Logo Search packages:      
Sourcecode: linux version File versions  Download package

sock.h

/*
 * INET           An implementation of the TCP/IP protocol suite for the LINUX
 *          operating system.  INET is implemented using the  BSD Socket
 *          interface as the means of communication with the user level.
 *
 *          Definitions for the AF_INET socket handler.
 *
 * Version: @(#)sock.h  1.0.4 05/13/93
 *
 * Authors: Ross Biro
 *          Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *          Corey Minyard <wf-rch!minyard@relay.EU.net>
 *          Florian La Roche <flla@stud.uni-sb.de>
 *
 * Fixes:
 *          Alan Cox    :     Volatiles in skbuff pointers. See
 *                            skbuff comments. May be overdone,
 *                            better to prove they can be removed
 *                            than the reverse.
 *          Alan Cox    :     Added a zapped field for tcp to note
 *                            a socket is reset and must stay shut up
 *          Alan Cox    :     New fields for options
 *    Pauline Middelink :     identd support
 *          Alan Cox    :     Eliminate low level recv/recvfrom
 *          David S. Miller   :     New socket lookup architecture.
 *              Steve Whitehouse:       Default routines for sock_ops
 *              Arnaldo C. Melo :   removed net_pinfo, tp_pinfo and made
 *                            protinfo be just a void pointer, as the
 *                            protocol specific parts were moved to
 *                            respective headers and ipv4/v6, etc now
 *                            use private slabcaches for its socks
 *              Pedro Hortas  :     New flags field for socket options
 *
 *
 *          This program is free software; you can redistribute it and/or
 *          modify it under the terms of the GNU General Public License
 *          as published by the Free Software Foundation; either version
 *          2 of the License, or (at your option) any later version.
 */
#ifndef _SOCK_H
#define _SOCK_H

#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/cache.h>
#include <linux/module.h>
#include <linux/lockdep.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>     /* struct sk_buff */
#include <linux/mm.h>
#include <linux/security.h>

#include <linux/filter.h>

#include <asm/atomic.h>
#include <net/dst.h>
#include <net/checksum.h>
#include <net/net_namespace.h>

/*
 * This structure really needs to be cleaned up.
 * Most of it is for TCP, and not used by any of
 * the other protocols.
 */

/* Define this to get the SOCK_DBG debugging facility. */
#define SOCK_DEBUGGING
#ifdef SOCK_DEBUGGING
#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
                              printk(KERN_DEBUG msg); } while (0)
#else
#define SOCK_DEBUG(sk, msg...) do { } while (0)
#endif

/* This is the per-socket lock.  The spinlock provides a synchronization
 * between user contexts and software interrupt processing, whereas the
 * mini-semaphore synchronizes multiple users amongst themselves.
 */
typedef struct {
      spinlock_t        slock;
      int               owned;
      wait_queue_head_t wq;
      /*
       * We express the mutex-alike socket_lock semantics
       * to the lock validator by explicitly managing
       * the slock as a lock variant (in addition to
       * the slock itself):
       */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
      struct lockdep_map dep_map;
#endif
} socket_lock_t;

struct sock;
struct proto;

/**
 *    struct sock_common - minimal network layer representation of sockets
 *    @skc_family: network address family
 *    @skc_state: Connection state
 *    @skc_reuse: %SO_REUSEADDR setting
 *    @skc_bound_dev_if: bound device index if != 0
 *    @skc_node: main hash linkage for various protocol lookup tables
 *    @skc_bind_node: bind hash linkage for various protocol lookup tables
 *    @skc_refcnt: reference count
 *    @skc_hash: hash value used with various protocol lookup tables
 *    @skc_prot: protocol handlers inside a network family
 *    @skc_net: reference to the network namespace of this socket
 *
 *    This is the minimal network layer representation of sockets, the header
 *    for struct sock and struct inet_timewait_sock.
 */
00114 struct sock_common {
      unsigned short          skc_family;
      volatile unsigned char  skc_state;
      unsigned char           skc_reuse;
      int               skc_bound_dev_if;
      struct hlist_node skc_node;
      struct hlist_node skc_bind_node;
      atomic_t          skc_refcnt;
      unsigned int            skc_hash;
      struct proto            *skc_prot;
      struct net        *skc_net;
};

