Logo Search packages:      
Sourcecode: linux version File versions  Download package

of_device.c

#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>

void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
{
      unsigned long ret = res->start + offset;
      struct resource *r;

      if (res->flags & IORESOURCE_MEM)
            r = request_mem_region(ret, size, name);
      else
            r = request_region(ret, size, name);
      if (!r)
            ret = 0;

      return (void __iomem *) ret;
}
EXPORT_SYMBOL(of_ioremap);

void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
{
      if (res->flags & IORESOURCE_MEM)
            release_mem_region((unsigned long) base, size);
      else
            release_region((unsigned long) base, size);
}
EXPORT_SYMBOL(of_iounmap);

static int node_match(struct device *dev, void *data)
{
      struct of_device *op = to_of_device(dev);
      struct device_node *dp = data;

      return (op->node == dp);
}

struct of_device *of_find_device_by_node(struct device_node *dp)
{
      struct device *dev = bus_find_device(&of_platform_bus_type, NULL,
                                   dp, node_match);

      if (dev)
            return to_of_device(dev);

      return NULL;
}
EXPORT_SYMBOL(of_find_device_by_node);

#ifdef CONFIG_PCI
struct bus_type isa_bus_type;
EXPORT_SYMBOL(isa_bus_type);

struct bus_type ebus_bus_type;
EXPORT_SYMBOL(ebus_bus_type);
#endif

#ifdef CONFIG_SBUS
struct bus_type sbus_bus_type;
EXPORT_SYMBOL(sbus_bus_type);
#endif

struct bus_type of_platform_bus_type;
EXPORT_SYMBOL(of_platform_bus_type);

static inline u64 of_read_addr(const u32 *cell, int size)
{
      u64 r = 0;
      while (size--)
            r = (r << 32) | *(cell++);
      return r;
}

static void __init get_cells(struct device_node *dp,
                       int *addrc, int *sizec)
{
      if (addrc)
            *addrc = of_n_addr_cells(dp);
      if (sizec)
            *sizec = of_n_size_cells(dp);
}

/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS     4

struct of_bus {
      const char  *name;
      const char  *addr_prop_name;
      int         (*match)(struct device_node *parent);
      void        (*count_cells)(struct device_node *child,
                               int *addrc, int *sizec);
      int         (*map)(u32 *addr, const u32 *range,
                         int na, int ns, int pna);
      unsigned int      (*get_flags)(const u32 *addr);
};

/*
 * Default translator (generic bus)
 */

static void of_bus_default_count_cells(struct device_node *dev,
                               int *addrc, int *sizec)
{
      get_cells(dev, addrc, sizec);
}

/* Make sure the least significant 64-bits are in-range.  Even
 * for 3 or 4 cell values it is a good enough approximation.
 */
static int of_out_of_range(const u32 *addr, const u32 *base,
                     const u32 *size, int na, int ns)
{
      u64 a = of_read_addr(addr, na);
      u64 b = of_read_addr(base, na);

      if (a < b)
            return 1;

      b += of_read_addr(size, ns);
      if (a >= b)
            return 1;

      return 0;
}

static int of_bus_default_map(u32 *addr, const u32 *range,
                        int na, int ns, int pna)
{
      u32 result[OF_MAX_ADDR_CELLS];
      int i;

      if (ns > 2) {
            printk("of_device: Cannot handle size cells (%d) > 2.", ns);
            return -EINVAL;
      }

      if (of_out_of_range(addr, range, range + na + pna, na, ns))
            return -EINVAL;

      /* Start with the parent range base.  */
      memcpy(result, range + na, pna * 4);

      /* Add in the child address offset.  */
      for (i = 0; i < na; i++)
            result[pna - 1 - i] +=
                  (addr[na - 1 - i] -
                   range[na - 1 - i]);

      memcpy(addr, result, pna * 4);

      return 0;
}

static unsigned int of_bus_default_get_flags(const u32 *addr)
{
      return IORESOURCE_MEM;
}

