Logo Search packages:      
Sourcecode: linux version File versions  Download package

sddr09.c

/* Driver for SanDisk SDDR-09 SmartMedia reader
 *
 * $Id: sddr09.c,v 1.24 2002/04/22 03:39:43 mdharm Exp $
 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
 * Developed with the assistance of:
 *   (c) 2002 Alan Stern <stern@rowland.org>
 *
 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
 * This chip is a programmable USB controller. In the SDDR-09, it has
 * been programmed to obey a certain limited set of SCSI commands.
 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
 * commands.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2, or (at your option) any
 * later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * Known vendor commands: 12 bytes, first byte is opcode
 *
 * E7: read scatter gather
 * E8: read
 * E9: write
 * EA: erase
 * EB: reset
 * EC: read status
 * ED: read ID
 * EE: write CIS (?)
 * EF: compute checksum (?)
 */

#include <linux/errno.h>
#include <linux/slab.h>

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>

#include "usb.h"
#include "transport.h"
#include "protocol.h"
#include "debug.h"
#include "sddr09.h"


#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
#define LSB_of(s) ((s)&0xFF)
#define MSB_of(s) ((s)>>8)

/* #define US_DEBUGP printk */

/*
 * First some stuff that does not belong here:
 * data on SmartMedia and other cards, completely
 * unrelated to this driver.
 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 */

struct nand_flash_dev {
      int model_id;
      int chipshift;          /* 1<<cs bytes total capacity */
      char pageshift;         /* 1<<ps bytes in a page */
      char blockshift;  /* 1<<bs pages in an erase block */
      char zoneshift;         /* 1<<zs blocks in a zone */
                        /* # of logical blocks is 125/128 of this */
      char pageadrlen;  /* length of an address in bytes - 1 */
};

/*
 * NAND Flash Manufacturer ID Codes
 */
#define NAND_MFR_AMD          0x01
#define NAND_MFR_NATSEMI      0x8f
#define NAND_MFR_TOSHIBA      0x98
#define NAND_MFR_SAMSUNG      0xec

static inline char *nand_flash_manufacturer(int manuf_id) {
      switch(manuf_id) {
      case NAND_MFR_AMD:
            return "AMD";
      case NAND_MFR_NATSEMI:
            return "NATSEMI";
      case NAND_MFR_TOSHIBA:
            return "Toshiba";
      case NAND_MFR_SAMSUNG:
            return "Samsung";
      default:
            return "unknown";
      }
}

/*
 * It looks like it is unnecessary to attach manufacturer to the
 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 *
 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 */

static struct nand_flash_dev nand_flash_ids[] = {
      /* NAND flash */
      { 0x6e, 20, 8, 4, 8, 2},      /* 1 MB */
      { 0xe8, 20, 8, 4, 8, 2},      /* 1 MB */
      { 0xec, 20, 8, 4, 8, 2},      /* 1 MB */
      { 0x64, 21, 8, 4, 9, 2},      /* 2 MB */
      { 0xea, 21, 8, 4, 9, 2},      /* 2 MB */
      { 0x6b, 22, 9, 4, 9, 2},      /* 4 MB */
      { 0xe3, 22, 9, 4, 9, 2},      /* 4 MB */
      { 0xe5, 22, 9, 4, 9, 2},      /* 4 MB */
      { 0xe6, 23, 9, 4, 10, 2},     /* 8 MB */
      { 0x73, 24, 9, 5, 10, 2},     /* 16 MB */
      { 0x75, 25, 9, 5, 10, 2},     /* 32 MB */
      { 0x76, 26, 9, 5, 10, 3},     /* 64 MB */
      { 0x79, 27, 9, 5, 10, 3},     /* 128 MB */

      /* MASK ROM */
      { 0x5d, 21, 9, 4, 8, 2},      /* 2 MB */
      { 0xd5, 22, 9, 4, 9, 2},      /* 4 MB */
      { 0xd6, 23, 9, 4, 10, 2},     /* 8 MB */
      { 0x57, 24, 9, 4, 11, 2},     /* 16 MB */
      { 0x58, 25, 9, 4, 12, 2},     /* 32 MB */
      { 0,}
};

static struct nand_flash_dev *
nand_find_id(unsigned char id) {
      int i;

      for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
            if (nand_flash_ids[i].model_id == id)
                  return &(nand_flash_ids[i]);
      return NULL;
}

/*
 * ECC computation.
 */
static unsigned char parity[256];
static unsigned char ecc2[256];

static void nand_init_ecc(void) {
      int i, j, a;

      parity[0] = 0;
      for (i = 1; i < 256; i++)
            parity[i] = (parity[i&(i-1)] ^ 1);

      for (i = 0; i < 256; i++) {
            a = 0;
            for (j = 0; j < 8; j++) {
                  if (i & (1<<j)) {
                        if ((j & 1) == 0)
                              a ^= 0x04;
                        if ((j & 2) == 0)
                              a ^= 0x10;
                        if ((j & 4) == 0)
                              a ^= 0x40;
                  }
            }
            ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
      }
}

/* compute 3-byte ecc on 256 bytes */
static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
      int i, j, a;
      unsigned char par, bit, bits[8];

      par = 0;
      for (j = 0; j < 8; j++)
            bits[j] = 0;

      /* collect 16 checksum bits */
      for (i = 0; i < 256; i++) {
            par ^= data[i];
            bit = parity[data[i]];
            for (j = 0; j < 8; j++)
                  if ((i & (1<<j)) == 0)
                        bits[j] ^= bit;
      }

      /* put 4+4+4 = 12 bits in the ecc */
      a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
      ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));

      a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
      ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));

      ecc[2] = ecc2[par];
}

static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
      return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
}

static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
      memcpy(data, ecc, 3);
}

