sas_addr)) {

                  child->min_linkrate = min(parent->min_linkrate,
                                      phy->linkrate);
                  child->max_linkrate = max(parent->max_linkrate,
                                      phy->linkrate);
                  child->pathways++;
                  sas_port_add_phy(port, phy->phy);
            }
      }
      child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
      child->pathways = min(child->pathways, parent->pathways);
}

static struct domain_device *sas_ex_discover_end_dev(
      struct domain_device *parent, int phy_id)
{
      struct expander_device *parent_ex = &parent->ex_dev;
      struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
      struct domain_device *child = NULL;
      struct sas_rphy *rphy;
      int res;

      if (phy->attached_sata_host || phy->attached_sata_ps)
            return NULL;

      child = kzalloc(sizeof(*child), GFP_KERNEL);
      if (!child)
            return NULL;

      child->parent = parent;
      child->port   = parent->port;
      child->iproto = phy->attached_iproto;
      memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
      sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
      if (!phy->port) {
            phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
            if (unlikely(!phy->port))
                  goto out_err;
            if (unlikely(sas_port_add(phy->port) != 0)) {
                  sas_port_free(phy->port);
                  goto out_err;
            }
      }
      sas_ex_get_linkrate(parent, child, phy);

#ifdef CONFIG_SCSI_SAS_ATA
      if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
            child->dev_type = SATA_DEV;
            if (phy->attached_tproto & SAS_PROTO_STP)
                  child->tproto = phy->attached_tproto;
            if (phy->attached_sata_dev)
                  child->tproto |= SATA_DEV;
            res = sas_get_report_phy_sata(parent, phy_id,
                                    &child->sata_dev.rps_resp);
            if (res) {
                  SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
                            "0x%x\n", SAS_ADDR(parent->sas_addr),
                            phy_id, res);
                  goto out_free;
            }
            memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
                   sizeof(struct dev_to_host_fis));

            rphy = sas_end_device_alloc(phy->port);
            if (unlikely(!rphy))
                  goto out_free;

            sas_init_dev(child);

            child->rphy = rphy;

            spin_lock_irq(&parent->port->dev_list_lock);
            list_add_tail(&child->dev_list_node, &parent->port->dev_list);
            spin_unlock_irq(&parent->port->dev_list_lock);

            res = sas_discover_sata(child);
            if (res) {
                  SAS_DPRINTK("sas_discover_sata() for device %16llx at "
                            "%016llx:0x%x returned 0x%x\n",
                            SAS_ADDR(child->sas_addr),
                            SAS_ADDR(parent->sas_addr), phy_id, res);
                  goto out_list_del;
            }
      } else
#endif
        if (phy->attached_tproto & SAS_PROTO_SSP) {
            child->dev_type = SAS_END_DEV;
            rphy = sas_end_device_alloc(phy->port);
            /* FIXME: error handling */
            if (unlikely(!rphy))
                  goto out_free;
            child->tproto = phy->attached_tproto;
            sas_init_dev(child);

            child->rphy = rphy;
            sas_fill_in_rphy(child, rphy);

            spin_lock_irq(&parent->port->dev_list_lock);
            list_add_tail(&child->dev_list_node, &parent->port->dev_list);
            spin_unlock_irq(&parent->port->dev_list_lock);

            res = sas_discover_end_dev(child);
            if (res) {
                  SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
                            "at %016llx:0x%x returned 0x%x\n",
                            SAS_ADDR(child->sas_addr),
                            SAS_ADDR(parent->sas_addr), phy_id, res);
                  goto out_list_del;
            }
      } else {
            SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
                      phy->attached_tproto, SAS_ADDR(parent->sas_addr),
                      phy_id);
            goto out_free;
      }

      list_add_tail(&child->siblings, &parent_ex->children);
      return child;

 out_list_del:
      sas_rphy_free(child->rphy);
      child->rphy = NULL;
      list_del(&child->dev_list_node);
 out_free:
      sas_port_delete(phy->port);
 out_err:
      phy->port = NULL;
      kfree(child);
      return NULL;
}