/**
  *   struct sock - network layer representation of sockets
  *   @__sk_common: shared layout with inet_timewait_sock
  *   @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
  *   @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
  *   @sk_lock:   synchronizer
  *   @sk_rcvbuf: size of receive buffer in bytes
  *   @sk_sleep: sock wait queue
  *   @sk_dst_cache: destination cache
  *   @sk_dst_lock: destination cache lock
  *   @sk_policy: flow policy
  *   @sk_rmem_alloc: receive queue bytes committed
  *   @sk_receive_queue: incoming packets
  *   @sk_wmem_alloc: transmit queue bytes committed
  *   @sk_write_queue: Packet sending queue
  *   @sk_async_wait_queue: DMA copied packets
  *   @sk_omem_alloc: "o" is "option" or "other"
  *   @sk_wmem_queued: persistent queue size
  *   @sk_forward_alloc: space allocated forward
  *   @sk_allocation: allocation mode
  *   @sk_sndbuf: size of send buffer in bytes
  *   @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
  *   @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
  *   @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
  *   @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
  *   @sk_lingertime: %SO_LINGER l_linger setting
  *   @sk_backlog: always used with the per-socket spinlock held
  *   @sk_callback_lock: used with the callbacks in the end of this struct
  *   @sk_error_queue: rarely used
  *   @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
  *   @sk_err: last error
  *   @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
  *   @sk_ack_backlog: current listen backlog
  *   @sk_max_ack_backlog: listen backlog set in listen()
  *   @sk_priority: %SO_PRIORITY setting
  *   @sk_type: socket type (%SOCK_STREAM, etc)
  *   @sk_protocol: which protocol this socket belongs in this network family
  *   @sk_peercred: %SO_PEERCRED setting
  *   @sk_rcvlowat: %SO_RCVLOWAT setting
  *   @sk_rcvtimeo: %SO_RCVTIMEO setting
  *   @sk_sndtimeo: %SO_SNDTIMEO setting
  *   @sk_filter: socket filtering instructions
  *   @sk_protinfo: private area, net family specific, when not using slab
  *   @sk_timer: sock cleanup timer
  *   @sk_stamp: time stamp of last packet received
  *   @sk_socket: Identd and reporting IO signals
  *   @sk_user_data: RPC layer private data
  *   @sk_sndmsg_page: cached page for sendmsg
  *   @sk_sndmsg_off: cached offset for sendmsg
  *   @sk_send_head: front of stuff to transmit
  *   @sk_security: used by security modules
  *   @sk_write_pending: a write to stream socket waits to start
  *   @sk_state_change: callback to indicate change in the state of the sock
  *   @sk_data_ready: callback to indicate there is data to be processed
  *   @sk_write_space: callback to indicate there is bf sending space available
  *   @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
  *   @sk_backlog_rcv: callback to process the backlog
  *   @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 */
00186 struct sock {
      /*
       * Now struct inet_timewait_sock also uses sock_common, so please just
       * don't add nothing before this first member (__sk_common) --acme
       */
      struct sock_common      __sk_common;
#define sk_family       __sk_common.skc_family
#define sk_state        __sk_common.skc_state
#define sk_reuse        __sk_common.skc_reuse
#define sk_bound_dev_if       __sk_common.skc_bound_dev_if
#define sk_node               __sk_common.skc_node
#define sk_bind_node          __sk_common.skc_bind_node
#define sk_refcnt       __sk_common.skc_refcnt
#define sk_hash               __sk_common.skc_hash
#define sk_prot               __sk_common.skc_prot
#define sk_net                __sk_common.skc_net
      unsigned char           sk_shutdown : 2,
                        sk_no_check : 2,
                        sk_userlocks : 4;
      unsigned char           sk_protocol;
      unsigned short          sk_type;
      int               sk_rcvbuf;
      socket_lock_t           sk_lock;
      /*
       * The backlog queue is special, it is always used with
       * the per-socket spinlock held and requires low latency
       * access. Therefore we special case it's implementation.
       */
      struct {
            struct sk_buff *head;
            struct sk_buff *tail;
      } sk_backlog;
      wait_queue_head_t *sk_sleep;
      struct dst_entry  *sk_dst_cache;
      struct xfrm_policy      *sk_policy[2];
      rwlock_t          sk_dst_lock;
      atomic_t          sk_rmem_alloc;
      atomic_t          sk_wmem_alloc;
      atomic_t          sk_omem_alloc;
      int               sk_sndbuf;
      struct sk_buff_head     sk_receive_queue;
      struct sk_buff_head     sk_write_queue;
      struct sk_buff_head     sk_async_wait_queue;
      int               sk_wmem_queued;
      int               sk_forward_alloc;
      gfp_t             sk_allocation;
      int               sk_route_caps;
      int               sk_gso_type;
      int               sk_rcvlowat;
      unsigned long           sk_flags;
      unsigned long             sk_lingertime;
      struct sk_buff_head     sk_error_queue;
      struct proto            *sk_prot_creator;
      rwlock_t          sk_callback_lock;
      int               sk_err,
                        sk_err_soft;
      unsigned short          sk_ack_backlog;
      unsigned short          sk_max_ack_backlog;
      __u32             sk_priority;
      struct ucred            sk_peercred;
      long              sk_rcvtimeo;
      long              sk_sndtimeo;
      struct sk_filter        *sk_filter;
      void              *sk_protinfo;
      struct timer_list sk_timer;
      ktime_t                 sk_stamp;
      struct socket           *sk_socket;
      void              *sk_user_data;
      struct page       *sk_sndmsg_page;
      struct sk_buff          *sk_send_head;
      __u32             sk_sndmsg_off;
      int               sk_write_pending;
      void              *sk_security;
      void              (*sk_state_change)(struct sock *sk);
      void              (*sk_data_ready)(struct sock *sk, int bytes);
      void              (*sk_write_space)(struct sock *sk);
      void              (*sk_error_report)(struct sock *sk);
      int               (*sk_backlog_rcv)(struct sock *sk,
                                      struct sk_buff *skb);  
      void                    (*sk_destruct)(struct sock *sk);
};