/*
 * PCI bus specific translator
 */

static int of_bus_pci_match(struct device_node *np)
{
      if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
            const char *model = of_get_property(np, "model", NULL);

            if (model && !strcmp(model, "SUNW,simba"))
                  return 0;

            /* Do not do PCI specific frobbing if the
             * PCI bridge lacks a ranges property.  We
             * want to pass it through up to the next
             * parent as-is, not with the PCI translate
             * method which chops off the top address cell.
             */
            if (!of_find_property(np, "ranges", NULL))
                  return 0;

            return 1;
      }

      return 0;
}

static int of_bus_simba_match(struct device_node *np)
{
      const char *model = of_get_property(np, "model", NULL);

      if (model && !strcmp(model, "SUNW,simba"))
            return 1;

      /* Treat PCI busses lacking ranges property just like
       * simba.
       */
      if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
            if (!of_find_property(np, "ranges", NULL))
                  return 1;
      }

      return 0;
}

static int of_bus_simba_map(u32 *addr, const u32 *range,
                      int na, int ns, int pna)
{
      return 0;
}

static void of_bus_pci_count_cells(struct device_node *np,
                           int *addrc, int *sizec)
{
      if (addrc)
            *addrc = 3;
      if (sizec)
            *sizec = 2;
}

static int of_bus_pci_map(u32 *addr, const u32 *range,
                    int na, int ns, int pna)
{
      u32 result[OF_MAX_ADDR_CELLS];
      int i;

      /* Check address type match */
      if ((addr[0] ^ range[0]) & 0x03000000)
            return -EINVAL;

      if (of_out_of_range(addr + 1, range + 1, range + na + pna,
                      na - 1, ns))
            return -EINVAL;

      /* Start with the parent range base.  */
      memcpy(result, range + na, pna * 4);

      /* Add in the child address offset, skipping high cell.  */
      for (i = 0; i < na - 1; i++)
            result[pna - 1 - i] +=
                  (addr[na - 1 - i] -
                   range[na - 1 - i]);

      memcpy(addr, result, pna * 4);

      return 0;
}

static unsigned int of_bus_pci_get_flags(const u32 *addr)
{
      unsigned int flags = 0;
      u32 w = addr[0];

      switch((w >> 24) & 0x03) {
      case 0x01:
            flags |= IORESOURCE_IO;
      case 0x02: /* 32 bits */
      case 0x03: /* 64 bits */
            flags |= IORESOURCE_MEM;
      }
      if (w & 0x40000000)
            flags |= IORESOURCE_PREFETCH;
      return flags;
}

/*
 * SBUS bus specific translator
 */

static int of_bus_sbus_match(struct device_node *np)
{
      return !strcmp(np->name, "sbus") ||
            !strcmp(np->name, "sbi");
}

static void of_bus_sbus_count_cells(struct device_node *child,
                           int *addrc, int *sizec)
{
      if (addrc)
            *addrc = 2;
      if (sizec)
            *sizec = 1;
}

/*
 * FHC/Central bus specific translator.
 *
 * This is just needed to hard-code the address and size cell
 * counts.  'fhc' and 'central' nodes lack the #address-cells and
 * #size-cells properties, and if you walk to the root on such
 * Enterprise boxes all you'll get is a #size-cells of 2 which is
 * not what we want to use.
 */
static int of_bus_fhc_match(struct device_node *np)
{
      return !strcmp(np->name, "fhc") ||
            !strcmp(np->name, "central");
}