/* See if this phy is part of a wide port */
static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
{
      struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
      int i;

      for (i = 0; i < parent->ex_dev.num_phys; i++) {
            struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];

            if (ephy == phy)
                  continue;

            if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
                      SAS_ADDR_SIZE) && ephy->port) {
                  sas_port_add_phy(ephy->port, phy->phy);
                  phy->phy_state = PHY_DEVICE_DISCOVERED;
                  return 0;
            }
      }

      return -ENODEV;
}

static struct domain_device *sas_ex_discover_expander(
      struct domain_device *parent, int phy_id)
{
      struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
      struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
      struct domain_device *child = NULL;
      struct sas_rphy *rphy;
      struct sas_expander_device *edev;
      struct asd_sas_port *port;
      int res;

      if (phy->routing_attr == DIRECT_ROUTING) {
            SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
                      "allowed\n",
                      SAS_ADDR(parent->sas_addr), phy_id,
                      SAS_ADDR(phy->attached_sas_addr),
                      phy->attached_phy_id);
            return NULL;
      }
      child = kzalloc(sizeof(*child), GFP_KERNEL);
      if (!child)
            return NULL;

      phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
      /* FIXME: better error handling */
      BUG_ON(sas_port_add(phy->port) != 0);


      switch (phy->attached_dev_type) {
      case EDGE_DEV:
            rphy = sas_expander_alloc(phy->port,
                                SAS_EDGE_EXPANDER_DEVICE);
            break;
      case FANOUT_DEV:
            rphy = sas_expander_alloc(phy->port,
                                SAS_FANOUT_EXPANDER_DEVICE);
            break;
      default:
            rphy = NULL;      /* shut gcc up */
            BUG();
      }
      port = parent->port;
      child->rphy = rphy;
      edev = rphy_to_expander_device(rphy);
      child->dev_type = phy->attached_dev_type;
      child->parent = parent;
      child->port = port;
      child->iproto = phy->attached_iproto;
      child->tproto = phy->attached_tproto;
      memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
      sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
      sas_ex_get_linkrate(parent, child, phy);
      edev->level = parent_ex->level + 1;
      parent->port->disc.max_level = max(parent->port->disc.max_level,
                                 edev->level);
      sas_init_dev(child);
      sas_fill_in_rphy(child, rphy);
      sas_rphy_add(rphy);

      spin_lock_irq(&parent->port->dev_list_lock);
      list_add_tail(&child->dev_list_node, &parent->port->dev_list);
      spin_unlock_irq(&parent->port->dev_list_lock);

      res = sas_discover_expander(child);
      if (res) {
            kfree(child);
            return NULL;
      }
      list_add_tail(&child->siblings, &parent->ex_dev.children);
      return child;
}

static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
{
      struct expander_device *ex = &dev->ex_dev;
      struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
      struct domain_device *child = NULL;
      int res = 0;

      /* Phy state */
      if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
            if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
                  res = sas_ex_phy_discover(dev, phy_id);
            if (res)
                  return res;
      }

      /* Parent and domain coherency */
      if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
                       SAS_ADDR(dev->port->sas_addr))) {
            sas_add_parent_port(dev, phy_id);
            return 0;
      }
      if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
                      SAS_ADDR(dev->parent->sas_addr))) {
            sas_add_parent_port(dev, phy_id);
            if (ex_phy->routing_attr == TABLE_ROUTING)
                  sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
            return 0;
      }

      if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
            sas_ex_disable_port(dev, ex_phy->attached_sas_addr);

      if (ex_phy->attached_dev_type == NO_DEVICE) {
            if (ex_phy->routing_attr == DIRECT_ROUTING) {
                  memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
                  sas_configure_routing(dev, ex_phy->attached_sas_addr);
            }
            return 0;
      } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
            return 0;

      if (ex_phy->attached_dev_type != SAS_END_DEV &&
          ex_phy->attached_dev_type != FANOUT_DEV &&
          ex_phy->attached_dev_type != EDGE_DEV) {
            SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
                      "phy 0x%x\n", ex_phy->attached_dev_type,
                      SAS_ADDR(dev->sas_addr),
                      phy_id);
            return 0;
      }

      res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
      if (res) {
            SAS_DPRINTK("configure routing for dev %016llx "
                      "reported 0x%x. Forgotten\n",
                      SAS_ADDR(ex_phy->attached_sas_addr), res);
            sas_disable_routing(dev, ex_phy->attached_sas_addr);
            return res;
      }

      res = sas_ex_join_wide_port(dev, phy_id);
      if (!res) {
            SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
                      phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
            return res;
      }

      switch (ex_phy->attached_dev_type) {
      case SAS_END_DEV:
            child = sas_ex_discover_end_dev(dev, phy_id);
            break;
      case FANOUT_DEV:
            if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
                  SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
                            "attached to ex %016llx phy 0x%x\n",
                            SAS_ADDR(ex_phy->attached_sas_addr),
                            ex_phy->attached_phy_id,
                            SAS_ADDR(dev->sas_addr),
                            phy_id);
                  sas_ex_disable_phy(dev, phy_id);
                  break;
            } else
                  memcpy(dev->port->disc.fanout_sas_addr,
                         ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
            /* fallthrough */
      case EDGE_DEV:
            child = sas_ex_discover_expander(dev, phy_id);
            break;
      default:
            break;
      }