/*
 * The actual driver starts here.
 */

struct sddr09_card_info {
      unsigned long     capacity;   /* Size of card in bytes */
      int         pagesize;   /* Size of page in bytes */
      int         pageshift;  /* log2 of pagesize */
      int         blocksize;  /* Size of block in pages */
      int         blockshift; /* log2 of blocksize */
      int         blockmask;  /* 2^blockshift - 1 */
      int         *lba_to_pba;      /* logical to physical map */
      int         *pba_to_lba;      /* physical to logical map */
      int         lbact;            /* number of available pages */
      int         flags;
#define     SDDR09_WP   1           /* write protected */
};

/*
 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 * so the reader makes up the remaining 48. Don't know whether these numbers
 * depend on the card. For now a constant.
 */
#define CONTROL_SHIFT 6

/*
 * On my Combo CF/SM reader, the SM reader has LUN 1.
 * (and things fail with LUN 0).
 * It seems LUN is irrelevant for others.
 */
#define LUN 1
#define     LUNBITS     (LUN << 5)

/*
 * LBA and PBA are unsigned ints. Special values.
 */
#define UNDEF    0xffffffff
#define SPARE    0xfffffffe
#define UNUSABLE 0xfffffffd

static const int erase_bad_lba_entries = 0;

/* send vendor interface command (0x41) */
/* called for requests 0, 1, 8 */
static int
sddr09_send_command(struct us_data *us,
                unsigned char request,
                unsigned char direction,
                unsigned char *xfer_data,
                unsigned int xfer_len) {
      unsigned int pipe;
      unsigned char requesttype = (0x41 | direction);
      int rc;

      // Get the receive or send control pipe number

      if (direction == USB_DIR_IN)
            pipe = us->recv_ctrl_pipe;
      else
            pipe = us->send_ctrl_pipe;

      rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
                           0, 0, xfer_data, xfer_len);
      switch (rc) {
            case USB_STOR_XFER_GOOD:      return 0;
            case USB_STOR_XFER_STALLED:   return -EPIPE;
            default:                return -EIO;
      }
}

static int
sddr09_send_scsi_command(struct us_data *us,
                   unsigned char *command,
                   unsigned int command_len) {
      return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
}

#if 0
/*
 * Test Unit Ready Command: 12 bytes.
 * byte 0: opcode: 00
 */
static int
sddr09_test_unit_ready(struct us_data *us) {
      unsigned char *command = us->iobuf;
      int result;

      memset(command, 0, 6);
      command[1] = LUNBITS;

      result = sddr09_send_scsi_command(us, command, 6);

      US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);

      return result;
}
#endif

/*
 * Request Sense Command: 12 bytes.
 * byte 0: opcode: 03
 * byte 4: data length
 */
static int
sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
      unsigned char *command = us->iobuf;
      int result;

      memset(command, 0, 12);
      command[0] = 0x03;
      command[1] = LUNBITS;
      command[4] = buflen;

      result = sddr09_send_scsi_command(us, command, 12);
      if (result)
            return result;

      result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
                  sensebuf, buflen, NULL);
      return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
}

/*
 * Read Command: 12 bytes.
 * byte 0: opcode: E8
 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 *                10: read both, 11: read pagewise control.
 *     It turns out we need values 20, 21, 22, 23 here (LUN 1).
 * bytes 2-5: address (interpretation depends on byte 1, see below)
 * bytes 10-11: count (idem)
 *
 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 * A read data command gets data in 512-byte pages.
 * A read control command gets control in 64-byte chunks.
 * A read both command gets data+control in 576-byte chunks.
 *
 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 * next block, while read pagewise control jumps to the next page after
 * reading a group of 64 control bytes.
 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 *
 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 */

static int
sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
           int nr_of_pages, int bulklen, unsigned char *buf,
           int use_sg) {

      unsigned char *command = us->iobuf;
      int result;

      command[0] = 0xE8;
      command[1] = LUNBITS | x;
      command[2] = MSB_of(fromaddress>>16);
      command[3] = LSB_of(fromaddress>>16); 
      command[4] = MSB_of(fromaddress & 0xFFFF);
      command[5] = LSB_of(fromaddress & 0xFFFF); 
      command[6] = 0;
      command[7] = 0;
      command[8] = 0;
      command[9] = 0;
      command[10] = MSB_of(nr_of_pages);
      command[11] = LSB_of(nr_of_pages);

      result = sddr09_send_scsi_command(us, command, 12);

      if (result) {
            US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
                    x, result);
            return result;
      }

      result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
                               buf, bulklen, use_sg, NULL);

      if (result != USB_STOR_XFER_GOOD) {
            US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
                    x, result);
            return -EIO;
      }
      return 0;
}

/*
 * Read Data
 *
 * fromaddress counts data shorts:
 * increasing it by 256 shifts the bytestream by 512 bytes;
 * the last 8 bits are ignored.
 *
 * nr_of_pages counts pages of size (1 << pageshift).
 */
static int
sddr09_read20(struct us_data *us, unsigned long fromaddress,
            int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
      int bulklen = nr_of_pages << pageshift;

      /* The last 8 bits of fromaddress are ignored. */
      return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
                      buf, use_sg);
}

/*
 * Read Blockwise Control
 *
 * fromaddress gives the starting position (as in read data;
 * the last 8 bits are ignored); increasing it by 32*256 shifts
 * the output stream by 64 bytes.
 *
 * count counts control groups of size (1 << controlshift).
 * For me, controlshift = 6. Is this constant?
 *
 * After getting one control group, jump to the next block
 * (fromaddress += 8192).
 */
static int
sddr09_read21(struct us_data *us, unsigned long fromaddress,
            int count, int controlshift, unsigned char *buf, int use_sg) {

      int bulklen = (count << controlshift);
      return sddr09_readX(us, 1, fromaddress, count, bulklen,
                      buf, use_sg);
}

