Logo Search packages:      
Sourcecode: linux version File versions  Download package

soc-core.c

/*
 * soc-core.c  --  ALSA SoC Audio Layer
 *
 * Copyright 2005 Wolfson Microelectronics PLC.
 * Copyright 2005 Openedhand Ltd.
 *
 * Author: Liam Girdwood
 *         liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
 *         with code, comments and ideas from :-
 *         Richard Purdie <richard@openedhand.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 *  Revision history
 *    12th Aug 2005   Initial version.
 *    25th Oct 2005   Working Codec, Interface and Platform registration.
 *
 *  TODO:
 *   o Add hw rules to enforce rates, etc.
 *   o More testing with other codecs/machines.
 *   o Add more codecs and platforms to ensure good API coverage.
 *   o Support TDM on PCM and I2S
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/platform_device.h>
#include <sound/driver.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>

/* debug */
#define SOC_DEBUG 0
#if SOC_DEBUG
#define dbg(format, arg...) printk(format, ## arg)
#else
#define dbg(format, arg...)
#endif

static DEFINE_MUTEX(pcm_mutex);
static DEFINE_MUTEX(io_mutex);
static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);

/*
 * This is a timeout to do a DAPM powerdown after a stream is closed().
 * It can be used to eliminate pops between different playback streams, e.g.
 * between two audio tracks.
 */
static int pmdown_time = 5000;
module_param(pmdown_time, int, 0);
MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");

/*
 * This function forces any delayed work to be queued and run.
 */
static int run_delayed_work(struct delayed_work *dwork)
{
      int ret;

      /* cancel any work waiting to be queued. */
      ret = cancel_delayed_work(dwork);

      /* if there was any work waiting then we run it now and
       * wait for it's completion */
      if (ret) {
            schedule_delayed_work(dwork, 0);
            flush_scheduled_work();
      }
      return ret;
}

#ifdef CONFIG_SND_SOC_AC97_BUS
/* unregister ac97 codec */
static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
{
      if (codec->ac97->dev.bus)
            device_unregister(&codec->ac97->dev);
      return 0;
}

/* stop no dev release warning */
static void soc_ac97_device_release(struct device *dev){}

/* register ac97 codec to bus */
static int soc_ac97_dev_register(struct snd_soc_codec *codec)
{
      int err;

      codec->ac97->dev.bus = &ac97_bus_type;
      codec->ac97->dev.parent = NULL;
      codec->ac97->dev.release = soc_ac97_device_release;

      snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
             codec->card->number, 0, codec->name);
      err = device_register(&codec->ac97->dev);
      if (err < 0) {
            snd_printk(KERN_ERR "Can't register ac97 bus\n");
            codec->ac97->dev.bus = NULL;
            return err;
      }
      return 0;
}
#endif

static inline const char* get_dai_name(int type)
{
      switch(type) {
      case SND_SOC_DAI_AC97_BUS:
      case SND_SOC_DAI_AC97:
            return "AC97";
      case SND_SOC_DAI_I2S:
            return "I2S";
      case SND_SOC_DAI_PCM:
            return "PCM";
      }
      return NULL;
}

/*
 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
 * then initialized and any private data can be allocated. This also calls
 * startup for the cpu DAI, platform, machine and codec DAI.
 */
static int soc_pcm_open(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
      int ret = 0;

      mutex_lock(&pcm_mutex);

      /* startup the audio subsystem */
      if (cpu_dai->ops.startup) {
            ret = cpu_dai->ops.startup(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't open interface %s\n",
                        cpu_dai->name);
                  goto out;
            }
      }

      if (platform->pcm_ops->open) {
            ret = platform->pcm_ops->open(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
                  goto platform_err;
            }
      }

      if (codec_dai->ops.startup) {
            ret = codec_dai->ops.startup(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't open codec %s\n",
                        codec_dai->name);
                  goto codec_dai_err;
            }
      }

      if (machine->ops && machine->ops->startup) {
            ret = machine->ops->startup(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
                  goto machine_err;
            }
      }

      /* Check that the codec and cpu DAI's are compatible */
      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            runtime->hw.rate_min =
                  max(codec_dai->playback.rate_min, cpu_dai->playback.rate_min);
            runtime->hw.rate_max =
                  min(codec_dai->playback.rate_max, cpu_dai->playback.rate_max);
            runtime->hw.channels_min =
                  max(codec_dai->playback.channels_min,
                        cpu_dai->playback.channels_min);
            runtime->hw.channels_max =
                  min(codec_dai->playback.channels_max,
                        cpu_dai->playback.channels_max);
            runtime->hw.formats =
                  codec_dai->playback.formats & cpu_dai->playback.formats;
            runtime->hw.rates =
                  codec_dai->playback.rates & cpu_dai->playback.rates;
      } else {
            runtime->hw.rate_min =
                  max(codec_dai->capture.rate_min, cpu_dai->capture.rate_min);
            runtime->hw.rate_max =
                  min(codec_dai->capture.rate_max, cpu_dai->capture.rate_max);
            runtime->hw.channels_min =
                  max(codec_dai->capture.channels_min,
                        cpu_dai->capture.channels_min);
            runtime->hw.channels_max =
                  min(codec_dai->capture.channels_max,
                        cpu_dai->capture.channels_max);
            runtime->hw.formats =
                  codec_dai->capture.formats & cpu_dai->capture.formats;
            runtime->hw.rates =
                  codec_dai->capture.rates & cpu_dai->capture.rates;
      }

