Logo Search packages:      
Sourcecode: linux version File versions  Download package

spectrum_cs.c

/*
 * Driver for 802.11b cards using RAM-loadable Symbol firmware, such as
 * Symbol Wireless Networker LA4137, CompactFlash cards by Socket
 * Communications and Intel PRO/Wireless 2011B.
 *
 * The driver implements Symbol firmware download.  The rest is handled
 * in hermes.c and orinoco.c.
 *
 * Utilities for downloading the Symbol firmware are available at
 * http://sourceforge.net/projects/orinoco/
 *
 * Copyright (C) 2002-2005 Pavel Roskin <proski@gnu.org>
 * Portions based on orinoco_cs.c:
 *    Copyright (C) David Gibson, Linuxcare Australia
 * Portions based on Spectrum24tDnld.c from original spectrum24 driver:
 *    Copyright (C) Symbol Technologies.
 *
 * See copyright notice in file orinoco.c.
 */

#define DRIVER_NAME "spectrum_cs"
#define PFX DRIVER_NAME ": "

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ds.h>

#include "orinoco.h"

static const char primary_fw_name[] = "symbol_sp24t_prim_fw";
static const char secondary_fw_name[] = "symbol_sp24t_sec_fw";

/********************************************************************/
/* Module stuff                                           */
/********************************************************************/

MODULE_AUTHOR("Pavel Roskin <proski@gnu.org>");
MODULE_DESCRIPTION("Driver for Symbol Spectrum24 Trilogy cards with firmware downloader");
MODULE_LICENSE("Dual MPL/GPL");

/* Module parameters */

/* Some D-Link cards have buggy CIS. They do work at 5v properly, but
 * don't have any CIS entry for it. This workaround it... */
static int ignore_cis_vcc; /* = 0 */
module_param(ignore_cis_vcc, int, 0);
MODULE_PARM_DESC(ignore_cis_vcc, "Allow voltage mismatch between card and socket");

/********************************************************************/
/* Data structures                                        */
/********************************************************************/

/* PCMCIA specific device information (goes in the card field of
 * struct orinoco_private */
struct orinoco_pccard {
      struct pcmcia_device    *p_dev;
      dev_node_t node;
};

/********************************************************************/
/* Function prototypes                                    */
/********************************************************************/

static int spectrum_cs_config(struct pcmcia_device *link);
static void spectrum_cs_release(struct pcmcia_device *link);

/********************************************************************/
/* Firmware downloader                                    */
/********************************************************************/

/* Position of PDA in the adapter memory */
#define EEPROM_ADDR     0x3000
#define EEPROM_LEN      0x200
#define PDA_OFFSET      0x100

#define PDA_ADDR  (EEPROM_ADDR + PDA_OFFSET)
#define PDA_WORDS ((EEPROM_LEN - PDA_OFFSET) / 2)

/* Constants for the CISREG_CCSR register */
#define HCR_RUN         0x07  /* run firmware after reset */
#define HCR_IDLE  0x0E  /* don't run firmware after reset */
#define HCR_MEM16 0x10  /* memory width bit, should be preserved */

/*
 * AUX port access.  To unlock the AUX port write the access keys to the
 * PARAM0-2 registers, then write HERMES_AUX_ENABLE to the HERMES_CONTROL
 * register.  Then read it and make sure it's HERMES_AUX_ENABLED.
 */
#define HERMES_AUX_ENABLE     0x8000      /* Enable auxiliary port access */
#define HERMES_AUX_DISABLE    0x4000      /* Disable to auxiliary port access */
#define HERMES_AUX_ENABLED    0xC000      /* Auxiliary port is open */

#define HERMES_AUX_PW0  0xFE01
#define HERMES_AUX_PW1  0xDC23
#define HERMES_AUX_PW2  0xBA45

/* End markers */
#define PDI_END         0x00000000  /* End of PDA */
#define BLOCK_END 0xFFFFFFFF  /* Last image block */
#define TEXT_END  0x1A        /* End of text header */

/*
 * The following structures have little-endian fields denoted by
 * the leading underscore.  Don't access them directly - use inline
 * functions defined below.
 */