/*
 * Read both Data and Control
 *
 * fromaddress counts data shorts, ignoring control:
 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 * the last 8 bits are ignored.
 *
 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 */
static int
sddr09_read22(struct us_data *us, unsigned long fromaddress,
            int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {

      int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
      US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
              nr_of_pages, bulklen);
      return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
                      buf, use_sg);
}

#if 0
/*
 * Read Pagewise Control
 *
 * fromaddress gives the starting position (as in read data;
 * the last 8 bits are ignored); increasing it by 256 shifts
 * the output stream by 64 bytes.
 *
 * count counts control groups of size (1 << controlshift).
 * For me, controlshift = 6. Is this constant?
 *
 * After getting one control group, jump to the next page
 * (fromaddress += 256).
 */
static int
sddr09_read23(struct us_data *us, unsigned long fromaddress,
            int count, int controlshift, unsigned char *buf, int use_sg) {

      int bulklen = (count << controlshift);
      return sddr09_readX(us, 3, fromaddress, count, bulklen,
                      buf, use_sg);
}
#endif

/*
 * Erase Command: 12 bytes.
 * byte 0: opcode: EA
 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 * 
 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 * The byte address being erased is 2*Eaddress.
 * The CIS cannot be erased.
 */
static int
sddr09_erase(struct us_data *us, unsigned long Eaddress) {
      unsigned char *command = us->iobuf;
      int result;

      US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);

      memset(command, 0, 12);
      command[0] = 0xEA;
      command[1] = LUNBITS;
      command[6] = MSB_of(Eaddress>>16);
      command[7] = LSB_of(Eaddress>>16);
      command[8] = MSB_of(Eaddress & 0xFFFF);
      command[9] = LSB_of(Eaddress & 0xFFFF);

      result = sddr09_send_scsi_command(us, command, 12);

      if (result)
            US_DEBUGP("Result for send_control in sddr09_erase %d\n",
                    result);

      return result;
}

/*
 * Write CIS Command: 12 bytes.
 * byte 0: opcode: EE
 * bytes 2-5: write address in shorts
 * bytes 10-11: sector count
 *
 * This writes at the indicated address. Don't know how it differs
 * from E9. Maybe it does not erase? However, it will also write to
 * the CIS.
 *
 * When two such commands on the same page follow each other directly,
 * the second one is not done.
 */

/*
 * Write Command: 12 bytes.
 * byte 0: opcode: E9
 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 *
 * If write address equals erase address, the erase is done first,
 * otherwise the write is done first. When erase address equals zero
 * no erase is done?
 */
static int
sddr09_writeX(struct us_data *us,
            unsigned long Waddress, unsigned long Eaddress,
            int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {

      unsigned char *command = us->iobuf;
      int result;

      command[0] = 0xE9;
      command[1] = LUNBITS;

      command[2] = MSB_of(Waddress>>16);
      command[3] = LSB_of(Waddress>>16);
      command[4] = MSB_of(Waddress & 0xFFFF);
      command[5] = LSB_of(Waddress & 0xFFFF);

      command[6] = MSB_of(Eaddress>>16);
      command[7] = LSB_of(Eaddress>>16);
      command[8] = MSB_of(Eaddress & 0xFFFF);
      command[9] = LSB_of(Eaddress & 0xFFFF);

      command[10] = MSB_of(nr_of_pages);
      command[11] = LSB_of(nr_of_pages);

      result = sddr09_send_scsi_command(us, command, 12);

      if (result) {
            US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
                    result);
            return result;
      }

      result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
                               buf, bulklen, use_sg, NULL);

      if (result != USB_STOR_XFER_GOOD) {
            US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
                    result);
            return -EIO;
      }
      return 0;
}

/* erase address, write same address */
static int
sddr09_write_inplace(struct us_data *us, unsigned long address,
                 int nr_of_pages, int pageshift, unsigned char *buf,
                 int use_sg) {
      int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
      return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
                       buf, use_sg);
}

#if 0
/*
 * Read Scatter Gather Command: 3+4n bytes.
 * byte 0: opcode E7
 * byte 2: n
 * bytes 4i-1,4i,4i+1: page address
 * byte 4i+2: page count
 * (i=1..n)
 *
 * This reads several pages from the card to a single memory buffer.
 * The last two bits of byte 1 have the same meaning as for E8.
 */
static int
sddr09_read_sg_test_only(struct us_data *us) {
      unsigned char *command = us->iobuf;
      int result, bulklen, nsg, ct;
      unsigned char *buf;
      unsigned long address;

      nsg = bulklen = 0;
      command[0] = 0xE7;
      command[1] = LUNBITS;
      command[2] = 0;
      address = 040000; ct = 1;
      nsg++;
      bulklen += (ct << 9);
      command[4*nsg+2] = ct;
      command[4*nsg+1] = ((address >> 9) & 0xFF);
      command[4*nsg+0] = ((address >> 17) & 0xFF);
      command[4*nsg-1] = ((address >> 25) & 0xFF);

      address = 0340000; ct = 1;
      nsg++;
      bulklen += (ct << 9);
      command[4*nsg+2] = ct;
      command[4*nsg+1] = ((address >> 9) & 0xFF);
      command[4*nsg+0] = ((address >> 17) & 0xFF);
      command[4*nsg-1] = ((address >> 25) & 0xFF);