#define of_bus_fhc_count_cells of_bus_sbus_count_cells

/*
 * Array of bus specific translators
 */

static struct of_bus of_busses[] = {
      /* PCI */
      {
            .name = "pci",
            .addr_prop_name = "assigned-addresses",
            .match = of_bus_pci_match,
            .count_cells = of_bus_pci_count_cells,
            .map = of_bus_pci_map,
            .get_flags = of_bus_pci_get_flags,
      },
      /* SIMBA */
      {
            .name = "simba",
            .addr_prop_name = "assigned-addresses",
            .match = of_bus_simba_match,
            .count_cells = of_bus_pci_count_cells,
            .map = of_bus_simba_map,
            .get_flags = of_bus_pci_get_flags,
      },
      /* SBUS */
      {
            .name = "sbus",
            .addr_prop_name = "reg",
            .match = of_bus_sbus_match,
            .count_cells = of_bus_sbus_count_cells,
            .map = of_bus_default_map,
            .get_flags = of_bus_default_get_flags,
      },
      /* FHC */
      {
            .name = "fhc",
            .addr_prop_name = "reg",
            .match = of_bus_fhc_match,
            .count_cells = of_bus_fhc_count_cells,
            .map = of_bus_default_map,
            .get_flags = of_bus_default_get_flags,
      },
      /* Default */
      {
            .name = "default",
            .addr_prop_name = "reg",
            .match = NULL,
            .count_cells = of_bus_default_count_cells,
            .map = of_bus_default_map,
            .get_flags = of_bus_default_get_flags,
      },
};

static struct of_bus *of_match_bus(struct device_node *np)
{
      int i;

      for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
            if (!of_busses[i].match || of_busses[i].match(np))
                  return &of_busses[i];
      BUG();
      return NULL;
}

static int __init build_one_resource(struct device_node *parent,
                             struct of_bus *bus,
                             struct of_bus *pbus,
                             u32 *addr,
                             int na, int ns, int pna)
{
      const u32 *ranges;
      unsigned int rlen;
      int rone;

      ranges = of_get_property(parent, "ranges", &rlen);
      if (ranges == NULL || rlen == 0) {
            u32 result[OF_MAX_ADDR_CELLS];
            int i;

            memset(result, 0, pna * 4);
            for (i = 0; i < na; i++)
                  result[pna - 1 - i] =
                        addr[na - 1 - i];

            memcpy(addr, result, pna * 4);
            return 0;
      }

      /* Now walk through the ranges */
      rlen /= 4;
      rone = na + pna + ns;
      for (; rlen >= rone; rlen -= rone, ranges += rone) {
            if (!bus->map(addr, ranges, na, ns, pna))
                  return 0;
      }

      /* When we miss an I/O space match on PCI, just pass it up
       * to the next PCI bridge and/or controller.
       */
      if (!strcmp(bus->name, "pci") &&
          (addr[0] & 0x03000000) == 0x01000000)
            return 0;

      return 1;
}

static int __init use_1to1_mapping(struct device_node *pp)
{
      /* If this is on the PMU bus, don't try to translate it even
       * if a ranges property exists.
       */
      if (!strcmp(pp->name, "pmu"))
            return 1;

      /* If we have a ranges property in the parent, use it.  */
      if (of_find_property(pp, "ranges", NULL) != NULL)
            return 0;

      /* If the parent is the dma node of an ISA bus, pass
       * the translation up to the root.
       */
      if (!strcmp(pp->name, "dma"))
            return 0;

      /* Similarly for all PCI bridges, if we get this far
       * it lacks a ranges property, and this will include
       * cases like Simba.
       */
      if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex"))
            return 0;

      return 1;
}

static int of_resource_verbose;

static void __init build_device_resources(struct of_device *op,
                                struct device *parent)
{
      struct of_device *p_op;
      struct of_bus *bus;
      int na, ns;
      int index, num_reg;
      const void *preg;

      if (!parent)
            return;

      p_op = to_of_device(parent);
      bus = of_match_bus(p_op->node);
      bus->count_cells(op->node, &na, &ns);

      preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
      if (!preg || num_reg == 0)
            return;

      /* Convert to num-cells.  */
      num_reg /= 4;

      /* Convert to num-entries.  */
      num_reg /= na + ns;