/*
 * The binary image to be downloaded consists of series of data blocks.
 * Each block has the following structure.
 */
struct dblock {
      __le32 addr;            /* adapter address where to write the block */
      __le16 len;       /* length of the data only, in bytes */
      char data[0];           /* data to be written */
} __attribute__ ((packed));

/*
 * Plug Data References are located in in the image after the last data
 * block.  They refer to areas in the adapter memory where the plug data
 * items with matching ID should be written.
 */
struct pdr {
      __le32 id;        /* record ID */
      __le32 addr;            /* adapter address where to write the data */
      __le32 len;       /* expected length of the data, in bytes */
      char next[0];           /* next PDR starts here */
} __attribute__ ((packed));


/*
 * Plug Data Items are located in the EEPROM read from the adapter by
 * primary firmware.  They refer to the device-specific data that should
 * be plugged into the secondary firmware.
 */
struct pdi {
      __le16 len;       /* length of ID and data, in words */
      __le16 id;        /* record ID */
      char data[0];           /* plug data */
} __attribute__ ((packed));


/* Functions for access to little-endian data */
static inline u32
dblock_addr(const struct dblock *blk)
{
      return le32_to_cpu(blk->addr);
}

static inline u32
dblock_len(const struct dblock *blk)
{
      return le16_to_cpu(blk->len);
}

static inline u32
pdr_id(const struct pdr *pdr)
{
      return le32_to_cpu(pdr->id);
}

static inline u32
pdr_addr(const struct pdr *pdr)
{
      return le32_to_cpu(pdr->addr);
}

static inline u32
pdr_len(const struct pdr *pdr)
{
      return le32_to_cpu(pdr->len);
}

static inline u32
pdi_id(const struct pdi *pdi)
{
      return le16_to_cpu(pdi->id);
}

/* Return length of the data only, in bytes */
static inline u32
pdi_len(const struct pdi *pdi)
{
      return 2 * (le16_to_cpu(pdi->len) - 1);
}


/* Set address of the auxiliary port */
static inline void
spectrum_aux_setaddr(hermes_t *hw, u32 addr)
{
      hermes_write_reg(hw, HERMES_AUXPAGE, (u16) (addr >> 7));
      hermes_write_reg(hw, HERMES_AUXOFFSET, (u16) (addr & 0x7F));
}


/* Open access to the auxiliary port */
static int
spectrum_aux_open(hermes_t *hw)
{
      int i;

      /* Already open? */
      if (hermes_read_reg(hw, HERMES_CONTROL) == HERMES_AUX_ENABLED)
            return 0;

      hermes_write_reg(hw, HERMES_PARAM0, HERMES_AUX_PW0);
      hermes_write_reg(hw, HERMES_PARAM1, HERMES_AUX_PW1);
      hermes_write_reg(hw, HERMES_PARAM2, HERMES_AUX_PW2);
      hermes_write_reg(hw, HERMES_CONTROL, HERMES_AUX_ENABLE);

      for (i = 0; i < 20; i++) {
            udelay(10);
            if (hermes_read_reg(hw, HERMES_CONTROL) ==
                HERMES_AUX_ENABLED)
                  return 0;
      }

      return -EBUSY;
}


#define CS_CHECK(fn, ret) \
  do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0)

/*
 * Reset the card using configuration registers COR and CCSR.
 * If IDLE is 1, stop the firmware, so that it can be safely rewritten.
 */
static int
spectrum_reset(struct pcmcia_device *link, int idle)
{
      int last_ret, last_fn;
      conf_reg_t reg;
      u_int save_cor;

      /* Doing it if hardware is gone is guaranteed crash */
      if (!pcmcia_dev_present(link))
            return -ENODEV;

      /* Save original COR value */
      reg.Function = 0;
      reg.Action = CS_READ;
      reg.Offset = CISREG_COR;
      CS_CHECK(AccessConfigurationRegister,
             pcmcia_access_configuration_register(link, &reg));
      save_cor = reg.Value;

      /* Soft-Reset card */
      reg.Action = CS_WRITE;
      reg.Offset = CISREG_COR;
      reg.Value = (save_cor | COR_SOFT_RESET);
      CS_CHECK(AccessConfigurationRegister,
             pcmcia_access_configuration_register(link, &reg));
      udelay(1000);