/*
 * Hashed lists helper routines
 */
static inline struct sock *__sk_head(const struct hlist_head *head)
{
      return hlist_entry(head->first, struct sock, sk_node);
}

static inline struct sock *sk_head(const struct hlist_head *head)
{
      return hlist_empty(head) ? NULL : __sk_head(head);
}

static inline struct sock *sk_next(const struct sock *sk)
{
      return sk->sk_node.next ?
            hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
}

static inline int sk_unhashed(const struct sock *sk)
{
      return hlist_unhashed(&sk->sk_node);
}

static inline int sk_hashed(const struct sock *sk)
{
      return !sk_unhashed(sk);
}

static __inline__ void sk_node_init(struct hlist_node *node)
{
      node->pprev = NULL;
}

static __inline__ void __sk_del_node(struct sock *sk)
{
      __hlist_del(&sk->sk_node);
}

static __inline__ int __sk_del_node_init(struct sock *sk)
{
      if (sk_hashed(sk)) {
            __sk_del_node(sk);
            sk_node_init(&sk->sk_node);
            return 1;
      }
      return 0;
}

/* Grab socket reference count. This operation is valid only
   when sk is ALREADY grabbed f.e. it is found in hash table
   or a list and the lookup is made under lock preventing hash table
   modifications.
 */

static inline void sock_hold(struct sock *sk)
{
      atomic_inc(&sk->sk_refcnt);
}

/* Ungrab socket in the context, which assumes that socket refcnt
   cannot hit zero, f.e. it is true in context of any socketcall.
 */
static inline void __sock_put(struct sock *sk)
{
      atomic_dec(&sk->sk_refcnt);
}

static __inline__ int sk_del_node_init(struct sock *sk)
{
      int rc = __sk_del_node_init(sk);

      if (rc) {
            /* paranoid for a while -acme */
            WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
            __sock_put(sk);
      }
      return rc;
}

static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
{
      hlist_add_head(&sk->sk_node, list);
}

static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
{
      sock_hold(sk);
      __sk_add_node(sk, list);
}

static __inline__ void __sk_del_bind_node(struct sock *sk)
{
      __hlist_del(&sk->sk_bind_node);
}

static __inline__ void sk_add_bind_node(struct sock *sk,
                              struct hlist_head *list)
{
      hlist_add_head(&sk->sk_bind_node, list);
}

#define sk_for_each(__sk, node, list) \
      hlist_for_each_entry(__sk, node, list, sk_node)
#define sk_for_each_from(__sk, node) \
      if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
            hlist_for_each_entry_from(__sk, node, sk_node)
#define sk_for_each_continue(__sk, node) \
      if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
            hlist_for_each_entry_continue(__sk, node, sk_node)
#define sk_for_each_safe(__sk, node, tmp, list) \
      hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
#define sk_for_each_bound(__sk, node, list) \
      hlist_for_each_entry(__sk, node, list, sk_bind_node)

/* Sock flags */
enum sock_flags {
      SOCK_DEAD,
      SOCK_DONE,
      SOCK_URGINLINE,
      SOCK_KEEPOPEN,
      SOCK_LINGER,
      SOCK_DESTROY,
      SOCK_BROADCAST,
      SOCK_TIMESTAMP,
      SOCK_ZAPPED,
      SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
      SOCK_DBG, /* %SO_DEBUG setting */
      SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
      SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
      SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
      SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
};

static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
{
      nsk->sk_flags = osk->sk_flags;
}

static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
{
      __set_bit(flag, &sk->sk_flags);
}

static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
{
      __clear_bit(flag, &sk->sk_flags);
}

static inline int sock_flag(struct sock *sk, enum sock_flags flag)
{
      return test_bit(flag, &sk->sk_flags);
}

static inline void sk_acceptq_removed(struct sock *sk)
{
      sk->sk_ack_backlog--;
}

static inline void sk_acceptq_added(struct sock *sk)
{
      sk->sk_ack_backlog++;
}

static inline int sk_acceptq_is_full(struct sock *sk)
{
      return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
}

/*
 * Compute minimal free write space needed to queue new packets.
 */
static inline int sk_stream_min_wspace(struct sock *sk)
{
      return sk->sk_wmem_queued / 2;
}

static inline int sk_stream_wspace(struct sock *sk)
{
      return sk->sk_sndbuf - sk->sk_wmem_queued;
}

extern void sk_stream_write_space(struct sock *sk);

static inline int sk_stream_memory_free(struct sock *sk)
{
      return sk->sk_wmem_queued < sk->sk_sndbuf;
}

extern void sk_stream_rfree(struct sk_buff *skb);

static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
{
      skb->sk = sk;
      skb->destructor = sk_stream_rfree;
      atomic_add(skb->truesize, &sk->sk_rmem_alloc);
      sk->sk_forward_alloc -= skb->truesize;
}

static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
{
      skb_truesize_check(skb);
      sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
      sk->sk_wmem_queued   -= skb->truesize;
      sk->sk_forward_alloc += skb->truesize;
      __kfree_skb(skb);
}

/* The per-socket spinlock must be held here. */
static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
{
      if (!sk->sk_backlog.tail) {
            sk->sk_backlog.head = sk->sk_backlog.tail = skb;
      } else {
            sk->sk_backlog.tail->next = skb;
            sk->sk_backlog.tail = skb;
      }
      skb->next = NULL;
}