      if (child) {
            int i;

            for (i = 0; i < ex->num_phys; i++) {
                  if (ex->ex_phy[i].phy_state == PHY_VACANT ||
                      ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
                        continue;

                  if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
                      SAS_ADDR(child->sas_addr))
                        ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
            }
      }

      return res;
}

static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
{
      struct expander_device *ex = &dev->ex_dev;
      int i;

      for (i = 0; i < ex->num_phys; i++) {
            struct ex_phy *phy = &ex->ex_phy[i];

            if (phy->phy_state == PHY_VACANT ||
                phy->phy_state == PHY_NOT_PRESENT)
                  continue;

            if ((phy->attached_dev_type == EDGE_DEV ||
                 phy->attached_dev_type == FANOUT_DEV) &&
                phy->routing_attr == SUBTRACTIVE_ROUTING) {

                  memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);

                  return 1;
            }
      }
      return 0;
}

static int sas_check_level_subtractive_boundary(struct domain_device *dev)
{
      struct expander_device *ex = &dev->ex_dev;
      struct domain_device *child;
      u8 sub_addr[8] = {0, };

      list_for_each_entry(child, &ex->children, siblings) {
            if (child->dev_type != EDGE_DEV &&
                child->dev_type != FANOUT_DEV)
                  continue;
            if (sub_addr[0] == 0) {
                  sas_find_sub_addr(child, sub_addr);
                  continue;
            } else {
                  u8 s2[8];

                  if (sas_find_sub_addr(child, s2) &&
                      (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {

                        SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
                                  "diverges from subtractive "
                                  "boundary %016llx\n",
                                  SAS_ADDR(dev->sas_addr),
                                  SAS_ADDR(child->sas_addr),
                                  SAS_ADDR(s2),
                                  SAS_ADDR(sub_addr));

                        sas_ex_disable_port(child, s2);
                  }
            }
      }
      return 0;
}
/**
 * sas_ex_discover_devices -- discover devices attached to this expander
 * dev: pointer to the expander domain device
 * single: if you want to do a single phy, else set to -1;
 *
 * Configure this expander for use with its devices and register the
 * devices of this expander.
 */
static int sas_ex_discover_devices(struct domain_device *dev, int single)
{
      struct expander_device *ex = &dev->ex_dev;
      int i = 0, end = ex->num_phys;
      int res = 0;

      if (0 <= single && single < end) {
            i = single;
            end = i+1;
      }

      for ( ; i < end; i++) {
            struct ex_phy *ex_phy = &ex->ex_phy[i];

            if (ex_phy->phy_state == PHY_VACANT ||
                ex_phy->phy_state == PHY_NOT_PRESENT ||
                ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
                  continue;

            switch (ex_phy->linkrate) {
            case SAS_PHY_DISABLED:
            case SAS_PHY_RESET_PROBLEM:
            case SAS_SATA_PORT_SELECTOR:
                  continue;
            default:
                  res = sas_ex_discover_dev(dev, i);
                  if (res)
                        break;
                  continue;
            }
      }

      if (!res)
            sas_check_level_subtractive_boundary(dev);

      return res;
}

static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
{
      struct expander_device *ex = &dev->ex_dev;
      int i;
      u8  *sub_sas_addr = NULL;

      if (dev->dev_type != EDGE_DEV)
            return 0;

      for (i = 0; i < ex->num_phys; i++) {
            struct ex_phy *phy = &ex->ex_phy[i];

            if (phy->phy_state == PHY_VACANT ||
                phy->phy_state == PHY_NOT_PRESENT)
                  continue;

            if ((phy->attached_dev_type == FANOUT_DEV ||
                 phy->attached_dev_type == EDGE_DEV) &&
                phy->routing_attr == SUBTRACTIVE_ROUTING) {

                  if (!sub_sas_addr)
                        sub_sas_addr = &phy->attached_sas_addr[0];
                  else if (SAS_ADDR(sub_sas_addr) !=
                         SAS_ADDR(phy->attached_sas_addr)) {