      snd_pcm_limit_hw_rates(runtime);
      if (!runtime->hw.rates) {
            printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
                  codec_dai->name, cpu_dai->name);
            goto machine_err;
      }
      if (!runtime->hw.formats) {
            printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
                  codec_dai->name, cpu_dai->name);
            goto machine_err;
      }
      if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
            printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
                  codec_dai->name, cpu_dai->name);
            goto machine_err;
      }

      dbg("asoc: %s <-> %s info:\n",codec_dai->name, cpu_dai->name);
      dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
      dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
            runtime->hw.channels_max);
      dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
            runtime->hw.rate_max);

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
            cpu_dai->playback.active = codec_dai->playback.active = 1;
      else
            cpu_dai->capture.active = codec_dai->capture.active = 1;
      cpu_dai->active = codec_dai->active = 1;
      cpu_dai->runtime = runtime;
      socdev->codec->active++;
      mutex_unlock(&pcm_mutex);
      return 0;

machine_err:
      if (machine->ops && machine->ops->shutdown)
            machine->ops->shutdown(substream);

codec_dai_err:
      if (platform->pcm_ops->close)
            platform->pcm_ops->close(substream);

platform_err:
      if (cpu_dai->ops.shutdown)
            cpu_dai->ops.shutdown(substream);
out:
      mutex_unlock(&pcm_mutex);
      return ret;
}

/*
 * Power down the audio subsystem pmdown_time msecs after close is called.
 * This is to ensure there are no pops or clicks in between any music tracks
 * due to DAPM power cycling.
 */
static void close_delayed_work(struct work_struct *work)
{
      struct snd_soc_device *socdev =
            container_of(work, struct snd_soc_device, delayed_work.work);
      struct snd_soc_codec *codec = socdev->codec;
      struct snd_soc_codec_dai *codec_dai;
      int i;

      mutex_lock(&pcm_mutex);
      for(i = 0; i < codec->num_dai; i++) {
            codec_dai = &codec->dai[i];

            dbg("pop wq checking: %s status: %s waiting: %s\n",
                  codec_dai->playback.stream_name,
                  codec_dai->playback.active ? "active" : "inactive",
                  codec_dai->pop_wait ? "yes" : "no");

            /* are we waiting on this codec DAI stream */
            if (codec_dai->pop_wait == 1) {

                  codec_dai->pop_wait = 0;
                  snd_soc_dapm_stream_event(codec, codec_dai->playback.stream_name,
                        SND_SOC_DAPM_STREAM_STOP);

                  /* power down the codec power domain if no longer active */
                  if (codec->active == 0) {
                        dbg("pop wq D3 %s %s\n", codec->name,
                              codec_dai->playback.stream_name);
                        if (codec->dapm_event)
                              codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
                  }
            }
      }
      mutex_unlock(&pcm_mutex);
}

/*
 * Called by ALSA when a PCM substream is closed. Private data can be
 * freed here. The cpu DAI, codec DAI, machine and platform are also
 * shutdown.
 */
static int soc_codec_close(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
      struct snd_soc_codec *codec = socdev->codec;

      mutex_lock(&pcm_mutex);

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
            cpu_dai->playback.active = codec_dai->playback.active = 0;
      else
            cpu_dai->capture.active = codec_dai->capture.active = 0;

      if (codec_dai->playback.active == 0 &&
            codec_dai->capture.active == 0) {
            cpu_dai->active = codec_dai->active = 0;
      }
      codec->active--;

      if (cpu_dai->ops.shutdown)
            cpu_dai->ops.shutdown(substream);

      if (codec_dai->ops.shutdown)
            codec_dai->ops.shutdown(substream);

      if (machine->ops && machine->ops->shutdown)
            machine->ops->shutdown(substream);

      if (platform->pcm_ops->close)
            platform->pcm_ops->close(substream);
      cpu_dai->runtime = NULL;