      /* Prevent overrunning the op->resources[] array.  */
      if (num_reg > PROMREG_MAX) {
            printk(KERN_WARNING "%s: Too many regs (%d), "
                   "limiting to %d.\n",
                   op->node->full_name, num_reg, PROMREG_MAX);
            num_reg = PROMREG_MAX;
      }

      for (index = 0; index < num_reg; index++) {
            struct resource *r = &op->resource[index];
            u32 addr[OF_MAX_ADDR_CELLS];
            const u32 *reg = (preg + (index * ((na + ns) * 4)));
            struct device_node *dp = op->node;
            struct device_node *pp = p_op->node;
            struct of_bus *pbus, *dbus;
            u64 size, result = OF_BAD_ADDR;
            unsigned long flags;
            int dna, dns;
            int pna, pns;

            size = of_read_addr(reg + na, ns);
            flags = bus->get_flags(reg);

            memcpy(addr, reg, na * 4);

            if (use_1to1_mapping(pp)) {
                  result = of_read_addr(addr, na);
                  goto build_res;
            }

            dna = na;
            dns = ns;
            dbus = bus;

            while (1) {
                  dp = pp;
                  pp = dp->parent;
                  if (!pp) {
                        result = of_read_addr(addr, dna);
                        break;
                  }

                  pbus = of_match_bus(pp);
                  pbus->count_cells(dp, &pna, &pns);

                  if (build_one_resource(dp, dbus, pbus, addr,
                                     dna, dns, pna))
                        break;

                  dna = pna;
                  dns = pns;
                  dbus = pbus;
            }

      build_res:
            memset(r, 0, sizeof(*r));

            if (of_resource_verbose)
                  printk("%s reg[%d] -> %lx\n",
                         op->node->full_name, index,
                         result);

            if (result != OF_BAD_ADDR) {
                  if (tlb_type == hypervisor)
                        result &= 0x0fffffffffffffffUL;

                  r->start = result;
                  r->end = result + size - 1;
                  r->flags = flags;
            }
            r->name = op->node->name;
      }
}

static struct device_node * __init
apply_interrupt_map(struct device_node *dp, struct device_node *pp,
                const u32 *imap, int imlen, const u32 *imask,
                unsigned int *irq_p)
{
      struct device_node *cp;
      unsigned int irq = *irq_p;
      struct of_bus *bus;
      phandle handle;
      const u32 *reg;
      int na, num_reg, i;

      bus = of_match_bus(pp);
      bus->count_cells(dp, &na, NULL);

      reg = of_get_property(dp, "reg", &num_reg);
      if (!reg || !num_reg)
            return NULL;

      imlen /= ((na + 3) * 4);
      handle = 0;
      for (i = 0; i < imlen; i++) {
            int j;

            for (j = 0; j < na; j++) {
                  if ((reg[j] & imask[j]) != imap[j])
                        goto next;
            }
            if (imap[na] == irq) {
                  handle = imap[na + 1];
                  irq = imap[na + 2];
                  break;
            }

      next:
            imap += (na + 3);
      }
      if (i == imlen) {
            /* Psycho and Sabre PCI controllers can have 'interrupt-map'
             * properties that do not include the on-board device
             * interrupts.  Instead, the device's 'interrupts' property
             * is already a fully specified INO value.
             *
             * Handle this by deciding that, if we didn't get a
             * match in the parent's 'interrupt-map', and the
             * parent is an IRQ translater, then use the parent as
             * our IRQ controller.
             */
            if (pp->irq_trans)
                  return pp;

            return NULL;
      }

      *irq_p = irq;
      cp = of_find_node_by_phandle(handle);

      return cp;
}

static unsigned int __init pci_irq_swizzle(struct device_node *dp,
                                 struct device_node *pp,
                                 unsigned int irq)
{
      const struct linux_prom_pci_registers *regs;
      unsigned int bus, devfn, slot, ret;