                        SAS_DPRINTK("ex %016llx phy 0x%x "
                                  "diverges(%016llx) on subtractive "
                                  "boundary(%016llx). Disabled\n",
                                  SAS_ADDR(dev->sas_addr), i,
                                  SAS_ADDR(phy->attached_sas_addr),
                                  SAS_ADDR(sub_sas_addr));
                        sas_ex_disable_phy(dev, i);
                  }
            }
      }
      return 0;
}

static void sas_print_parent_topology_bug(struct domain_device *child,
                                     struct ex_phy *parent_phy,
                                     struct ex_phy *child_phy)
{
      static const char ra_char[] = {
            [DIRECT_ROUTING] = 'D',
            [SUBTRACTIVE_ROUTING] = 'S',
            [TABLE_ROUTING] = 'T',
      };
      static const char *ex_type[] = {
            [EDGE_DEV] = "edge",
            [FANOUT_DEV] = "fanout",
      };
      struct domain_device *parent = child->parent;

      sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
               "has %c:%c routing link!\n",

               ex_type[parent->dev_type],
               SAS_ADDR(parent->sas_addr),
               parent_phy->phy_id,

               ex_type[child->dev_type],
               SAS_ADDR(child->sas_addr),
               child_phy->phy_id,

               ra_char[parent_phy->routing_attr],
               ra_char[child_phy->routing_attr]);
}

static int sas_check_eeds(struct domain_device *child,
                         struct ex_phy *parent_phy,
                         struct ex_phy *child_phy)
{
      int res = 0;
      struct domain_device *parent = child->parent;

      if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
            res = -ENODEV;
            SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
                      "phy S:0x%x, while there is a fanout ex %016llx\n",
                      SAS_ADDR(parent->sas_addr),
                      parent_phy->phy_id,
                      SAS_ADDR(child->sas_addr),
                      child_phy->phy_id,
                      SAS_ADDR(parent->port->disc.fanout_sas_addr));
      } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
            memcpy(parent->port->disc.eeds_a, parent->sas_addr,
                   SAS_ADDR_SIZE);
            memcpy(parent->port->disc.eeds_b, child->sas_addr,
                   SAS_ADDR_SIZE);
      } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
                SAS_ADDR(parent->sas_addr)) ||
               (SAS_ADDR(parent->port->disc.eeds_a) ==
                SAS_ADDR(child->sas_addr)))
               &&
               ((SAS_ADDR(parent->port->disc.eeds_b) ==
                 SAS_ADDR(parent->sas_addr)) ||
                (SAS_ADDR(parent->port->disc.eeds_b) ==
                 SAS_ADDR(child->sas_addr))))
            ;
      else {
            res = -ENODEV;
            SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
                      "phy 0x%x link forms a third EEDS!\n",
                      SAS_ADDR(parent->sas_addr),
                      parent_phy->phy_id,
                      SAS_ADDR(child->sas_addr),
                      child_phy->phy_id);
      }

      return res;
}

/* Here we spill over 80 columns.  It is intentional.
 */
static int sas_check_parent_topology(struct domain_device *child)
{
      struct expander_device *child_ex = &child->ex_dev;
      struct expander_device *parent_ex;
      int i;
      int res = 0;

      if (!child->parent)
            return 0;

      if (child->parent->dev_type != EDGE_DEV &&
          child->parent->dev_type != FANOUT_DEV)
            return 0;

      parent_ex = &child->parent->ex_dev;

      for (i = 0; i < parent_ex->num_phys; i++) {
            struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
            struct ex_phy *child_phy;

            if (parent_phy->phy_state == PHY_VACANT ||
                parent_phy->phy_state == PHY_NOT_PRESENT)
                  continue;

            if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
                  continue;

            child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];

            switch (child->parent->dev_type) {
            case EDGE_DEV:
                  if (child->dev_type == FANOUT_DEV) {
                        if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
                            child_phy->routing_attr != TABLE_ROUTING) {
                              sas_print_parent_topology_bug(child, parent_phy, child_phy);
                              res = -ENODEV;
                        }
                  } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
                        if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
                              res = sas_check_eeds(child, parent_phy, child_phy);
                        } else if (child_phy->routing_attr != TABLE_ROUTING) {
                              sas_print_parent_topology_bug(child, parent_phy, child_phy);
                              res = -ENODEV;
                        }
                  } else if (parent_phy->routing_attr == TABLE_ROUTING &&
                           child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
                        res = -ENODEV;
                  }
                  break;
            case FANOUT_DEV:
                  if (parent_phy->routing_attr != TABLE_ROUTING ||
                      child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
                        res = -ENODEV;
                  }
                  break;
            default:
                  break;
            }
      }

      return res;
}

#define RRI_REQ_SIZE  16
#define RRI_RESP_SIZE 44

static int sas_configure_present(struct domain_device *dev, int phy_id,
                         u8 *sas_addr, int *index, int *present)
{
      int i, res = 0;
      struct expander_device *ex = &dev->ex_dev;
      struct ex_phy *phy = &ex->ex_phy[phy_id];
      u8 *rri_req;
      u8 *rri_resp;