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            /* start delayed pop wq here for playback streams */
            codec_dai->pop_wait = 1;
            schedule_delayed_work(&socdev->delayed_work,
                  msecs_to_jiffies(pmdown_time));
      } else {
            /* capture streams can be powered down now */
            snd_soc_dapm_stream_event(codec,
                  codec_dai->capture.stream_name, SND_SOC_DAPM_STREAM_STOP);

            if (codec->active == 0 && codec_dai->pop_wait == 0){
                  if (codec->dapm_event)
                        codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
            }
      }

      mutex_unlock(&pcm_mutex);
      return 0;
}

/*
 * Called by ALSA when the PCM substream is prepared, can set format, sample
 * rate, etc.  This function is non atomic and can be called multiple times,
 * it can refer to the runtime info.
 */
static int soc_pcm_prepare(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
      struct snd_soc_codec *codec = socdev->codec;
      int ret = 0;

      mutex_lock(&pcm_mutex);

      if (machine->ops && machine->ops->prepare) {
            ret = machine->ops->prepare(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: machine prepare error\n");
                  goto out;
            }
      }

      if (platform->pcm_ops->prepare) {
            ret = platform->pcm_ops->prepare(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: platform prepare error\n");
                  goto out;
            }
      }

      if (codec_dai->ops.prepare) {
            ret = codec_dai->ops.prepare(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: codec DAI prepare error\n");
                  goto out;
            }
      }

      if (cpu_dai->ops.prepare) {
            ret = cpu_dai->ops.prepare(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: cpu DAI prepare error\n");
                  goto out;
            }
      }

      /* we only want to start a DAPM playback stream if we are not waiting
       * on an existing one stopping */
      if (codec_dai->pop_wait) {
            /* we are waiting for the delayed work to start */
            if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
                        snd_soc_dapm_stream_event(socdev->codec,
                              codec_dai->capture.stream_name,
                              SND_SOC_DAPM_STREAM_START);
            else {
                  codec_dai->pop_wait = 0;
                  cancel_delayed_work(&socdev->delayed_work);
                  if (codec_dai->dai_ops.digital_mute)
                        codec_dai->dai_ops.digital_mute(codec_dai, 0);
            }
      } else {
            /* no delayed work - do we need to power up codec */
            if (codec->dapm_state != SNDRV_CTL_POWER_D0) {

                  if (codec->dapm_event)
                        codec->dapm_event(codec, SNDRV_CTL_POWER_D1);

                  if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                        snd_soc_dapm_stream_event(codec,
                              codec_dai->playback.stream_name,
                              SND_SOC_DAPM_STREAM_START);
                  else
                        snd_soc_dapm_stream_event(codec,
                              codec_dai->capture.stream_name,
                              SND_SOC_DAPM_STREAM_START);

                  if (codec->dapm_event)
                        codec->dapm_event(codec, SNDRV_CTL_POWER_D0);
                  if (codec_dai->dai_ops.digital_mute)
                        codec_dai->dai_ops.digital_mute(codec_dai, 0);

            } else {
                  /* codec already powered - power on widgets */
                  if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                        snd_soc_dapm_stream_event(codec,
                              codec_dai->playback.stream_name,
                              SND_SOC_DAPM_STREAM_START);
                  else
                        snd_soc_dapm_stream_event(codec,
                              codec_dai->capture.stream_name,
                              SND_SOC_DAPM_STREAM_START);
                  if (codec_dai->dai_ops.digital_mute)
                        codec_dai->dai_ops.digital_mute(codec_dai, 0);
            }
      }

out:
      mutex_unlock(&pcm_mutex);
      return ret;
}

/*
 * Called by ALSA when the hardware params are set by application. This
 * function can also be called multiple times and can allocate buffers
 * (using snd_pcm_lib_* ). It's non-atomic.
 */
static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
                        struct snd_pcm_hw_params *params)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
      int ret = 0;

      mutex_lock(&pcm_mutex);

      if (machine->ops && machine->ops->hw_params) {
            ret = machine->ops->hw_params(substream, params);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: machine hw_params failed\n");
                  goto out;
            }
      }

      if (codec_dai->ops.hw_params) {
            ret = codec_dai->ops.hw_params(substream, params);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't set codec %s hw params\n",
                        codec_dai->name);
                  goto codec_err;
            }
      }

      if (cpu_dai->ops.hw_params) {
            ret = cpu_dai->ops.hw_params(substream, params);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't set interface %s hw params\n",
                        cpu_dai->name);
                  goto interface_err;
            }
      }

      if (platform->pcm_ops->hw_params) {
            ret = platform->pcm_ops->hw_params(substream, params);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't set platform %s hw params\n",
                        platform->name);
                  goto platform_err;
            }
      }

out:
      mutex_unlock(&pcm_mutex);
      return ret;

platform_err:
      if (cpu_dai->ops.hw_free)
            cpu_dai->ops.hw_free(substream);

interface_err:
      if (codec_dai->ops.hw_free)
            codec_dai->ops.hw_free(substream);

codec_err:
      if(machine->ops && machine->ops->hw_free)
            machine->ops->hw_free(substream);

      mutex_unlock(&pcm_mutex);
      return ret;
}

/*
 * Free's resources allocated by hw_params, can be called multiple times
 */
static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
      struct snd_soc_codec *codec = socdev->codec;

      mutex_lock(&pcm_mutex);