      /* Read CCSR */
      reg.Action = CS_READ;
      reg.Offset = CISREG_CCSR;
      CS_CHECK(AccessConfigurationRegister,
             pcmcia_access_configuration_register(link, &reg));

      /*
       * Start or stop the firmware.  Memory width bit should be
       * preserved from the value we've just read.
       */
      reg.Action = CS_WRITE;
      reg.Offset = CISREG_CCSR;
      reg.Value = (idle ? HCR_IDLE : HCR_RUN) | (reg.Value & HCR_MEM16);
      CS_CHECK(AccessConfigurationRegister,
             pcmcia_access_configuration_register(link, &reg));
      udelay(1000);

      /* Restore original COR configuration index */
      reg.Action = CS_WRITE;
      reg.Offset = CISREG_COR;
      reg.Value = (save_cor & ~COR_SOFT_RESET);
      CS_CHECK(AccessConfigurationRegister,
             pcmcia_access_configuration_register(link, &reg));
      udelay(1000);
      return 0;

      cs_failed:
      cs_error(link, last_fn, last_ret);
      return -ENODEV;
}


/*
 * Scan PDR for the record with the specified RECORD_ID.
 * If it's not found, return NULL.
 */
static struct pdr *
spectrum_find_pdr(struct pdr *first_pdr, u32 record_id)
{
      struct pdr *pdr = first_pdr;

      while (pdr_id(pdr) != PDI_END) {
            /*
             * PDR area is currently not terminated by PDI_END.
             * It's followed by CRC records, which have the type
             * field where PDR has length.  The type can be 0 or 1.
             */
            if (pdr_len(pdr) < 2)
                  return NULL;

            /* If the record ID matches, we are done */
            if (pdr_id(pdr) == record_id)
                  return pdr;

            pdr = (struct pdr *) pdr->next;
      }
      return NULL;
}


/* Process one Plug Data Item - find corresponding PDR and plug it */
static int
spectrum_plug_pdi(hermes_t *hw, struct pdr *first_pdr, struct pdi *pdi)
{
      struct pdr *pdr;

      /* Find the PDI corresponding to this PDR */
      pdr = spectrum_find_pdr(first_pdr, pdi_id(pdi));

      /* No match is found, safe to ignore */
      if (!pdr)
            return 0;

      /* Lengths of the data in PDI and PDR must match */
      if (pdi_len(pdi) != pdr_len(pdr))
            return -EINVAL;

      /* do the actual plugging */
      spectrum_aux_setaddr(hw, pdr_addr(pdr));
      hermes_write_bytes(hw, HERMES_AUXDATA, pdi->data, pdi_len(pdi));

      return 0;
}


/* Read PDA from the adapter */
static int
spectrum_read_pda(hermes_t *hw, __le16 *pda, int pda_len)
{
      int ret;
      int pda_size;

      /* Issue command to read EEPROM */
      ret = hermes_docmd_wait(hw, HERMES_CMD_READMIF, 0, NULL);
      if (ret)
            return ret;

      /* Open auxiliary port */
      ret = spectrum_aux_open(hw);
      if (ret)
            return ret;

      /* read PDA from EEPROM */
      spectrum_aux_setaddr(hw, PDA_ADDR);
      hermes_read_words(hw, HERMES_AUXDATA, pda, pda_len / 2);

      /* Check PDA length */
      pda_size = le16_to_cpu(pda[0]);
      if (pda_size > pda_len)
            return -EINVAL;

      return 0;
}


/* Parse PDA and write the records into the adapter */
static int
spectrum_apply_pda(hermes_t *hw, const struct dblock *first_block,
               __le16 *pda)
{
      int ret;
      struct pdi *pdi;
      struct pdr *first_pdr;
      const struct dblock *blk = first_block;

      /* Skip all blocks to locate Plug Data References */
      while (dblock_addr(blk) != BLOCK_END)
            blk = (struct dblock *) &blk->data[dblock_len(blk)];

      first_pdr = (struct pdr *) blk;

      /* Go through every PDI and plug them into the adapter */
      pdi = (struct pdi *) (pda + 2);
      while (pdi_id(pdi) != PDI_END) {
            ret = spectrum_plug_pdi(hw, first_pdr, pdi);
            if (ret)
                  return ret;