      *present = 0;
      *index = 0;

      rri_req = alloc_smp_req(RRI_REQ_SIZE);
      if (!rri_req)
            return -ENOMEM;

      rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
      if (!rri_resp) {
            kfree(rri_req);
            return -ENOMEM;
      }

      rri_req[1] = SMP_REPORT_ROUTE_INFO;
      rri_req[9] = phy_id;

      for (i = 0; i < ex->max_route_indexes ; i++) {
            *(__be16 *)(rri_req+6) = cpu_to_be16(i);
            res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
                               RRI_RESP_SIZE);
            if (res)
                  goto out;
            res = rri_resp[2];
            if (res == SMP_RESP_NO_INDEX) {
                  SAS_DPRINTK("overflow of indexes: dev %016llx "
                            "phy 0x%x index 0x%x\n",
                            SAS_ADDR(dev->sas_addr), phy_id, i);
                  goto out;
            } else if (res != SMP_RESP_FUNC_ACC) {
                  SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
                            "result 0x%x\n", __FUNCTION__,
                            SAS_ADDR(dev->sas_addr), phy_id, i, res);
                  goto out;
            }
            if (SAS_ADDR(sas_addr) != 0) {
                  if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
                        *index = i;
                        if ((rri_resp[12] & 0x80) == 0x80)
                              *present = 0;
                        else
                              *present = 1;
                        goto out;
                  } else if (SAS_ADDR(rri_resp+16) == 0) {
                        *index = i;
                        *present = 0;
                        goto out;
                  }
            } else if (SAS_ADDR(rri_resp+16) == 0 &&
                     phy->last_da_index < i) {
                  phy->last_da_index = i;
                  *index = i;
                  *present = 0;
                  goto out;
            }
      }
      res = -1;
out:
      kfree(rri_req);
      kfree(rri_resp);
      return res;
}

#define CRI_REQ_SIZE  44
#define CRI_RESP_SIZE  8

static int sas_configure_set(struct domain_device *dev, int phy_id,
                       u8 *sas_addr, int index, int include)
{
      int res;
      u8 *cri_req;
      u8 *cri_resp;

      cri_req = alloc_smp_req(CRI_REQ_SIZE);
      if (!cri_req)
            return -ENOMEM;

      cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
      if (!cri_resp) {
            kfree(cri_req);
            return -ENOMEM;
      }

      cri_req[1] = SMP_CONF_ROUTE_INFO;
      *(__be16 *)(cri_req+6) = cpu_to_be16(index);
      cri_req[9] = phy_id;
      if (SAS_ADDR(sas_addr) == 0 || !include)
            cri_req[12] |= 0x80;
      memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);

      res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
                         CRI_RESP_SIZE);
      if (res)
            goto out;
      res = cri_resp[2];
      if (res == SMP_RESP_NO_INDEX) {
            SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
                      "index 0x%x\n",
                      SAS_ADDR(dev->sas_addr), phy_id, index);
      }
out:
      kfree(cri_req);
      kfree(cri_resp);
      return res;
}

static int sas_configure_phy(struct domain_device *dev, int phy_id,
                            u8 *sas_addr, int include)
{
      int index;
      int present;
      int res;

      res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
      if (res)
            return res;
      if (include ^ present)
            return sas_configure_set(dev, phy_id, sas_addr, index,include);

      return res;
}

/**
 * sas_configure_parent -- configure routing table of parent
 * parent: parent expander
 * child: child expander
 * sas_addr: SAS port identifier of device directly attached to child
 */
static int sas_configure_parent(struct domain_device *parent,
                        struct domain_device *child,
                        u8 *sas_addr, int include)
{
      struct expander_device *ex_parent = &parent->ex_dev;
      int res = 0;
      int i;

      if (parent->parent) {
            res = sas_configure_parent(parent->parent, parent, sas_addr,
                                 include);
            if (res)
                  return res;
      }

      if (ex_parent->conf_route_table == 0) {
            SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
                      SAS_ADDR(parent->sas_addr));
            return 0;
      }

      for (i = 0; i < ex_parent->num_phys; i++) {
            struct ex_phy *phy = &ex_parent->ex_phy[i];

            if ((phy->routing_attr == TABLE_ROUTING) &&
                (SAS_ADDR(phy->attached_sas_addr) ==
                 SAS_ADDR(child->sas_addr))) {
                  res = sas_configure_phy(parent, i, sas_addr, include);
                  if (res)
                        return res;
            }
      }

      return res;
}

/**
 * sas_configure_routing -- configure routing
 * dev: expander device
 * sas_addr: port identifier of device directly attached to the expander device
 */
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
{
      if (dev->parent)
            return sas_configure_parent(dev->parent, dev, sas_addr, 1);
      return 0;
}

static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
{
      if (dev->parent)
            return sas_configure_parent(dev->parent, dev, sas_addr, 0);
      return 0;
}