      if (irq < 1 || irq > 4)
            return irq;

      regs = of_get_property(dp, "reg", NULL);
      if (!regs)
            return irq;

      bus = (regs->phys_hi >> 16) & 0xff;
      devfn = (regs->phys_hi >> 8) & 0xff;
      slot = (devfn >> 3) & 0x1f;

      if (pp->irq_trans) {
            /* Derived from Table 8-3, U2P User's Manual.  This branch
             * is handling a PCI controller that lacks a proper set of
             * interrupt-map and interrupt-map-mask properties.  The
             * Ultra-E450 is one example.
             *
             * The bit layout is BSSLL, where:
             * B: 0 on bus A, 1 on bus B
             * D: 2-bit slot number, derived from PCI device number as
             *    (dev - 1) for bus A, or (dev - 2) for bus B
             * L: 2-bit line number
             */
            if (bus & 0x80) {
                  /* PBM-A */
                  bus  = 0x00;
                  slot = (slot - 1) << 2;
            } else {
                  /* PBM-B */
                  bus  = 0x10;
                  slot = (slot - 2) << 2;
            }
            irq -= 1;

            ret = (bus | slot | irq);
      } else {
            /* Going through a PCI-PCI bridge that lacks a set of
             * interrupt-map and interrupt-map-mask properties.
             */
            ret = ((irq - 1 + (slot & 3)) & 3) + 1;
      }

      return ret;
}

static int of_irq_verbose;

static unsigned int __init build_one_device_irq(struct of_device *op,
                                    struct device *parent,
                                    unsigned int irq)
{
      struct device_node *dp = op->node;
      struct device_node *pp, *ip;
      unsigned int orig_irq = irq;

      if (irq == 0xffffffff)
            return irq;

      if (dp->irq_trans) {
            irq = dp->irq_trans->irq_build(dp, irq,
                                     dp->irq_trans->data);

            if (of_irq_verbose)
                  printk("%s: direct translate %x --> %x\n",
                         dp->full_name, orig_irq, irq);

            return irq;
      }

      /* Something more complicated.  Walk up to the root, applying
       * interrupt-map or bus specific translations, until we hit
       * an IRQ translator.
       *
       * If we hit a bus type or situation we cannot handle, we
       * stop and assume that the original IRQ number was in a
       * format which has special meaning to it's immediate parent.
       */
      pp = dp->parent;
      ip = NULL;
      while (pp) {
            const void *imap, *imsk;
            int imlen;

            imap = of_get_property(pp, "interrupt-map", &imlen);
            imsk = of_get_property(pp, "interrupt-map-mask", NULL);
            if (imap && imsk) {
                  struct device_node *iret;
                  int this_orig_irq = irq;

                  iret = apply_interrupt_map(dp, pp,
                                       imap, imlen, imsk,
                                       &irq);

                  if (of_irq_verbose)
                        printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
                               op->node->full_name,
                               pp->full_name, this_orig_irq,
                               (iret ? iret->full_name : "NULL"), irq);

                  if (!iret)
                        break;

                  if (iret->irq_trans) {
                        ip = iret;
                        break;
                  }
            } else {
                  if (!strcmp(pp->type, "pci") ||
                      !strcmp(pp->type, "pciex")) {
                        unsigned int this_orig_irq = irq;

                        irq = pci_irq_swizzle(dp, pp, irq);
                        if (of_irq_verbose)
                              printk("%s: PCI swizzle [%s] "
                                     "%x --> %x\n",
                                     op->node->full_name,
                                     pp->full_name, this_orig_irq,
                                     irq);