#define sk_wait_event(__sk, __timeo, __condition)                 \
      ({    int __rc;                                 \
            release_sock(__sk);                             \
            __rc = __condition;                             \
            if (!__rc) {                                    \
                  *(__timeo) = schedule_timeout(*(__timeo));      \
            }                                         \
            lock_sock(__sk);                          \
            __rc = __condition;                             \
            __rc;                                     \
      })

extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
extern int sk_stream_error(struct sock *sk, int flags, int err);
extern void sk_stream_kill_queues(struct sock *sk);

extern int sk_wait_data(struct sock *sk, long *timeo);

struct request_sock_ops;
struct timewait_sock_ops;

/* Networking protocol blocks we attach to sockets.
 * socket layer -> transport layer interface
 * transport -> network interface is defined by struct inet_proto
 */
struct proto {
      void              (*close)(struct sock *sk, 
                              long timeout);
      int               (*connect)(struct sock *sk,
                                struct sockaddr *uaddr, 
                              int addr_len);
      int               (*disconnect)(struct sock *sk, int flags);

      struct sock *           (*accept) (struct sock *sk, int flags, int *err);

      int               (*ioctl)(struct sock *sk, int cmd,
                               unsigned long arg);
      int               (*init)(struct sock *sk);
      int               (*destroy)(struct sock *sk);
      void              (*shutdown)(struct sock *sk, int how);
      int               (*setsockopt)(struct sock *sk, int level, 
                              int optname, char __user *optval,
                              int optlen);
      int               (*getsockopt)(struct sock *sk, int level, 
                              int optname, char __user *optval, 
                              int __user *option);     
      int               (*compat_setsockopt)(struct sock *sk,
                              int level,
                              int optname, char __user *optval,
                              int optlen);
      int               (*compat_getsockopt)(struct sock *sk,
                              int level,
                              int optname, char __user *optval,
                              int __user *option);
      int               (*sendmsg)(struct kiocb *iocb, struct sock *sk,
                                 struct msghdr *msg, size_t len);
      int               (*recvmsg)(struct kiocb *iocb, struct sock *sk,
                                 struct msghdr *msg,
                              size_t len, int noblock, int flags, 
                              int *addr_len);
      int               (*sendpage)(struct sock *sk, struct page *page,
                              int offset, size_t size, int flags);
      int               (*bind)(struct sock *sk, 
                              struct sockaddr *uaddr, int addr_len);

      int               (*backlog_rcv) (struct sock *sk, 
                                    struct sk_buff *skb);

      /* Keeping track of sk's, looking them up, and port selection methods. */
      void              (*hash)(struct sock *sk);
      void              (*unhash)(struct sock *sk);
      int               (*get_port)(struct sock *sk, unsigned short snum);

#ifdef CONFIG_SMP
      /* Keeping track of sockets in use */
      void              (*inuse_add)(struct proto *prot, int inc);
      int               (*inuse_getval)(const struct proto *prot);
      int               *inuse_ptr;
#else
      int               inuse;
#endif
      /* Memory pressure */
      void              (*enter_memory_pressure)(void);
      atomic_t          *memory_allocated;      /* Current allocated memory. */
      atomic_t          *sockets_allocated;     /* Current number of sockets. */
      /*
       * Pressure flag: try to collapse.
       * Technical note: it is used by multiple contexts non atomically.
       * All the sk_stream_mem_schedule() is of this nature: accounting
       * is strict, actions are advisory and have some latency.
       */
      int               *memory_pressure;
      int               *sysctl_mem;
      int               *sysctl_wmem;
      int               *sysctl_rmem;
      int               max_header;

      struct kmem_cache       *slab;
      unsigned int            obj_size;

      atomic_t          *orphan_count;

      struct request_sock_ops *rsk_prot;
      struct timewait_sock_ops *twsk_prot;

      struct module           *owner;

      char              name[32];

      struct list_head  node;
#ifdef SOCK_REFCNT_DEBUG
      atomic_t          socks;
#endif
};

/*
 * Special macros to let protos use a fast version of inuse{get|add}
 * using a static percpu variable per proto instead of an allocated one,
 * saving one dereference.
 * This might be changed if/when dynamic percpu vars become fast.
 */
#ifdef CONFIG_SMP
# define DEFINE_PROTO_INUSE(NAME)               \
static DEFINE_PER_CPU(int, NAME##_inuse);       \
static void NAME##_inuse_add(struct proto *prot, int inc)   \
{                                         \
      __get_cpu_var(NAME##_inuse) += inc;       \
}                                         \
                                          \
static int NAME##_inuse_getval(const struct proto *prot)\
{                                         \
      int res = 0, cpu;                   \
                                          \
      for_each_possible_cpu(cpu)                \
            res += per_cpu(NAME##_inuse, cpu);  \
      return res;                         \
}
# define REF_PROTO_INUSE(NAME)                        \
      .inuse_add = NAME##_inuse_add,                  \
      .inuse_getval = NAME##_inuse_getval,
#else
# define DEFINE_PROTO_INUSE(NAME)
# define REF_PROTO_INUSE(NAME)
#endif

extern int proto_register(struct proto *prot, int alloc_slab);
extern void proto_unregister(struct proto *prot);