/**
 * sas_discover_expander -- expander discovery
 * @ex: pointer to expander domain device
 *
 * See comment in sas_discover_sata().
 */
static int sas_discover_expander(struct domain_device *dev)
{
      int res;

      res = sas_notify_lldd_dev_found(dev);
      if (res)
            return res;

      res = sas_ex_general(dev);
      if (res)
            goto out_err;
      res = sas_ex_manuf_info(dev);
      if (res)
            goto out_err;

      res = sas_expander_discover(dev);
      if (res) {
            SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
                      SAS_ADDR(dev->sas_addr), res);
            goto out_err;
      }

      sas_check_ex_subtractive_boundary(dev);
      res = sas_check_parent_topology(dev);
      if (res)
            goto out_err;
      return 0;
out_err:
      sas_notify_lldd_dev_gone(dev);
      return res;
}

static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
{
      int res = 0;
      struct domain_device *dev;

      list_for_each_entry(dev, &port->dev_list, dev_list_node) {
            if (dev->dev_type == EDGE_DEV ||
                dev->dev_type == FANOUT_DEV) {
                  struct sas_expander_device *ex =
                        rphy_to_expander_device(dev->rphy);

                  if (level == ex->level)
                        res = sas_ex_discover_devices(dev, -1);
                  else if (level > 0)
                        res = sas_ex_discover_devices(port->port_dev, -1);

            }
      }

      return res;
}

static int sas_ex_bfs_disc(struct asd_sas_port *port)
{
      int res;
      int level;

      do {
            level = port->disc.max_level;
            res = sas_ex_level_discovery(port, level);
            mb();
      } while (level < port->disc.max_level);

      return res;
}

int sas_discover_root_expander(struct domain_device *dev)
{
      int res;
      struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);

      res = sas_rphy_add(dev->rphy);
      if (res)
            goto out_err;

      ex->level = dev->port->disc.max_level; /* 0 */
      res = sas_discover_expander(dev);
      if (res)
            goto out_err2;

      sas_ex_bfs_disc(dev->port);

      return res;

out_err2:
      sas_rphy_remove(dev->rphy);
out_err:
      return res;
}

/* ---------- Domain revalidation ---------- */

static int sas_get_phy_discover(struct domain_device *dev,
                        int phy_id, struct smp_resp *disc_resp)
{
      int res;
      u8 *disc_req;

      disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
      if (!disc_req)
            return -ENOMEM;

      disc_req[1] = SMP_DISCOVER;
      disc_req[9] = phy_id;

      res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
                         disc_resp, DISCOVER_RESP_SIZE);
      if (res)
            goto out;
      else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
            res = disc_resp->result;
            goto out;
      }
out:
      kfree(disc_req);
      return res;
}

static int sas_get_phy_change_count(struct domain_device *dev,
                            int phy_id, int *pcc)
{
      int res;
      struct smp_resp *disc_resp;

      disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
      if (!disc_resp)
            return -ENOMEM;

      res = sas_get_phy_discover(dev, phy_id, disc_resp);
      if (!res)
            *pcc = disc_resp->disc.change_count;

      kfree(disc_resp);
      return res;
}

static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
                               int phy_id, u8 *attached_sas_addr)
{
      int res;
      struct smp_resp *disc_resp;
      struct discover_resp *dr;

      disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
      if (!disc_resp)
            return -ENOMEM;
      dr = &disc_resp->disc;

      res = sas_get_phy_discover(dev, phy_id, disc_resp);
      if (!res) {
            memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
            if (dr->attached_dev_type == 0)
                  memset(attached_sas_addr, 0, 8);
      }
      kfree(disc_resp);
      return res;
}

static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
                        int from_phy)
{
      struct expander_device *ex = &dev->ex_dev;
      int res = 0;
      int i;

      for (i = from_phy; i < ex->num_phys; i++) {
            int phy_change_count = 0;

            res = sas_get_phy_change_count(dev, i, &phy_change_count);
            if (res)
                  goto out;
            else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
                  ex->ex_phy[i].phy_change_count = phy_change_count;
                  *phy_id = i;
                  return 0;
            }
      }
out:
      return res;
}

static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
{
      int res;
      u8  *rg_req;
      struct smp_resp  *rg_resp;

      rg_req = alloc_smp_req(RG_REQ_SIZE);
      if (!rg_req)
            return -ENOMEM;

      rg_resp = alloc_smp_resp(RG_RESP_SIZE);
      if (!rg_resp) {
            kfree(rg_req);
            return -ENOMEM;
      }

      rg_req[1] = SMP_REPORT_GENERAL;

      res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
                         RG_RESP_SIZE);
      if (res)
            goto out;
      if (rg_resp->result != SMP_RESP_FUNC_ACC) {
            res = rg_resp->result;
            goto out;
      }