      address = 01000000; ct = 2;
      nsg++;
      bulklen += (ct << 9);
      command[4*nsg+2] = ct;
      command[4*nsg+1] = ((address >> 9) & 0xFF);
      command[4*nsg+0] = ((address >> 17) & 0xFF);
      command[4*nsg-1] = ((address >> 25) & 0xFF);

      command[2] = nsg;

      result = sddr09_send_scsi_command(us, command, 4*nsg+3);

      if (result) {
            US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
                    result);
            return result;
      }

      buf = kmalloc(bulklen, GFP_NOIO);
      if (!buf)
            return -ENOMEM;

      result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
                               buf, bulklen, NULL);
      kfree(buf);
      if (result != USB_STOR_XFER_GOOD) {
            US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
                    result);
            return -EIO;
      }

      return 0;
}
#endif

/*
 * Read Status Command: 12 bytes.
 * byte 0: opcode: EC
 *
 * Returns 64 bytes, all zero except for the first.
 * bit 0: 1: Error
 * bit 5: 1: Suspended
 * bit 6: 1: Ready
 * bit 7: 1: Not write-protected
 */

static int
sddr09_read_status(struct us_data *us, unsigned char *status) {

      unsigned char *command = us->iobuf;
      unsigned char *data = us->iobuf;
      int result;

      US_DEBUGP("Reading status...\n");

      memset(command, 0, 12);
      command[0] = 0xEC;
      command[1] = LUNBITS;

      result = sddr09_send_scsi_command(us, command, 12);
      if (result)
            return result;

      result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
                               data, 64, NULL);
      *status = data[0];
      return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
}

static int
sddr09_read_data(struct us_data *us,
             unsigned long address,
             unsigned int sectors) {

      struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
      unsigned char *buffer;
      unsigned int lba, maxlba, pba;
      unsigned int page, pages;
      unsigned int len, offset;
      struct scatterlist *sg;
      int result;

      // Figure out the initial LBA and page
      lba = address >> info->blockshift;
      page = (address & info->blockmask);
      maxlba = info->capacity >> (info->pageshift + info->blockshift);
      if (lba >= maxlba)
            return -EIO;

      // Since we only read in one block at a time, we have to create
      // a bounce buffer and move the data a piece at a time between the
      // bounce buffer and the actual transfer buffer.

      len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
      buffer = kmalloc(len, GFP_NOIO);
      if (buffer == NULL) {
            printk("sddr09_read_data: Out of memory\n");
            return -ENOMEM;
      }

      // This could be made much more efficient by checking for
      // contiguous LBA's. Another exercise left to the student.

      result = 0;
      offset = 0;
      sg = NULL;

      while (sectors > 0) {

            /* Find number of pages we can read in this block */
            pages = min(sectors, info->blocksize - page);
            len = pages << info->pageshift;

            /* Not overflowing capacity? */
            if (lba >= maxlba) {
                  US_DEBUGP("Error: Requested lba %u exceeds "
                          "maximum %u\n", lba, maxlba);
                  result = -EIO;
                  break;
            }

            /* Find where this lba lives on disk */
            pba = info->lba_to_pba[lba];

            if (pba == UNDEF) {     /* this lba was never written */

                  US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
                          pages, lba, page);

                  /* This is not really an error. It just means
                     that the block has never been written.
                     Instead of returning an error
                     it is better to return all zero data. */

                  memset(buffer, 0, len);

            } else {
                  US_DEBUGP("Read %d pages, from PBA %d"
                          " (LBA %d) page %d\n",
                          pages, pba, lba, page);

                  address = ((pba << info->blockshift) + page) << 
                        info->pageshift;

                  result = sddr09_read20(us, address>>1,
                              pages, info->pageshift, buffer, 0);
                  if (result)
                        break;
            }

            // Store the data in the transfer buffer
            usb_stor_access_xfer_buf(buffer, len, us->srb,
                        &sg, &offset, TO_XFER_BUF);

            page = 0;
            lba++;
            sectors -= pages;
      }

      kfree(buffer);
      return result;
}

static unsigned int
sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
      static unsigned int lastpba = 1;
      int zonestart, end, i;

      zonestart = (lba/1000) << 10;
      end = info->capacity >> (info->blockshift + info->pageshift);
      end -= zonestart;
      if (end > 1024)
            end = 1024;

      for (i = lastpba+1; i < end; i++) {
            if (info->pba_to_lba[zonestart+i] == UNDEF) {
                  lastpba = i;
                  return zonestart+i;
            }
      }
      for (i = 0; i <= lastpba; i++) {
            if (info->pba_to_lba[zonestart+i] == UNDEF) {
                  lastpba = i;
                  return zonestart+i;
            }
      }
      return 0;
}

static int
sddr09_write_lba(struct us_data *us, unsigned int lba,
             unsigned int page, unsigned int pages,
             unsigned char *ptr, unsigned char *blockbuffer) {

      struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
      unsigned long address;
      unsigned int pba, lbap;
      unsigned int pagelen;
      unsigned char *bptr, *cptr, *xptr;
      unsigned char ecc[3];
      int i, result, isnew;

      lbap = ((lba % 1000) << 1) | 0x1000;
      if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
            lbap ^= 1;
      pba = info->lba_to_pba[lba];
      isnew = 0;

      if (pba == UNDEF) {
            pba = sddr09_find_unused_pba(info, lba);
            if (!pba) {
                  printk("sddr09_write_lba: Out of unused blocks\n");
                  return -ENOSPC;
            }
            info->pba_to_lba[pba] = lba;
            info->lba_to_pba[lba] = pba;
            isnew = 1;
      }

      if (pba == 1) {
            /* Maybe it is impossible to write to PBA 1.
               Fake success, but don't do anything. */
            printk("sddr09: avoid writing to pba 1\n");
            return 0;
      }

      pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);