#ifdef SOCK_REFCNT_DEBUG
static inline void sk_refcnt_debug_inc(struct sock *sk)
{
      atomic_inc(&sk->sk_prot->socks);
}

static inline void sk_refcnt_debug_dec(struct sock *sk)
{
      atomic_dec(&sk->sk_prot->socks);
      printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
             sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
}

static inline void sk_refcnt_debug_release(const struct sock *sk)
{
      if (atomic_read(&sk->sk_refcnt) != 1)
            printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
                   sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
}
#else /* SOCK_REFCNT_DEBUG */
#define sk_refcnt_debug_inc(sk) do { } while (0)
#define sk_refcnt_debug_dec(sk) do { } while (0)
#define sk_refcnt_debug_release(sk) do { } while (0)
#endif /* SOCK_REFCNT_DEBUG */

/* Called with local bh disabled */
static __inline__ void sock_prot_inc_use(struct proto *prot)
{
#ifdef CONFIG_SMP
      prot->inuse_add(prot, 1);
#else
      prot->inuse++;
#endif
}

static __inline__ void sock_prot_dec_use(struct proto *prot)
{
#ifdef CONFIG_SMP
      prot->inuse_add(prot, -1);
#else
      prot->inuse--;
#endif
}

static __inline__ int sock_prot_inuse(struct proto *proto)
{
#ifdef CONFIG_SMP
      return proto->inuse_getval(proto);
#else
      return proto->inuse;
#endif
}

/* With per-bucket locks this operation is not-atomic, so that
 * this version is not worse.
 */
static inline void __sk_prot_rehash(struct sock *sk)
{
      sk->sk_prot->unhash(sk);
      sk->sk_prot->hash(sk);
}

/* About 10 seconds */
#define SOCK_DESTROY_TIME (10*HZ)

/* Sockets 0-1023 can't be bound to unless you are superuser */
#define PROT_SOCK 1024

#define SHUTDOWN_MASK   3
#define RCV_SHUTDOWN    1
#define SEND_SHUTDOWN   2

#define SOCK_SNDBUF_LOCK      1
#define SOCK_RCVBUF_LOCK      2
#define SOCK_BINDADDR_LOCK    4
#define SOCK_BINDPORT_LOCK    8

/* sock_iocb: used to kick off async processing of socket ios */
struct sock_iocb {
      struct list_head  list;

      int               flags;
      int               size;
      struct socket           *sock;
      struct sock       *sk;
      struct scm_cookie *scm;
      struct msghdr           *msg, async_msg;
      struct kiocb            *kiocb;
};

static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
{
      return (struct sock_iocb *)iocb->private;
}

static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
{
      return si->kiocb;
}

struct socket_alloc {
      struct socket socket;
      struct inode vfs_inode;
};

static inline struct socket *SOCKET_I(struct inode *inode)
{
      return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
}

static inline struct inode *SOCK_INODE(struct socket *socket)
{
      return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
}

extern void __sk_stream_mem_reclaim(struct sock *sk);
extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);

#define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)

static inline int sk_stream_pages(int amt)
{
      return DIV_ROUND_UP(amt, SK_STREAM_MEM_QUANTUM);
}

static inline void sk_stream_mem_reclaim(struct sock *sk)
{
      if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
            __sk_stream_mem_reclaim(sk);
}

static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
{
      return (int)skb->truesize <= sk->sk_forward_alloc ||
            sk_stream_mem_schedule(sk, skb->truesize, 1);
}

static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
{
      return size <= sk->sk_forward_alloc ||
             sk_stream_mem_schedule(sk, size, 0);
}

/* Used by processes to "lock" a socket state, so that
 * interrupts and bottom half handlers won't change it
 * from under us. It essentially blocks any incoming
 * packets, so that we won't get any new data or any
 * packets that change the state of the socket.
 *
 * While locked, BH processing will add new packets to
 * the backlog queue.  This queue is processed by the
 * owner of the socket lock right before it is released.
 *
 * Since ~2.3.5 it is also exclusive sleep lock serializing
 * accesses from user process context.
 */
#define sock_owned_by_user(sk)      ((sk)->sk_lock.owned)

/*
 * Macro so as to not evaluate some arguments when
 * lockdep is not enabled.
 *
 * Mark both the sk_lock and the sk_lock.slock as a
 * per-address-family lock class.
 */
#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
do {                                                  \
      sk->sk_lock.owned = 0;                          \
      init_waitqueue_head(&sk->sk_lock.wq);                       \
      spin_lock_init(&(sk)->sk_lock.slock);                       \
      debug_check_no_locks_freed((void *)&(sk)->sk_lock,          \
                  sizeof((sk)->sk_lock));                   \
      lockdep_set_class_and_name(&(sk)->sk_lock.slock,            \
                        (skey), (sname));                   \
      lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
} while (0)

extern void FASTCALL(lock_sock_nested(struct sock *sk, int subclass));

static inline void lock_sock(struct sock *sk)
{
      lock_sock_nested(sk, 0);
}

extern void FASTCALL(release_sock(struct sock *sk));