      *ecc = be16_to_cpu(rg_resp->rg.change_count);
out:
      kfree(rg_resp);
      kfree(rg_req);
      return res;
}

static int sas_find_bcast_dev(struct domain_device *dev,
                        struct domain_device **src_dev)
{
      struct expander_device *ex = &dev->ex_dev;
      int ex_change_count = -1;
      int res;

      res = sas_get_ex_change_count(dev, &ex_change_count);
      if (res)
            goto out;
      if (ex_change_count != -1 &&
          ex_change_count != ex->ex_change_count) {
            *src_dev = dev;
            ex->ex_change_count = ex_change_count;
      } else {
            struct domain_device *ch;

            list_for_each_entry(ch, &ex->children, siblings) {
                  if (ch->dev_type == EDGE_DEV ||
                      ch->dev_type == FANOUT_DEV) {
                        res = sas_find_bcast_dev(ch, src_dev);
                        if (src_dev)
                              return res;
                  }
            }
      }
out:
      return res;
}

static void sas_unregister_ex_tree(struct domain_device *dev)
{
      struct expander_device *ex = &dev->ex_dev;
      struct domain_device *child, *n;

      list_for_each_entry_safe(child, n, &ex->children, siblings) {
            if (child->dev_type == EDGE_DEV ||
                child->dev_type == FANOUT_DEV)
                  sas_unregister_ex_tree(child);
            else
                  sas_unregister_dev(child);
      }
      sas_unregister_dev(dev);
}

static void sas_unregister_devs_sas_addr(struct domain_device *parent,
                               int phy_id)
{
      struct expander_device *ex_dev = &parent->ex_dev;
      struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
      struct domain_device *child, *n;

      list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
            if (SAS_ADDR(child->sas_addr) ==
                SAS_ADDR(phy->attached_sas_addr)) {
                  if (child->dev_type == EDGE_DEV ||
                      child->dev_type == FANOUT_DEV)
                        sas_unregister_ex_tree(child);
                  else
                        sas_unregister_dev(child);
                  break;
            }
      }
      sas_disable_routing(parent, phy->attached_sas_addr);
      memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
      sas_port_delete_phy(phy->port, phy->phy);
      if (phy->port->num_phys == 0)
            sas_port_delete(phy->port);
      phy->port = NULL;
}

static int sas_discover_bfs_by_root_level(struct domain_device *root,
                                const int level)
{
      struct expander_device *ex_root = &root->ex_dev;
      struct domain_device *child;
      int res = 0;

      list_for_each_entry(child, &ex_root->children, siblings) {
            if (child->dev_type == EDGE_DEV ||
                child->dev_type == FANOUT_DEV) {
                  struct sas_expander_device *ex =
                        rphy_to_expander_device(child->rphy);

                  if (level > ex->level)
                        res = sas_discover_bfs_by_root_level(child,
                                                     level);
                  else if (level == ex->level)
                        res = sas_ex_discover_devices(child, -1);
            }
      }
      return res;
}

static int sas_discover_bfs_by_root(struct domain_device *dev)
{
      int res;
      struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
      int level = ex->level+1;

      res = sas_ex_discover_devices(dev, -1);
      if (res)
            goto out;
      do {
            res = sas_discover_bfs_by_root_level(dev, level);
            mb();
            level += 1;
      } while (level <= dev->port->disc.max_level);
out:
      return res;
}

static int sas_discover_new(struct domain_device *dev, int phy_id)
{
      struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
      struct domain_device *child;
      int res;