      /* read old contents */
      address = (pba << (info->pageshift + info->blockshift));
      result = sddr09_read22(us, address>>1, info->blocksize,
                         info->pageshift, blockbuffer, 0);
      if (result)
            return result;

      /* check old contents and fill lba */
      for (i = 0; i < info->blocksize; i++) {
            bptr = blockbuffer + i*pagelen;
            cptr = bptr + info->pagesize;
            nand_compute_ecc(bptr, ecc);
            if (!nand_compare_ecc(cptr+13, ecc)) {
                  US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
                          i, pba);
                  nand_store_ecc(cptr+13, ecc);
            }
            nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
            if (!nand_compare_ecc(cptr+8, ecc)) {
                  US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
                          i, pba);
                  nand_store_ecc(cptr+8, ecc);
            }
            cptr[6] = cptr[11] = MSB_of(lbap);
            cptr[7] = cptr[12] = LSB_of(lbap);
      }

      /* copy in new stuff and compute ECC */
      xptr = ptr;
      for (i = page; i < page+pages; i++) {
            bptr = blockbuffer + i*pagelen;
            cptr = bptr + info->pagesize;
            memcpy(bptr, xptr, info->pagesize);
            xptr += info->pagesize;
            nand_compute_ecc(bptr, ecc);
            nand_store_ecc(cptr+13, ecc);
            nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
            nand_store_ecc(cptr+8, ecc);
      }

      US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);

      result = sddr09_write_inplace(us, address>>1, info->blocksize,
                              info->pageshift, blockbuffer, 0);

      US_DEBUGP("sddr09_write_inplace returns %d\n", result);

#if 0
      {
            unsigned char status = 0;
            int result2 = sddr09_read_status(us, &status);
            if (result2)
                  US_DEBUGP("sddr09_write_inplace: cannot read status\n");
            else if (status != 0xc0)
                  US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
                          status);
      }
#endif

#if 0
      {
            int result2 = sddr09_test_unit_ready(us);
      }
#endif

      return result;
}

static int
sddr09_write_data(struct us_data *us,
              unsigned long address,
              unsigned int sectors) {

      struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
      unsigned int lba, maxlba, page, pages;
      unsigned int pagelen, blocklen;
      unsigned char *blockbuffer;
      unsigned char *buffer;
      unsigned int len, offset;
      struct scatterlist *sg;
      int result;

      // Figure out the initial LBA and page
      lba = address >> info->blockshift;
      page = (address & info->blockmask);
      maxlba = info->capacity >> (info->pageshift + info->blockshift);
      if (lba >= maxlba)
            return -EIO;

      // blockbuffer is used for reading in the old data, overwriting
      // with the new data, and performing ECC calculations

      /* TODO: instead of doing kmalloc/kfree for each write,
         add a bufferpointer to the info structure */

      pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
      blocklen = (pagelen << info->blockshift);
      blockbuffer = kmalloc(blocklen, GFP_NOIO);
      if (!blockbuffer) {
            printk("sddr09_write_data: Out of memory\n");
            return -ENOMEM;
      }

      // Since we don't write the user data directly to the device,
      // we have to create a bounce buffer and move the data a piece
      // at a time between the bounce buffer and the actual transfer buffer.

      len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
      buffer = kmalloc(len, GFP_NOIO);
      if (buffer == NULL) {
            printk("sddr09_write_data: Out of memory\n");
            kfree(blockbuffer);
            return -ENOMEM;
      }

      result = 0;
      offset = 0;
      sg = NULL;

      while (sectors > 0) {

            // Write as many sectors as possible in this block

            pages = min(sectors, info->blocksize - page);
            len = (pages << info->pageshift);

            /* Not overflowing capacity? */
            if (lba >= maxlba) {
                  US_DEBUGP("Error: Requested lba %u exceeds "
                          "maximum %u\n", lba, maxlba);
                  result = -EIO;
                  break;
            }

            // Get the data from the transfer buffer
            usb_stor_access_xfer_buf(buffer, len, us->srb,
                        &sg, &offset, FROM_XFER_BUF);

            result = sddr09_write_lba(us, lba, page, pages,
                        buffer, blockbuffer);
            if (result)
                  break;

            page = 0;
            lba++;
            sectors -= pages;
      }

      kfree(buffer);
      kfree(blockbuffer);

      return result;
}

static int
sddr09_read_control(struct us_data *us,
            unsigned long address,
            unsigned int blocks,
            unsigned char *content,
            int use_sg) {

      US_DEBUGP("Read control address %lu, blocks %d\n",
            address, blocks);

      return sddr09_read21(us, address, blocks,
                       CONTROL_SHIFT, content, use_sg);
}

/*
 * Read Device ID Command: 12 bytes.
 * byte 0: opcode: ED
 *
 * Returns 2 bytes: Manufacturer ID and Device ID.
 * On more recent cards 3 bytes: the third byte is an option code A5
 * signifying that the secret command to read an 128-bit ID is available.
 * On still more recent cards 4 bytes: the fourth byte C0 means that
 * a second read ID cmd is available.
 */
static int
sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
      unsigned char *command = us->iobuf;
      unsigned char *content = us->iobuf;
      int result, i;

      memset(command, 0, 12);
      command[0] = 0xED;
      command[1] = LUNBITS;

      result = sddr09_send_scsi_command(us, command, 12);
      if (result)
            return result;

      result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
                  content, 64, NULL);

      for (i = 0; i < 4; i++)
            deviceID[i] = content[i];

      return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
}

static int
sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
      int result;
      unsigned char status;

      result = sddr09_read_status(us, &status);
      if (result) {
            US_DEBUGP("sddr09_get_wp: read_status fails\n");
            return result;
      }
      US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
      if ((status & 0x80) == 0) {
            info->flags |= SDDR09_WP;     /* write protected */
            US_DEBUGP(" WP");
      }
      if (status & 0x40)
            US_DEBUGP(" Ready");
      if (status & LUNBITS)
            US_DEBUGP(" Suspended");
      if (status & 0x1)
            US_DEBUGP(" Error");
      US_DEBUGP("\n");
      return 0;
}