                  }

                  if (pp->irq_trans) {
                        ip = pp;
                        break;
                  }
            }
            dp = pp;
            pp = pp->parent;
      }
      if (!ip)
            return orig_irq;

      irq = ip->irq_trans->irq_build(op->node, irq,
                               ip->irq_trans->data);
      if (of_irq_verbose)
            printk("%s: Apply IRQ trans [%s] %x --> %x\n",
                   op->node->full_name, ip->full_name, orig_irq, irq);

      return irq;
}

static struct of_device * __init scan_one_device(struct device_node *dp,
                                     struct device *parent)
{
      struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
      const unsigned int *irq;
      struct dev_archdata *sd;
      int len, i;

      if (!op)
            return NULL;

      sd = &op->dev.archdata;
      sd->prom_node = dp;
      sd->op = op;

      op->node = dp;

      op->clock_freq = of_getintprop_default(dp, "clock-frequency",
                                     (25*1000*1000));
      op->portid = of_getintprop_default(dp, "upa-portid", -1);
      if (op->portid == -1)
            op->portid = of_getintprop_default(dp, "portid", -1);

      irq = of_get_property(dp, "interrupts", &len);
      if (irq) {
            memcpy(op->irqs, irq, len);
            op->num_irqs = len / 4;
      } else {
            op->num_irqs = 0;
      }

      /* Prevent overrunning the op->irqs[] array.  */
      if (op->num_irqs > PROMINTR_MAX) {
            printk(KERN_WARNING "%s: Too many irqs (%d), "
                   "limiting to %d.\n",
                   dp->full_name, op->num_irqs, PROMINTR_MAX);
            op->num_irqs = PROMINTR_MAX;
      }

      build_device_resources(op, parent);
      for (i = 0; i < op->num_irqs; i++)
            op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);

      op->dev.parent = parent;
      op->dev.bus = &of_platform_bus_type;
      if (!parent)
            strcpy(op->dev.bus_id, "root");
      else
            sprintf(op->dev.bus_id, "%08x", dp->node);

      if (of_device_register(op)) {
            printk("%s: Could not register of device.\n",
                   dp->full_name);
            kfree(op);
            op = NULL;
      }

      return op;
}

static void __init scan_tree(struct device_node *dp, struct device *parent)
{
      while (dp) {
            struct of_device *op = scan_one_device(dp, parent);

            if (op)
                  scan_tree(dp->child, &op->dev);

            dp = dp->sibling;
      }
}

static void __init scan_of_devices(void)
{
      struct device_node *root = of_find_node_by_path("/");
      struct of_device *parent;

      parent = scan_one_device(root, NULL);
      if (!parent)
            return;

      scan_tree(root->child, &parent->dev);
}

static int __init of_bus_driver_init(void)
{
      int err;

      err = of_bus_type_init(&of_platform_bus_type, "of");
#ifdef CONFIG_PCI
      if (!err)
            err = of_bus_type_init(&isa_bus_type, "isa");
      if (!err)
            err = of_bus_type_init(&ebus_bus_type, "ebus");
#endif
#ifdef CONFIG_SBUS
      if (!err)
            err = of_bus_type_init(&sbus_bus_type, "sbus");
#endif

      if (!err)
            scan_of_devices();

      return err;
}

postcore_initcall(of_bus_driver_init);

static int __init of_debug(char *str)
{
      int val = 0;

      get_option(&str, &val);
      if (val & 1)
            of_resource_verbose = 1;
      if (val & 2)
            of_irq_verbose = 1;
      return 1;
}

__setup("of_debug=", of_debug);

struct of_device* of_platform_device_create(struct device_node *np,
                                  const char *bus_id,
                                  struct device *parent,
                                  struct bus_type *bus)
{
      struct of_device *dev;

      dev = kzalloc(sizeof(*dev), GFP_KERNEL);
      if (!dev)
            return NULL;

      dev->dev.parent = parent;
      dev->dev.bus = bus;
      dev->dev.release = of_release_dev;

      strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE);

      if (of_device_register(dev) != 0) {
            kfree(dev);
            return NULL;
      }

      return dev;
}
EXPORT_SYMBOL(of_platform_device_create);

Generated by  Doxygen 1.6.0   Back to index