      /* apply codec digital mute */
      if (!codec->active && codec_dai->dai_ops.digital_mute)
            codec_dai->dai_ops.digital_mute(codec_dai, 1);

      /* free any machine hw params */
      if (machine->ops && machine->ops->hw_free)
            machine->ops->hw_free(substream);

      /* free any DMA resources */
      if (platform->pcm_ops->hw_free)
            platform->pcm_ops->hw_free(substream);

      /* now free hw params for the DAI's  */
      if (codec_dai->ops.hw_free)
            codec_dai->ops.hw_free(substream);

      if (cpu_dai->ops.hw_free)
            cpu_dai->ops.hw_free(substream);

      mutex_unlock(&pcm_mutex);
      return 0;
}

static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
      int ret;

      if (codec_dai->ops.trigger) {
            ret = codec_dai->ops.trigger(substream, cmd);
            if (ret < 0)
                  return ret;
      }

      if (platform->pcm_ops->trigger) {
            ret = platform->pcm_ops->trigger(substream, cmd);
            if (ret < 0)
                  return ret;
      }

      if (cpu_dai->ops.trigger) {
            ret = cpu_dai->ops.trigger(substream, cmd);
            if (ret < 0)
                  return ret;
      }
      return 0;
}

/* ASoC PCM operations */
static struct snd_pcm_ops soc_pcm_ops = {
      .open       = soc_pcm_open,
      .close            = soc_codec_close,
      .hw_params  = soc_pcm_hw_params,
      .hw_free    = soc_pcm_hw_free,
      .prepare    = soc_pcm_prepare,
      .trigger    = soc_pcm_trigger,
};

#ifdef CONFIG_PM
/* powers down audio subsystem for suspend */
static int soc_suspend(struct platform_device *pdev, pm_message_t state)
{
      struct snd_soc_device *socdev = platform_get_drvdata(pdev);
      struct snd_soc_machine *machine = socdev->machine;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
      struct snd_soc_codec *codec = socdev->codec;
      int i;

      /* mute any active DAC's */
      for(i = 0; i < machine->num_links; i++) {
            struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
            if (dai->dai_ops.digital_mute && dai->playback.active)
                  dai->dai_ops.digital_mute(dai, 1);
      }

      if (machine->suspend_pre)
            machine->suspend_pre(pdev, state);

      for(i = 0; i < machine->num_links; i++) {
            struct snd_soc_cpu_dai  *cpu_dai = machine->dai_link[i].cpu_dai;
            if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
                  cpu_dai->suspend(pdev, cpu_dai);
            if (platform->suspend)
                  platform->suspend(pdev, cpu_dai);
      }

      /* close any waiting streams and save state */
      run_delayed_work(&socdev->delayed_work);
      codec->suspend_dapm_state = codec->dapm_state;

      for(i = 0; i < codec->num_dai; i++) {
            char *stream = codec->dai[i].playback.stream_name;
            if (stream != NULL)
                  snd_soc_dapm_stream_event(codec, stream,
                        SND_SOC_DAPM_STREAM_SUSPEND);
            stream = codec->dai[i].capture.stream_name;
            if (stream != NULL)
                  snd_soc_dapm_stream_event(codec, stream,
                        SND_SOC_DAPM_STREAM_SUSPEND);
      }

      if (codec_dev->suspend)
            codec_dev->suspend(pdev, state);

      for(i = 0; i < machine->num_links; i++) {
            struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
            if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
                  cpu_dai->suspend(pdev, cpu_dai);
      }

      if (machine->suspend_post)
            machine->suspend_post(pdev, state);

      return 0;
}

/* powers up audio subsystem after a suspend */
static int soc_resume(struct platform_device *pdev)
{
      struct snd_soc_device *socdev = platform_get_drvdata(pdev);
      struct snd_soc_machine *machine = socdev->machine;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
      struct snd_soc_codec *codec = socdev->codec;
      int i;

      if (machine->resume_pre)
            machine->resume_pre(pdev);

      for(i = 0; i < machine->num_links; i++) {
            struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
            if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
                  cpu_dai->resume(pdev, cpu_dai);
      }

      if (codec_dev->resume)
            codec_dev->resume(pdev);

      for(i = 0; i < codec->num_dai; i++) {
            char* stream = codec->dai[i].playback.stream_name;
            if (stream != NULL)
                  snd_soc_dapm_stream_event(codec, stream,
                        SND_SOC_DAPM_STREAM_RESUME);
            stream = codec->dai[i].capture.stream_name;
            if (stream != NULL)
                  snd_soc_dapm_stream_event(codec, stream,
                        SND_SOC_DAPM_STREAM_RESUME);
      }