#if 0
/*
 * Reset Command: 12 bytes.
 * byte 0: opcode: EB
 */
static int
sddr09_reset(struct us_data *us) {

      unsigned char *command = us->iobuf;

      memset(command, 0, 12);
      command[0] = 0xEB;
      command[1] = LUNBITS;

      return sddr09_send_scsi_command(us, command, 12);
}
#endif

static struct nand_flash_dev *
sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
      struct nand_flash_dev *cardinfo;
      unsigned char deviceID[4];
      char blurbtxt[256];
      int result;

      US_DEBUGP("Reading capacity...\n");

      result = sddr09_read_deviceID(us, deviceID);

      if (result) {
            US_DEBUGP("Result of read_deviceID is %d\n", result);
            printk("sddr09: could not read card info\n");
            return NULL;
      }

      sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
            deviceID[0], deviceID[1], deviceID[2], deviceID[3]);

      /* Byte 0 is the manufacturer */
      sprintf(blurbtxt + strlen(blurbtxt),
            ": Manuf. %s",
            nand_flash_manufacturer(deviceID[0]));

      /* Byte 1 is the device type */
      cardinfo = nand_find_id(deviceID[1]);
      if (cardinfo) {
            /* MB or MiB? It is neither. A 16 MB card has
               17301504 raw bytes, of which 16384000 are
               usable for user data. */
            sprintf(blurbtxt + strlen(blurbtxt),
                  ", %d MB", 1<<(cardinfo->chipshift - 20));
      } else {
            sprintf(blurbtxt + strlen(blurbtxt),
                  ", type unrecognized");
      }

      /* Byte 2 is code to signal availability of 128-bit ID */
      if (deviceID[2] == 0xa5) {
            sprintf(blurbtxt + strlen(blurbtxt),
                  ", 128-bit ID");
      }

      /* Byte 3 announces the availability of another read ID command */
      if (deviceID[3] == 0xc0) {
            sprintf(blurbtxt + strlen(blurbtxt),
                  ", extra cmd");
      }

      if (flags & SDDR09_WP)
            sprintf(blurbtxt + strlen(blurbtxt),
                  ", WP");

      printk("%s\n", blurbtxt);

      return cardinfo;
}

static int
sddr09_read_map(struct us_data *us) {

      struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
      int numblocks, alloc_len, alloc_blocks;
      int i, j, result;
      unsigned char *buffer, *buffer_end, *ptr;
      unsigned int lba, lbact;

      if (!info->capacity)
            return -1;

      // size of a block is 1 << (blockshift + pageshift) bytes
      // divide into the total capacity to get the number of blocks

      numblocks = info->capacity >> (info->blockshift + info->pageshift);

      // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
      // but only use a 64 KB buffer
      // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
#define SDDR09_READ_MAP_BUFSZ 65536

      alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
      alloc_len = (alloc_blocks << CONTROL_SHIFT);
      buffer = kmalloc(alloc_len, GFP_NOIO);
      if (buffer == NULL) {
            printk("sddr09_read_map: out of memory\n");
            result = -1;
            goto done;
      }
      buffer_end = buffer + alloc_len;

#undef SDDR09_READ_MAP_BUFSZ

      kfree(info->lba_to_pba);
      kfree(info->pba_to_lba);
      info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
      info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);

      if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
            printk("sddr09_read_map: out of memory\n");
            result = -1;
            goto done;
      }

      for (i = 0; i < numblocks; i++)
            info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;

      /*
       * Define lba-pba translation table
       */

      ptr = buffer_end;
      for (i = 0; i < numblocks; i++) {
            ptr += (1 << CONTROL_SHIFT);
            if (ptr >= buffer_end) {
                  unsigned long address;

                  address = i << (info->pageshift + info->blockshift);
                  result = sddr09_read_control(
                        us, address>>1,
                        min(alloc_blocks, numblocks - i),
                        buffer, 0);
                  if (result) {
                        result = -1;
                        goto done;
                  }
                  ptr = buffer;
            }

            if (i == 0 || i == 1) {
                  info->pba_to_lba[i] = UNUSABLE;
                  continue;
            }

            /* special PBAs have control field 0^16 */
            for (j = 0; j < 16; j++)
                  if (ptr[j] != 0)
                        goto nonz;
            info->pba_to_lba[i] = UNUSABLE;
            printk("sddr09: PBA %d has no logical mapping\n", i);
            continue;

      nonz:
            /* unwritten PBAs have control field FF^16 */
            for (j = 0; j < 16; j++)
                  if (ptr[j] != 0xff)
                        goto nonff;
            continue;

      nonff:
            /* normal PBAs start with six FFs */
            if (j < 6) {
                  printk("sddr09: PBA %d has no logical mapping: "
                         "reserved area = %02X%02X%02X%02X "
                         "data status %02X block status %02X\n",
                         i, ptr[0], ptr[1], ptr[2], ptr[3],
                         ptr[4], ptr[5]);
                  info->pba_to_lba[i] = UNUSABLE;
                  continue;
            }

            if ((ptr[6] >> 4) != 0x01) {
                  printk("sddr09: PBA %d has invalid address field "
                         "%02X%02X/%02X%02X\n",
                         i, ptr[6], ptr[7], ptr[11], ptr[12]);
                  info->pba_to_lba[i] = UNUSABLE;
                  continue;
            }