/* BH context may only use the following locking interface. */
#define bh_lock_sock(__sk)    spin_lock(&((__sk)->sk_lock.slock))
#define bh_lock_sock_nested(__sk) \
                        spin_lock_nested(&((__sk)->sk_lock.slock), \
                        SINGLE_DEPTH_NESTING)
#define bh_unlock_sock(__sk)  spin_unlock(&((__sk)->sk_lock.slock))

extern struct sock            *sk_alloc(struct net *net, int family,
                                gfp_t priority,
                                struct proto *prot);
extern void             sk_free(struct sock *sk);
extern struct sock            *sk_clone(const struct sock *sk,
                                const gfp_t priority);

extern struct sk_buff         *sock_wmalloc(struct sock *sk,
                                    unsigned long size, int force,
                                    gfp_t priority);
extern struct sk_buff         *sock_rmalloc(struct sock *sk,
                                    unsigned long size, int force,
                                    gfp_t priority);
extern void             sock_wfree(struct sk_buff *skb);
extern void             sock_rfree(struct sk_buff *skb);

extern int              sock_setsockopt(struct socket *sock, int level,
                                    int op, char __user *optval,
                                    int optlen);

extern int              sock_getsockopt(struct socket *sock, int level,
                                    int op, char __user *optval, 
                                    int __user *optlen);
extern struct sk_buff         *sock_alloc_send_skb(struct sock *sk,
                                         unsigned long size,
                                         int noblock,
                                         int *errcode);
extern void *sock_kmalloc(struct sock *sk, int size,
                    gfp_t priority);
extern void sock_kfree_s(struct sock *sk, void *mem, int size);
extern void sk_send_sigurg(struct sock *sk);

/*
 * Functions to fill in entries in struct proto_ops when a protocol
 * does not implement a particular function.
 */
extern int                      sock_no_bind(struct socket *, 
                                   struct sockaddr *, int);
extern int                      sock_no_connect(struct socket *,
                                    struct sockaddr *, int, int);
extern int                      sock_no_socketpair(struct socket *,
                                       struct socket *);
extern int                      sock_no_accept(struct socket *,
                                     struct socket *, int);
extern int                      sock_no_getname(struct socket *,
                                    struct sockaddr *, int *, int);
extern unsigned int             sock_no_poll(struct file *, struct socket *,
                                   struct poll_table_struct *);
extern int                      sock_no_ioctl(struct socket *, unsigned int,
                                    unsigned long);
extern int              sock_no_listen(struct socket *, int);
extern int                      sock_no_shutdown(struct socket *, int);
extern int              sock_no_getsockopt(struct socket *, int , int,
                                       char __user *, int __user *);
extern int              sock_no_setsockopt(struct socket *, int, int,
                                       char __user *, int);
extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
                                    struct msghdr *, size_t);
extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
                                    struct msghdr *, size_t, int);
extern int              sock_no_mmap(struct file *file,
                                   struct socket *sock,
                                   struct vm_area_struct *vma);
extern ssize_t                sock_no_sendpage(struct socket *sock,
                                    struct page *page,
                                    int offset, size_t size, 
                                    int flags);

/*
 * Functions to fill in entries in struct proto_ops when a protocol
 * uses the inet style.
 */
extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
                          char __user *optval, int __user *optlen);
extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
                         struct msghdr *msg, size_t size, int flags);
extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
                          char __user *optval, int optlen);
extern int compat_sock_common_getsockopt(struct socket *sock, int level,
            int optname, char __user *optval, int __user *optlen);
extern int compat_sock_common_setsockopt(struct socket *sock, int level,
            int optname, char __user *optval, int optlen);

extern void sk_common_release(struct sock *sk);

/*
 *    Default socket callbacks and setup code
 */
 
/* Initialise core socket variables */
extern void sock_init_data(struct socket *sock, struct sock *sk);

/**
 *    sk_filter - run a packet through a socket filter
 *    @sk: sock associated with &sk_buff
 *    @skb: buffer to filter
 *    @needlock: set to 1 if the sock is not locked by caller.
 *
 * Run the filter code and then cut skb->data to correct size returned by
 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
 * than pkt_len we keep whole skb->data. This is the socket level
 * wrapper to sk_run_filter. It returns 0 if the packet should
 * be accepted or -EPERM if the packet should be tossed.
 *
 */

static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
{
      int err;
      struct sk_filter *filter;
      
      err = security_sock_rcv_skb(sk, skb);
      if (err)
            return err;
      
      rcu_read_lock_bh();
      filter = rcu_dereference(sk->sk_filter);
      if (filter) {
            unsigned int pkt_len = sk_run_filter(skb, filter->insns,
                        filter->len);
            err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
      }
      rcu_read_unlock_bh();

      return err;
}

/**
 *    sk_filter_release: Release a socket filter
 *    @sk: socket
 *    @fp: filter to remove
 *
 *    Remove a filter from a socket and release its resources.
 */

static inline void sk_filter_release(struct sk_filter *fp)
{
      if (atomic_dec_and_test(&fp->refcnt))
            kfree(fp);
}

static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
      unsigned int size = sk_filter_len(fp);

      atomic_sub(size, &sk->sk_omem_alloc);
      sk_filter_release(fp);
}

static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
      atomic_inc(&fp->refcnt);
      atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
}

/*
 * Socket reference counting postulates.
 *
 * * Each user of socket SHOULD hold a reference count.
 * * Each access point to socket (an hash table bucket, reference from a list,
 *   running timer, skb in flight MUST hold a reference count.
 * * When reference count hits 0, it means it will never increase back.
 * * When reference count hits 0, it means that no references from
 *   outside exist to this socket and current process on current CPU
 *   is last user and may/should destroy this socket.
 * * sk_free is called from any context: process, BH, IRQ. When
 *   it is called, socket has no references from outside -> sk_free
 *   may release descendant resources allocated by the socket, but
 *   to the time when it is called, socket is NOT referenced by any
 *   hash tables, lists etc.
 * * Packets, delivered from outside (from network or from another process)
 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
 *   when they sit in queue. Otherwise, packets will leak to hole, when
 *   socket is looked up by one cpu and unhasing is made by another CPU.
 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
 *   (leak to backlog). Packet socket does all the processing inside
 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
 *   use separate SMP lock, so that they are prone too.
 */