      /* unmute any active DAC's */
      for(i = 0; i < machine->num_links; i++) {
            struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
            if (dai->dai_ops.digital_mute && dai->playback.active)
                  dai->dai_ops.digital_mute(dai, 0);
      }

      for(i = 0; i < machine->num_links; i++) {
            struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
            if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
                  cpu_dai->resume(pdev, cpu_dai);
            if (platform->resume)
                  platform->resume(pdev, cpu_dai);
      }

      if (machine->resume_post)
            machine->resume_post(pdev);

      return 0;
}

#else
#define soc_suspend     NULL
#define soc_resume      NULL
#endif

/* probes a new socdev */
static int soc_probe(struct platform_device *pdev)
{
      int ret = 0, i;
      struct snd_soc_device *socdev = platform_get_drvdata(pdev);
      struct snd_soc_machine *machine = socdev->machine;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_codec_device *codec_dev = socdev->codec_dev;

      if (machine->probe) {
            ret = machine->probe(pdev);
            if(ret < 0)
                  return ret;
      }

      for (i = 0; i < machine->num_links; i++) {
            struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
            if (cpu_dai->probe) {
                  ret = cpu_dai->probe(pdev);
                  if(ret < 0)
                        goto cpu_dai_err;
            }
      }

      if (codec_dev->probe) {
            ret = codec_dev->probe(pdev);
            if(ret < 0)
                  goto cpu_dai_err;
      }

      if (platform->probe) {
            ret = platform->probe(pdev);
            if(ret < 0)
                  goto platform_err;
      }

      /* DAPM stream work */
      INIT_DELAYED_WORK(&socdev->delayed_work, close_delayed_work);
      return 0;

platform_err:
      if (codec_dev->remove)
            codec_dev->remove(pdev);

cpu_dai_err:
      for (i--; i >= 0; i--) {
            struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
            if (cpu_dai->remove)
                  cpu_dai->remove(pdev);
      }

      if (machine->remove)
            machine->remove(pdev);

      return ret;
}

/* removes a socdev */
static int soc_remove(struct platform_device *pdev)
{
      int i;
      struct snd_soc_device *socdev = platform_get_drvdata(pdev);
      struct snd_soc_machine *machine = socdev->machine;
      struct snd_soc_platform *platform = socdev->platform;
      struct snd_soc_codec_device *codec_dev = socdev->codec_dev;

      run_delayed_work(&socdev->delayed_work);

      if (platform->remove)
            platform->remove(pdev);

      if (codec_dev->remove)
            codec_dev->remove(pdev);

      for (i = 0; i < machine->num_links; i++) {
            struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
            if (cpu_dai->remove)
                  cpu_dai->remove(pdev);
      }

      if (machine->remove)
            machine->remove(pdev);

      return 0;
}

/* ASoC platform driver */
static struct platform_driver soc_driver = {
      .driver           = {
            .name       = "soc-audio",
      },
      .probe            = soc_probe,
      .remove           = soc_remove,
      .suspend    = soc_suspend,
      .resume           = soc_resume,
};

/* create a new pcm */
static int soc_new_pcm(struct snd_soc_device *socdev,
      struct snd_soc_dai_link *dai_link, int num)
{
      struct snd_soc_codec *codec = socdev->codec;
      struct snd_soc_codec_dai *codec_dai = dai_link->codec_dai;
      struct snd_soc_cpu_dai *cpu_dai = dai_link->cpu_dai;
      struct snd_soc_pcm_runtime *rtd;
      struct snd_pcm *pcm;
      char new_name[64];
      int ret = 0, playback = 0, capture = 0;

      rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
      if (rtd == NULL)
            return -ENOMEM;

      rtd->dai = dai_link;
      rtd->socdev = socdev;
      codec_dai->codec = socdev->codec;

      /* check client and interface hw capabilities */
      sprintf(new_name, "%s %s-%s-%d",dai_link->stream_name, codec_dai->name,
            get_dai_name(cpu_dai->type), num);

      if (codec_dai->playback.channels_min)
            playback = 1;
      if (codec_dai->capture.channels_min)
            capture = 1;

      ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
            capture, &pcm);
      if (ret < 0) {
            printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
            kfree(rtd);
            return ret;
      }

      pcm->private_data = rtd;
      soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
      soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
      soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
      soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
      soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
      soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
      soc_pcm_ops.page = socdev->platform->pcm_ops->page;

      if (playback)
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);

      if (capture)
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);

      ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
      if (ret < 0) {
            printk(KERN_ERR "asoc: platform pcm constructor failed\n");
            kfree(rtd);
            return ret;
      }

      pcm->private_free = socdev->platform->pcm_free;
      printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
            cpu_dai->name);
      return ret;
}

/* codec register dump */
static ssize_t codec_reg_show(struct device *dev,
      struct device_attribute *attr, char *buf)
{
      struct snd_soc_device *devdata = dev_get_drvdata(dev);
      struct snd_soc_codec *codec = devdata->codec;
      int i, step = 1, count = 0;

      if (!codec->reg_cache_size)
            return 0;

      if (codec->reg_cache_step)
            step = codec->reg_cache_step;

      count += sprintf(buf, "%s registers\n", codec->name);
      for(i = 0; i < codec->reg_cache_size; i += step)
            count += sprintf(buf + count, "%2x: %4x\n", i, codec->read(codec, i));

      return count;
}
static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);