            /* check even parity */
            if (parity[ptr[6] ^ ptr[7]]) {
                  printk("sddr09: Bad parity in LBA for block %d"
                         " (%02X %02X)\n", i, ptr[6], ptr[7]);
                  info->pba_to_lba[i] = UNUSABLE;
                  continue;
            }

            lba = short_pack(ptr[7], ptr[6]);
            lba = (lba & 0x07FF) >> 1;

            /*
             * Every 1024 physical blocks ("zone"), the LBA numbers
             * go back to zero, but are within a higher block of LBA's.
             * Also, there is a maximum of 1000 LBA's per zone.
             * In other words, in PBA 1024-2047 you will find LBA 0-999
             * which are really LBA 1000-1999. This allows for 24 bad
             * or special physical blocks per zone.
             */

            if (lba >= 1000) {
                  printk("sddr09: Bad low LBA %d for block %d\n",
                         lba, i);
                  goto possibly_erase;
            }

            lba += 1000*(i/0x400);

            if (info->lba_to_pba[lba] != UNDEF) {
                  printk("sddr09: LBA %d seen for PBA %d and %d\n",
                         lba, info->lba_to_pba[lba], i);
                  goto possibly_erase;
            }

            info->pba_to_lba[i] = lba;
            info->lba_to_pba[lba] = i;
            continue;

      possibly_erase:
            if (erase_bad_lba_entries) {
                  unsigned long address;

                  address = (i << (info->pageshift + info->blockshift));
                  sddr09_erase(us, address>>1);
                  info->pba_to_lba[i] = UNDEF;
            } else
                  info->pba_to_lba[i] = UNUSABLE;
      }

      /*
       * Approximate capacity. This is not entirely correct yet,
       * since a zone with less than 1000 usable pages leads to
       * missing LBAs. Especially if it is the last zone, some
       * LBAs can be past capacity.
       */
      lbact = 0;
      for (i = 0; i < numblocks; i += 1024) {
            int ct = 0;

            for (j = 0; j < 1024 && i+j < numblocks; j++) {
                  if (info->pba_to_lba[i+j] != UNUSABLE) {
                        if (ct >= 1000)
                              info->pba_to_lba[i+j] = SPARE;
                        else
                              ct++;
                  }
            }
            lbact += ct;
      }
      info->lbact = lbact;
      US_DEBUGP("Found %d LBA's\n", lbact);
      result = 0;

 done:
      if (result != 0) {
            kfree(info->lba_to_pba);
            kfree(info->pba_to_lba);
            info->lba_to_pba = NULL;
            info->pba_to_lba = NULL;
      }
      kfree(buffer);
      return result;
}

static void
sddr09_card_info_destructor(void *extra) {
      struct sddr09_card_info *info = (struct sddr09_card_info *)extra;

      if (!info)
            return;

      kfree(info->lba_to_pba);
      kfree(info->pba_to_lba);
}

static int
sddr09_common_init(struct us_data *us) {
      int result;

      /* set the configuration -- STALL is an acceptable response here */
      if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
            US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
                        ->actconfig->desc.bConfigurationValue);
            return -EINVAL;
      }

      result = usb_reset_configuration(us->pusb_dev);
      US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
      if (result == -EPIPE) {
            US_DEBUGP("-- stall on control interface\n");
      } else if (result != 0) {
            /* it's not a stall, but another error -- time to bail */
            US_DEBUGP("-- Unknown error.  Rejecting device\n");
            return -EINVAL;
      }

      us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
      if (!us->extra)
            return -ENOMEM;
      us->extra_destructor = sddr09_card_info_destructor;

      nand_init_ecc();
      return 0;
}


/*
 * This is needed at a very early stage. If this is not listed in the
 * unusual devices list but called from here then LUN 0 of the combo reader
 * is not recognized. But I do not know what precisely these calls do.
 */
int
usb_stor_sddr09_dpcm_init(struct us_data *us) {
      int result;
      unsigned char *data = us->iobuf;

      result = sddr09_common_init(us);
      if (result)
            return result;

      result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
      if (result) {
            US_DEBUGP("sddr09_init: send_command fails\n");
            return result;
      }

      US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
      // get 07 02

      result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
      if (result) {
            US_DEBUGP("sddr09_init: 2nd send_command fails\n");
            return result;
      }

      US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
      // get 07 00

      result = sddr09_request_sense(us, data, 18);
      if (result == 0 && data[2] != 0) {
            int j;
            for (j=0; j<18; j++)
                  printk(" %02X", data[j]);
            printk("\n");
            // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
            // 70: current command
            // sense key 0, sense code 0, extd sense code 0
            // additional transfer length * = sizeof(data) - 7
            // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
            // sense key 06, sense code 28: unit attention,
            // not ready to ready transition
      }

      // test unit ready

      return 0;         /* not result */
}

/*
 * Transport for the Sandisk SDDR-09
 */
int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
{
      static unsigned char sensekey = 0, sensecode = 0;
      static unsigned char havefakesense = 0;
      int result, i;
      unsigned char *ptr = us->iobuf;
      unsigned long capacity;
      unsigned int page, pages;

      struct sddr09_card_info *info;

      static unsigned char inquiry_response[8] = {
            0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
      };

      /* note: no block descriptor support */
      static unsigned char mode_page_01[19] = {
            0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
            0x01, 0x0A,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
      };

      info = (struct sddr09_card_info *)us->extra;

      if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
            /* for a faked command, we have to follow with a faked sense */
            memset(ptr, 0, 18);
            ptr[0] = 0x70;
            ptr[2] = sensekey;
            ptr[7] = 11;
            ptr[12] = sensecode;
            usb_stor_set_xfer_buf(ptr, 18, srb);
            sensekey = sensecode = havefakesense = 0;
            return USB_STOR_TRANSPORT_GOOD;
      }

      havefakesense = 1;