/* Ungrab socket and destroy it, if it was the last reference. */
static inline void sock_put(struct sock *sk)
{
      if (atomic_dec_and_test(&sk->sk_refcnt))
            sk_free(sk);
}

extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
                    const int nested);

/* Detach socket from process context.
 * Announce socket dead, detach it from wait queue and inode.
 * Note that parent inode held reference count on this struct sock,
 * we do not release it in this function, because protocol
 * probably wants some additional cleanups or even continuing
 * to work with this socket (TCP).
 */
static inline void sock_orphan(struct sock *sk)
{
      write_lock_bh(&sk->sk_callback_lock);
      sock_set_flag(sk, SOCK_DEAD);
      sk->sk_socket = NULL;
      sk->sk_sleep  = NULL;
      write_unlock_bh(&sk->sk_callback_lock);
}

static inline void sock_graft(struct sock *sk, struct socket *parent)
{
      write_lock_bh(&sk->sk_callback_lock);
      sk->sk_sleep = &parent->wait;
      parent->sk = sk;
      sk->sk_socket = parent;
      security_sock_graft(sk, parent);
      write_unlock_bh(&sk->sk_callback_lock);
}

extern int sock_i_uid(struct sock *sk);
extern unsigned long sock_i_ino(struct sock *sk);

static inline struct dst_entry *
__sk_dst_get(struct sock *sk)
{
      return sk->sk_dst_cache;
}

static inline struct dst_entry *
sk_dst_get(struct sock *sk)
{
      struct dst_entry *dst;

      read_lock(&sk->sk_dst_lock);
      dst = sk->sk_dst_cache;
      if (dst)
            dst_hold(dst);
      read_unlock(&sk->sk_dst_lock);
      return dst;
}

static inline void
__sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
      struct dst_entry *old_dst;

      old_dst = sk->sk_dst_cache;
      sk->sk_dst_cache = dst;
      dst_release(old_dst);
}

static inline void
sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
      write_lock(&sk->sk_dst_lock);
      __sk_dst_set(sk, dst);
      write_unlock(&sk->sk_dst_lock);
}

static inline void
__sk_dst_reset(struct sock *sk)
{
      struct dst_entry *old_dst;

      old_dst = sk->sk_dst_cache;
      sk->sk_dst_cache = NULL;
      dst_release(old_dst);
}

static inline void
sk_dst_reset(struct sock *sk)
{
      write_lock(&sk->sk_dst_lock);
      __sk_dst_reset(sk);
      write_unlock(&sk->sk_dst_lock);
}

extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);

extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);

static inline int sk_can_gso(const struct sock *sk)
{
      return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
}

extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);

static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
{
      sk->sk_wmem_queued   += skb->truesize;
      sk->sk_forward_alloc -= skb->truesize;
}

static inline int skb_copy_to_page(struct sock *sk, char __user *from,
                           struct sk_buff *skb, struct page *page,
                           int off, int copy)
{
      if (skb->ip_summed == CHECKSUM_NONE) {
            int err = 0;
            __wsum csum = csum_and_copy_from_user(from,
                                         page_address(page) + off,
                                              copy, 0, &err);
            if (err)
                  return err;
            skb->csum = csum_block_add(skb->csum, csum, skb->len);
      } else if (copy_from_user(page_address(page) + off, from, copy))
            return -EFAULT;

      skb->len         += copy;
      skb->data_len          += copy;
      skb->truesize          += copy;
      sk->sk_wmem_queued   += copy;
      sk->sk_forward_alloc -= copy;
      return 0;
}

/*
 *    Queue a received datagram if it will fit. Stream and sequenced
 *    protocols can't normally use this as they need to fit buffers in
 *    and play with them.
 *
 *    Inlined as it's very short and called for pretty much every
 *    packet ever received.
 */

static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
{
      sock_hold(sk);
      skb->sk = sk;
      skb->destructor = sock_wfree;
      atomic_add(skb->truesize, &sk->sk_wmem_alloc);
}

static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
{
      skb->sk = sk;
      skb->destructor = sock_rfree;
      atomic_add(skb->truesize, &sk->sk_rmem_alloc);
}

extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
                     unsigned long expires);

extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);

extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);

static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
{
      /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
         number of warnings when compiling with -W --ANK
       */
      if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
          (unsigned)sk->sk_rcvbuf)
            return -ENOMEM;
      skb_set_owner_r(skb, sk);
      skb_queue_tail(&sk->sk_error_queue, skb);
      if (!sock_flag(sk, SOCK_DEAD))
            sk->sk_data_ready(sk, skb->len);
      return 0;
}