      SAS_DPRINTK("ex %016llx phy%d new device attached\n",
                SAS_ADDR(dev->sas_addr), phy_id);
      res = sas_ex_phy_discover(dev, phy_id);
      if (res)
            goto out;
      res = sas_ex_discover_devices(dev, phy_id);
      if (res)
            goto out;
      list_for_each_entry(child, &dev->ex_dev.children, siblings) {
            if (SAS_ADDR(child->sas_addr) ==
                SAS_ADDR(ex_phy->attached_sas_addr)) {
                  if (child->dev_type == EDGE_DEV ||
                      child->dev_type == FANOUT_DEV)
                        res = sas_discover_bfs_by_root(child);
                  break;
            }
      }
out:
      return res;
}

static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
{
      struct expander_device *ex = &dev->ex_dev;
      struct ex_phy *phy = &ex->ex_phy[phy_id];
      u8 attached_sas_addr[8];
      int res;

      res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
      switch (res) {
      case SMP_RESP_NO_PHY:
            phy->phy_state = PHY_NOT_PRESENT;
            sas_unregister_devs_sas_addr(dev, phy_id);
            goto out; break;
      case SMP_RESP_PHY_VACANT:
            phy->phy_state = PHY_VACANT;
            sas_unregister_devs_sas_addr(dev, phy_id);
            goto out; break;
      case SMP_RESP_FUNC_ACC:
            break;
      }

      if (SAS_ADDR(attached_sas_addr) == 0) {
            phy->phy_state = PHY_EMPTY;
            sas_unregister_devs_sas_addr(dev, phy_id);
      } else if (SAS_ADDR(attached_sas_addr) ==
               SAS_ADDR(phy->attached_sas_addr)) {
            SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
                      SAS_ADDR(dev->sas_addr), phy_id);
            sas_ex_phy_discover(dev, phy_id);
      } else
            res = sas_discover_new(dev, phy_id);
out:
      return res;
}

static int sas_rediscover(struct domain_device *dev, const int phy_id)
{
      struct expander_device *ex = &dev->ex_dev;
      struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
      int res = 0;
      int i;

      SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
                SAS_ADDR(dev->sas_addr), phy_id);

      if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
            for (i = 0; i < ex->num_phys; i++) {
                  struct ex_phy *phy = &ex->ex_phy[i];

                  if (i == phy_id)
                        continue;
                  if (SAS_ADDR(phy->attached_sas_addr) ==
                      SAS_ADDR(changed_phy->attached_sas_addr)) {
                        SAS_DPRINTK("phy%d part of wide port with "
                                  "phy%d\n", phy_id, i);
                        goto out;
                  }
            }
            res = sas_rediscover_dev(dev, phy_id);
      } else
            res = sas_discover_new(dev, phy_id);
out:
      return res;
}

/**
 * sas_revalidate_domain -- revalidate the domain
 * @port: port to the domain of interest
 *
 * NOTE: this process _must_ quit (return) as soon as any connection
 * errors are encountered.  Connection recovery is done elsewhere.
 * Discover process only interrogates devices in order to discover the
 * domain.
 */
int sas_ex_revalidate_domain(struct domain_device *port_dev)
{
      int res;
      struct domain_device *dev = NULL;

      res = sas_find_bcast_dev(port_dev, &dev);
      if (res)
            goto out;
      if (dev) {
            struct expander_device *ex = &dev->ex_dev;
            int i = 0, phy_id;

            do {
                  phy_id = -1;
                  res = sas_find_bcast_phy(dev, &phy_id, i);
                  if (phy_id == -1)
                        break;
                  res = sas_rediscover(dev, phy_id);
                  i = phy_id + 1;
            } while (i < ex->num_phys);
      }
out:
      return res;
}

int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
                struct request *req)
{
      struct domain_device *dev;
      int ret, type;
      struct request *rsp = req->next_rq;

      if (!rsp) {
            printk("%s: space for a smp response is missing\n",
                   __FUNCTION__);
            return -EINVAL;
      }

      /* no rphy means no smp target support (ie aic94xx host) */
      if (!rphy) {
            printk("%s: can we send a smp request to a host?\n",
                   __FUNCTION__);
            return -EINVAL;
      }
      type = rphy->identify.device_type;

      if (type != SAS_EDGE_EXPANDER_DEVICE &&
          type != SAS_FANOUT_EXPANDER_DEVICE) {
            printk("%s: can we send a smp request to a device?\n",
                   __FUNCTION__);
            return -EINVAL;
      }

      dev = sas_find_dev_by_rphy(rphy);
      if (!dev) {
            printk("%s: fail to find a domain_device?\n", __FUNCTION__);
            return -EINVAL;
      }

      /* do we need to support multiple segments? */
      if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
            printk("%s: multiple segments req %u %u, rsp %u %u\n",
                   __FUNCTION__, req->bio->bi_vcnt, req->data_len,
                   rsp->bio->bi_vcnt, rsp->data_len);
            return -EINVAL;
      }

      ret = smp_execute_task(dev, bio_data(req->bio), req->data_len,
                         bio_data(rsp->bio), rsp->data_len);

      return ret;
}

Generated by  Doxygen 1.6.0   Back to index