/**
 * snd_soc_new_ac97_codec - initailise AC97 device
 * @codec: audio codec
 * @ops: AC97 bus operations
 * @num: AC97 codec number
 *
 * Initialises AC97 codec resources for use by ad-hoc devices only.
 */
int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
      struct snd_ac97_bus_ops *ops, int num)
{
      mutex_lock(&codec->mutex);

      codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
      if (codec->ac97 == NULL) {
            mutex_unlock(&codec->mutex);
            return -ENOMEM;
      }

      codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
      if (codec->ac97->bus == NULL) {
            kfree(codec->ac97);
            codec->ac97 = NULL;
            mutex_unlock(&codec->mutex);
            return -ENOMEM;
      }

      codec->ac97->bus->ops = ops;
      codec->ac97->num = num;
      mutex_unlock(&codec->mutex);
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);

/**
 * snd_soc_free_ac97_codec - free AC97 codec device
 * @codec: audio codec
 *
 * Frees AC97 codec device resources.
 */
void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
{
      mutex_lock(&codec->mutex);
      kfree(codec->ac97->bus);
      kfree(codec->ac97);
      codec->ac97 = NULL;
      mutex_unlock(&codec->mutex);
}
EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);

/**
 * snd_soc_update_bits - update codec register bits
 * @codec: audio codec
 * @reg: codec register
 * @mask: register mask
 * @value: new value
 *
 * Writes new register value.
 *
 * Returns 1 for change else 0.
 */
int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
                        unsigned short mask, unsigned short value)
{
      int change;
      unsigned short old, new;

      mutex_lock(&io_mutex);
      old = snd_soc_read(codec, reg);
      new = (old & ~mask) | value;
      change = old != new;
      if (change)
            snd_soc_write(codec, reg, new);

      mutex_unlock(&io_mutex);
      return change;
}
EXPORT_SYMBOL_GPL(snd_soc_update_bits);

/**
 * snd_soc_test_bits - test register for change
 * @codec: audio codec
 * @reg: codec register
 * @mask: register mask
 * @value: new value
 *
 * Tests a register with a new value and checks if the new value is
 * different from the old value.
 *
 * Returns 1 for change else 0.
 */
int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
                        unsigned short mask, unsigned short value)
{
      int change;
      unsigned short old, new;

      mutex_lock(&io_mutex);
      old = snd_soc_read(codec, reg);
      new = (old & ~mask) | value;
      change = old != new;
      mutex_unlock(&io_mutex);

      return change;
}
EXPORT_SYMBOL_GPL(snd_soc_test_bits);

/**
 * snd_soc_new_pcms - create new sound card and pcms
 * @socdev: the SoC audio device
 *
 * Create a new sound card based upon the codec and interface pcms.
 *
 * Returns 0 for success, else error.
 */
int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
{
      struct snd_soc_codec *codec = socdev->codec;
      struct snd_soc_machine *machine = socdev->machine;
      int ret = 0, i;

      mutex_lock(&codec->mutex);

      /* register a sound card */
      codec->card = snd_card_new(idx, xid, codec->owner, 0);
      if (!codec->card) {
            printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
                  codec->name);
            mutex_unlock(&codec->mutex);
            return -ENODEV;
      }

      codec->card->dev = socdev->dev;
      codec->card->private_data = codec;
      strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));

      /* create the pcms */
      for(i = 0; i < machine->num_links; i++) {
            ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't create pcm %s\n",
                        machine->dai_link[i].stream_name);
                  mutex_unlock(&codec->mutex);
                  return ret;
            }
      }

      mutex_unlock(&codec->mutex);
      return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_new_pcms);

/**
 * snd_soc_register_card - register sound card
 * @socdev: the SoC audio device
 *
 * Register a SoC sound card. Also registers an AC97 device if the
 * codec is AC97 for ad hoc devices.
 *
 * Returns 0 for success, else error.
 */
int snd_soc_register_card(struct snd_soc_device *socdev)
{
      struct snd_soc_codec *codec = socdev->codec;
      struct snd_soc_machine *machine = socdev->machine;
      int ret = 0, i, ac97 = 0, err = 0;

      mutex_lock(&codec->mutex);
      for(i = 0; i < machine->num_links; i++) {
            if (socdev->machine->dai_link[i].init) {
                  err = socdev->machine->dai_link[i].init(codec);
                  if (err < 0) {
                        printk(KERN_ERR "asoc: failed to init %s\n",
                              socdev->machine->dai_link[i].stream_name);
                        continue;
                  }
            }
            if (socdev->machine->dai_link[i].codec_dai->type == 
                  SND_SOC_DAI_AC97_BUS)
                  ac97 = 1;
      }
      snprintf(codec->card->shortname, sizeof(codec->card->shortname),
             "%s", machine->name);
      snprintf(codec->card->longname, sizeof(codec->card->longname),
             "%s (%s)", machine->name, codec->name);

      ret = snd_card_register(codec->card);
      if (ret < 0) {
            printk(KERN_ERR "asoc: failed to register soundcard for codec %s\n",
                        codec->name);
            goto out;
      }