      /* Dummy up a response for INQUIRY since SDDR09 doesn't
         respond to INQUIRY commands */

      if (srb->cmnd[0] == INQUIRY) {
            memcpy(ptr, inquiry_response, 8);
            fill_inquiry_response(us, ptr, 36);
            return USB_STOR_TRANSPORT_GOOD;
      }

      if (srb->cmnd[0] == READ_CAPACITY) {
            struct nand_flash_dev *cardinfo;

            sddr09_get_wp(us, info);      /* read WP bit */

            cardinfo = sddr09_get_cardinfo(us, info->flags);
            if (!cardinfo) {
                  /* probably no media */
            init_error:
                  sensekey = 0x02;  /* not ready */
                  sensecode = 0x3a; /* medium not present */
                  return USB_STOR_TRANSPORT_FAILED;
            }

            info->capacity = (1 << cardinfo->chipshift);
            info->pageshift = cardinfo->pageshift;
            info->pagesize = (1 << info->pageshift);
            info->blockshift = cardinfo->blockshift;
            info->blocksize = (1 << info->blockshift);
            info->blockmask = info->blocksize - 1;

            // map initialization, must follow get_cardinfo()
            if (sddr09_read_map(us)) {
                  /* probably out of memory */
                  goto init_error;
            }

            // Report capacity

            capacity = (info->lbact << info->blockshift) - 1;

            ((__be32 *) ptr)[0] = cpu_to_be32(capacity);

            // Report page size

            ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
            usb_stor_set_xfer_buf(ptr, 8, srb);

            return USB_STOR_TRANSPORT_GOOD;
      }

      if (srb->cmnd[0] == MODE_SENSE_10) {
            int modepage = (srb->cmnd[2] & 0x3F);

            /* They ask for the Read/Write error recovery page,
               or for all pages. */
            /* %% We should check DBD %% */
            if (modepage == 0x01 || modepage == 0x3F) {
                  US_DEBUGP("SDDR09: Dummy up request for "
                          "mode page 0x%x\n", modepage);

                  memcpy(ptr, mode_page_01, sizeof(mode_page_01));
                  ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
                  ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
                  usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
                  return USB_STOR_TRANSPORT_GOOD;
            }

            sensekey = 0x05;  /* illegal request */
            sensecode = 0x24; /* invalid field in CDB */
            return USB_STOR_TRANSPORT_FAILED;
      }

      if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
            return USB_STOR_TRANSPORT_GOOD;

      havefakesense = 0;

      if (srb->cmnd[0] == READ_10) {

            page = short_pack(srb->cmnd[3], srb->cmnd[2]);
            page <<= 16;
            page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
            pages = short_pack(srb->cmnd[8], srb->cmnd[7]);

            US_DEBUGP("READ_10: read page %d pagect %d\n",
                    page, pages);

            result = sddr09_read_data(us, page, pages);
            return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
                        USB_STOR_TRANSPORT_ERROR);
      }

      if (srb->cmnd[0] == WRITE_10) {

            page = short_pack(srb->cmnd[3], srb->cmnd[2]);
            page <<= 16;
            page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
            pages = short_pack(srb->cmnd[8], srb->cmnd[7]);

            US_DEBUGP("WRITE_10: write page %d pagect %d\n",
                    page, pages);

            result = sddr09_write_data(us, page, pages);
            return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
                        USB_STOR_TRANSPORT_ERROR);
      }

      /* catch-all for all other commands, except
       * pass TEST_UNIT_READY and REQUEST_SENSE through
       */
      if (srb->cmnd[0] != TEST_UNIT_READY &&
          srb->cmnd[0] != REQUEST_SENSE) {
            sensekey = 0x05;  /* illegal request */
            sensecode = 0x20; /* invalid command */
            havefakesense = 1;
            return USB_STOR_TRANSPORT_FAILED;
      }

      for (; srb->cmd_len<12; srb->cmd_len++)
            srb->cmnd[srb->cmd_len] = 0;

      srb->cmnd[1] = LUNBITS;

      ptr[0] = 0;
      for (i=0; i<12; i++)
            sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);

      US_DEBUGP("SDDR09: Send control for command %s\n", ptr);

      result = sddr09_send_scsi_command(us, srb->cmnd, 12);
      if (result) {
            US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
                    "returns %d\n", result);
            return USB_STOR_TRANSPORT_ERROR;
      }

      if (srb->request_bufflen == 0)
            return USB_STOR_TRANSPORT_GOOD;

      if (srb->sc_data_direction == DMA_TO_DEVICE ||
          srb->sc_data_direction == DMA_FROM_DEVICE) {
            unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
                        ? us->send_bulk_pipe : us->recv_bulk_pipe;

            US_DEBUGP("SDDR09: %s %d bytes\n",
                    (srb->sc_data_direction == DMA_TO_DEVICE) ?
                    "sending" : "receiving",
                    srb->request_bufflen);

            result = usb_stor_bulk_transfer_sg(us, pipe,
                              srb->request_buffer,
                              srb->request_bufflen,
                              srb->use_sg, &srb->resid);

            return (result == USB_STOR_XFER_GOOD ?
                  USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
      } 

      return USB_STOR_TRANSPORT_GOOD;
}

/*
 * Initialization routine for the sddr09 subdriver
 */
int
usb_stor_sddr09_init(struct us_data *us) {
      return sddr09_common_init(us);
}

Generated by  Doxygen 1.6.0   Back to index