/*
 *    Recover an error report and clear atomically
 */
 
static inline int sock_error(struct sock *sk)
{
      int err;
      if (likely(!sk->sk_err))
            return 0;
      err = xchg(&sk->sk_err, 0);
      return -err;
}

static inline unsigned long sock_wspace(struct sock *sk)
{
      int amt = 0;

      if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
            amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
            if (amt < 0) 
                  amt = 0;
      }
      return amt;
}

static inline void sk_wake_async(struct sock *sk, int how, int band)
{
      if (sk->sk_socket && sk->sk_socket->fasync_list)
            sock_wake_async(sk->sk_socket, how, band);
}

#define SOCK_MIN_SNDBUF 2048
#define SOCK_MIN_RCVBUF 256

static inline void sk_stream_moderate_sndbuf(struct sock *sk)
{
      if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
            sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
            sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
      }
}

static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
                                       int size, int mem,
                                       gfp_t gfp)
{
      struct sk_buff *skb;

      /* The TCP header must be at least 32-bit aligned.  */
      size = ALIGN(size, 4);

      skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
      if (skb) {
            skb->truesize += mem;
            if (sk_stream_wmem_schedule(sk, skb->truesize)) {
                  /*
                   * Make sure that we have exactly size bytes
                   * available to the caller, no more, no less.
                   */
                  skb_reserve(skb, skb_tailroom(skb) - size);
                  return skb;
            }
            __kfree_skb(skb);
      } else {
            sk->sk_prot->enter_memory_pressure();
            sk_stream_moderate_sndbuf(sk);
      }
      return NULL;
}

static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
                                      int size,
                                      gfp_t gfp)
{
      return sk_stream_alloc_pskb(sk, size, 0, gfp);
}

static inline struct page *sk_stream_alloc_page(struct sock *sk)
{
      struct page *page = NULL;

      page = alloc_pages(sk->sk_allocation, 0);
      if (!page) {
            sk->sk_prot->enter_memory_pressure();
            sk_stream_moderate_sndbuf(sk);
      }
      return page;
}

/*
 *    Default write policy as shown to user space via poll/select/SIGIO
 */
static inline int sock_writeable(const struct sock *sk) 
{
      return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
}

static inline gfp_t gfp_any(void)
{
      return in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
}

static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
{
      return noblock ? 0 : sk->sk_rcvtimeo;
}

static inline long sock_sndtimeo(const struct sock *sk, int noblock)
{
      return noblock ? 0 : sk->sk_sndtimeo;
}

static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
{
      return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
}

/* Alas, with timeout socket operations are not restartable.
 * Compare this to poll().
 */
static inline int sock_intr_errno(long timeo)
{
      return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
}

extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
      struct sk_buff *skb);

static __inline__ void
sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
{
      ktime_t kt = skb->tstamp;

      if (sock_flag(sk, SOCK_RCVTSTAMP))
            __sock_recv_timestamp(msg, sk, skb);
      else
            sk->sk_stamp = kt;
}

/**
 * sk_eat_skb - Release a skb if it is no longer needed
 * @sk: socket to eat this skb from
 * @skb: socket buffer to eat
 * @copied_early: flag indicating whether DMA operations copied this data early
 *
 * This routine must be called with interrupts disabled or with the socket
 * locked so that the sk_buff queue operation is ok.
*/
#ifdef CONFIG_NET_DMA
static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
{
      __skb_unlink(skb, &sk->sk_receive_queue);
      if (!copied_early)
            __kfree_skb(skb);
      else
            __skb_queue_tail(&sk->sk_async_wait_queue, skb);
}
#else
static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
{
      __skb_unlink(skb, &sk->sk_receive_queue);
      __kfree_skb(skb);
}
#endif

extern void sock_enable_timestamp(struct sock *sk);
extern int sock_get_timestamp(struct sock *, struct timeval __user *);
extern int sock_get_timestampns(struct sock *, struct timespec __user *);

/* 
 *    Enable debug/info messages 
 */
extern int net_msg_warn;
#define NETDEBUG(fmt, args...) \
      do { if (net_msg_warn) printk(fmt,##args); } while (0)

#define LIMIT_NETDEBUG(fmt, args...) \
      do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)

/*
 * Macros for sleeping on a socket. Use them like this:
 *
 * SOCK_SLEEP_PRE(sk)
 * if (condition)
 *    schedule();
 * SOCK_SLEEP_POST(sk)
 *
 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
 * and when the last use of them in DECnet has gone, I'm intending to
 * remove them.
 */

#define SOCK_SLEEP_PRE(sk)    { struct task_struct *tsk = current; \
                        DECLARE_WAITQUEUE(wait, tsk); \
                        tsk->state = TASK_INTERRUPTIBLE; \
                        add_wait_queue((sk)->sk_sleep, &wait); \
                        release_sock(sk);

#define SOCK_SLEEP_POST(sk)   tsk->state = TASK_RUNNING; \
                        remove_wait_queue((sk)->sk_sleep, &wait); \
                        lock_sock(sk); \
                        }

static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
{
      if (valbool)
            sock_set_flag(sk, bit);
      else
            sock_reset_flag(sk, bit);
}

extern __u32 sysctl_wmem_max;
extern __u32 sysctl_rmem_max;

extern void sk_init(void);

#ifdef CONFIG_SYSCTL
extern struct ctl_table core_table[];
#endif

extern int sysctl_optmem_max;

extern __u32 sysctl_wmem_default;
extern __u32 sysctl_rmem_default;

#endif      /* _SOCK_H */

Generated by  Doxygen 1.6.0   Back to index