#ifdef CONFIG_SND_SOC_AC97_BUS
      if (ac97) {
            ret = soc_ac97_dev_register(codec);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: AC97 device register failed\n");
                  snd_card_free(codec->card);
                  goto out;
            }
      }
#endif

      err = snd_soc_dapm_sys_add(socdev->dev);
      if (err < 0)
            printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");

      err = device_create_file(socdev->dev, &dev_attr_codec_reg);
      if (err < 0)
            printk(KERN_WARNING "asoc: failed to add codec sysfs entries\n");
out:
      mutex_unlock(&codec->mutex);
      return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_register_card);

/**
 * snd_soc_free_pcms - free sound card and pcms
 * @socdev: the SoC audio device
 *
 * Frees sound card and pcms associated with the socdev.
 * Also unregister the codec if it is an AC97 device.
 */
void snd_soc_free_pcms(struct snd_soc_device *socdev)
{
      struct snd_soc_codec *codec = socdev->codec;
#ifdef CONFIG_SND_SOC_AC97_BUS
      struct snd_soc_codec_dai *codec_dai;
      int i;
#endif

      mutex_lock(&codec->mutex);
#ifdef CONFIG_SND_SOC_AC97_BUS
      for(i = 0; i < codec->num_dai; i++) {
            codec_dai = &codec->dai[i];
            if (codec_dai->type == SND_SOC_DAI_AC97_BUS && codec->ac97) {
                  soc_ac97_dev_unregister(codec);
                  goto free_card;
            }
      }
free_card:
#endif

      if (codec->card)
            snd_card_free(codec->card);
      device_remove_file(socdev->dev, &dev_attr_codec_reg);
      mutex_unlock(&codec->mutex);
}
EXPORT_SYMBOL_GPL(snd_soc_free_pcms);

/**
 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
 * @substream: the pcm substream
 * @hw: the hardware parameters
 *
 * Sets the substream runtime hardware parameters.
 */
int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
      const struct snd_pcm_hardware *hw)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      runtime->hw.info = hw->info;
      runtime->hw.formats = hw->formats;
      runtime->hw.period_bytes_min = hw->period_bytes_min;
      runtime->hw.period_bytes_max = hw->period_bytes_max;
      runtime->hw.periods_min = hw->periods_min;
      runtime->hw.periods_max = hw->periods_max;
      runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
      runtime->hw.fifo_size = hw->fifo_size;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);

/**
 * snd_soc_cnew - create new control
 * @_template: control template
 * @data: control private data
 * @lnng_name: control long name
 *
 * Create a new mixer control from a template control.
 *
 * Returns 0 for success, else error.
 */
struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
      void *data, char *long_name)
{
      struct snd_kcontrol_new template;

      memcpy(&template, _template, sizeof(template));
      if (long_name)
            template.name = long_name;
      template.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
      template.index = 0;

      return snd_ctl_new1(&template, data);
}
EXPORT_SYMBOL_GPL(snd_soc_cnew);

/**
 * snd_soc_info_enum_double - enumerated double mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a double enumerated
 * mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
      uinfo->value.enumerated.items = e->mask;

      if (uinfo->value.enumerated.item > e->mask - 1)
            uinfo->value.enumerated.item = e->mask - 1;
      strcpy(uinfo->value.enumerated.name,
            e->texts[uinfo->value.enumerated.item]);
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);

/**
 * snd_soc_get_enum_double - enumerated double mixer get callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to get the value of a double enumerated mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned short val, bitmask;

      for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
            ;
      val = snd_soc_read(codec, e->reg);
      ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
      if (e->shift_l != e->shift_r)
            ucontrol->value.enumerated.item[1] =
                  (val >> e->shift_r) & (bitmask - 1);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);

/**
 * snd_soc_put_enum_double - enumerated double mixer put callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to set the value of a double enumerated mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned short val;
      unsigned short mask, bitmask;

      for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
            ;
      if (ucontrol->value.enumerated.item[0] > e->mask - 1)
            return -EINVAL;
      val = ucontrol->value.enumerated.item[0] << e->shift_l;
      mask = (bitmask - 1) << e->shift_l;
      if (e->shift_l != e->shift_r) {
            if (ucontrol->value.enumerated.item[1] > e->mask - 1)
                  return -EINVAL;
            val |= ucontrol->value.enumerated.item[1] << e->shift_r;
            mask |= (bitmask - 1) << e->shift_r;
      }

      return snd_soc_update_bits(codec, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);

/**
 * snd_soc_info_enum_ext - external enumerated single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about an external enumerated
 * single mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = e->mask;

      if (uinfo->value.enumerated.item > e->mask - 1)
            uinfo->value.enumerated.item = e->mask - 1;
      strcpy(uinfo->value.enumerated.name,
            e->texts[uinfo->value.enumerated.item]);
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);

/**
 * snd_soc_info_volsw_ext - external single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a single external mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      int mask = kcontrol->private_value;

      uinfo->type =
            mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = mask;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);

/**
 * snd_soc_info_volsw - single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      int mask = (kcontrol->private_value >> 16) & 0xff;
      int shift = (kcontrol->private_value >> 8) & 0x0f;
      int rshift = (kcontrol->private_value >> 12) & 0x0f;

      uinfo->type =
            mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = shift == rshift ? 1 : 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = mask;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw);

/**
 * snd_soc_get_volsw - single mixer get callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to get the value of a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      int reg = kcontrol->private_value & 0xff;
      int shift = (kcontrol->private_value >> 8) & 0x0f;
      int rshift = (kcontrol->private_value >> 12) & 0x0f;
      int mask = (kcontrol->private_value >> 16) & 0xff;
      int invert = (kcontrol->private_value >> 24) & 0x01;

      ucontrol->value.integer.value[0] =
            (snd_soc_read(codec, reg) >> shift) & mask;
      if (shift != rshift)
            ucontrol->value.integer.value[1] =
                  (snd_soc_read(codec, reg) >> rshift) & mask;
      if (invert) {
            ucontrol->value.integer.value[0] =
                  mask - ucontrol->value.integer.value[0];
            if (shift != rshift)
                  ucontrol->value.integer.value[1] =
                        mask - ucontrol->value.integer.value[1];
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw);

/**
 * snd_soc_put_volsw - single mixer put callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to set the value of a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      int reg = kcontrol->private_value & 0xff;
      int shift = (kcontrol->private_value >> 8) & 0x0f;
      int rshift = (kcontrol->private_value >> 12) & 0x0f;
      int mask = (kcontrol->private_value >> 16) & 0xff;
      int invert = (kcontrol->private_value >> 24) & 0x01;
      int err;
      unsigned short val, val2, val_mask;

      val = (ucontrol->value.integer.value[0] & mask);
      if (invert)
            val = mask - val;
      val_mask = mask << shift;
      val = val << shift;
      if (shift != rshift) {
            val2 = (ucontrol->value.integer.value[1] & mask);
            if (invert)
                  val2 = mask - val2;
            val_mask |= mask << rshift;
            val |= val2 << rshift;
      }
      err = snd_soc_update_bits(codec, reg, val_mask, val);
      return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw);

/**
 * snd_soc_info_volsw_2r - double mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a double mixer control that
 * spans 2 codec registers.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      int mask = (kcontrol->private_value >> 12) & 0xff;

      uinfo->type =
            mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = mask;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);

/**
 * snd_soc_get_volsw_2r - double mixer get callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to get the value of a double mixer control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      int reg = kcontrol->private_value & 0xff;
      int reg2 = (kcontrol->private_value >> 24) & 0xff;
      int shift = (kcontrol->private_value >> 8) & 0x0f;
      int mask = (kcontrol->private_value >> 12) & 0xff;
      int invert = (kcontrol->private_value >> 20) & 0x01;

      ucontrol->value.integer.value[0] =
            (snd_soc_read(codec, reg) >> shift) & mask;
      ucontrol->value.integer.value[1] =
            (snd_soc_read(codec, reg2) >> shift) & mask;
      if (invert) {
            ucontrol->value.integer.value[0] =
                  mask - ucontrol->value.integer.value[0];
            ucontrol->value.integer.value[1] =
                  mask - ucontrol->value.integer.value[1];
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);

/**
 * snd_soc_put_volsw_2r - double mixer set callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to set the value of a double mixer control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      int reg = kcontrol->private_value & 0xff;
      int reg2 = (kcontrol->private_value >> 24) & 0xff;
      int shift = (kcontrol->private_value >> 8) & 0x0f;
      int mask = (kcontrol->private_value >> 12) & 0xff;
      int invert = (kcontrol->private_value >> 20) & 0x01;
      int err;
      unsigned short val, val2, val_mask;

      val_mask = mask << shift;
      val = (ucontrol->value.integer.value[0] & mask);
      val2 = (ucontrol->value.integer.value[1] & mask);

      if (invert) {
            val = mask - val;
            val2 = mask - val2;
      }

      val = val << shift;
      val2 = val2 << shift;

      if ((err = snd_soc_update_bits(codec, reg, val_mask, val)) < 0)
            return err;

      err = snd_soc_update_bits(codec, reg2, val_mask, val2);
      return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);

static int __devinit snd_soc_init(void)
{
      printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
      return platform_driver_register(&soc_driver);
}

static void snd_soc_exit(void)
{
      platform_driver_unregister(&soc_driver);
}

module_init(snd_soc_init);
module_exit(snd_soc_exit);

/* Module information */
MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
MODULE_DESCRIPTION("ALSA SoC Core");
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index