            /* Increment to the next PDI */
            pdi = (struct pdi *) &pdi->data[pdi_len(pdi)];
      }
      return 0;
}


/* Load firmware blocks into the adapter */
static int
spectrum_load_blocks(hermes_t *hw, const struct dblock *first_block)
{
      const struct dblock *blk;
      u32 blkaddr;
      u32 blklen;

      blk = first_block;
      blkaddr = dblock_addr(blk);
      blklen = dblock_len(blk);

      while (dblock_addr(blk) != BLOCK_END) {
            spectrum_aux_setaddr(hw, blkaddr);
            hermes_write_bytes(hw, HERMES_AUXDATA, blk->data,
                           blklen);

            blk = (struct dblock *) &blk->data[blklen];
            blkaddr = dblock_addr(blk);
            blklen = dblock_len(blk);
      }
      return 0;
}


/*
 * Process a firmware image - stop the card, load the firmware, reset
 * the card and make sure it responds.  For the secondary firmware take
 * care of the PDA - read it and then write it on top of the firmware.
 */
static int
spectrum_dl_image(hermes_t *hw, struct pcmcia_device *link,
              const unsigned char *image, int secondary)
{
      int ret;
      const unsigned char *ptr;
      const struct dblock *first_block;

      /* Plug Data Area (PDA) */
      __le16 pda[PDA_WORDS];

      /* Binary block begins after the 0x1A marker */
      ptr = image;
      while (*ptr++ != TEXT_END);
      first_block = (const struct dblock *) ptr;

      /* Read the PDA */
      if (secondary) {
            ret = spectrum_read_pda(hw, pda, sizeof(pda));
            if (ret)
                  return ret;
      }

      /* Stop the firmware, so that it can be safely rewritten */
      ret = spectrum_reset(link, 1);
      if (ret)
            return ret;

      /* Program the adapter with new firmware */
      ret = spectrum_load_blocks(hw, first_block);
      if (ret)
            return ret;

      /* Write the PDA to the adapter */
      if (secondary) {
            ret = spectrum_apply_pda(hw, first_block, pda);
            if (ret)
                  return ret;
      }

      /* Run the firmware */
      ret = spectrum_reset(link, 0);
      if (ret)
            return ret;

      /* Reset hermes chip and make sure it responds */
      ret = hermes_init(hw);

      /* hermes_reset() should return 0 with the secondary firmware */
      if (secondary && ret != 0)
            return -ENODEV;

      /* And this should work with any firmware */
      if (!hermes_present(hw))
            return -ENODEV;

      return 0;
}


/*
 * Download the firmware into the card, this also does a PCMCIA soft
 * reset on the card, to make sure it's in a sane state.
 */
static int
spectrum_dl_firmware(hermes_t *hw, struct pcmcia_device *link)
{
      int ret;
      const struct firmware *fw_entry;

      if (request_firmware(&fw_entry, primary_fw_name,
                       &handle_to_dev(link)) != 0) {
            printk(KERN_ERR PFX "Cannot find firmware: %s\n",
                   primary_fw_name);
            return -ENOENT;
      }

      /* Load primary firmware */
      ret = spectrum_dl_image(hw, link, fw_entry->data, 0);
      release_firmware(fw_entry);
      if (ret) {
            printk(KERN_ERR PFX "Primary firmware download failed\n");
            return ret;
      }

      if (request_firmware(&fw_entry, secondary_fw_name,
                       &handle_to_dev(link)) != 0) {
            printk(KERN_ERR PFX "Cannot find firmware: %s\n",
                   secondary_fw_name);
            return -ENOENT;
      }

      /* Load secondary firmware */
      ret = spectrum_dl_image(hw, link, fw_entry->data, 1);
      release_firmware(fw_entry);
      if (ret) {
            printk(KERN_ERR PFX "Secondary firmware download failed\n");
      }

      return ret;
}

/********************************************************************/
/* Device methods                                         */
/********************************************************************/

static int
spectrum_cs_hard_reset(struct orinoco_private *priv)
{
      struct orinoco_pccard *card = priv->card;
      struct pcmcia_device *link = card->p_dev;
      int err;

      if (!hermes_present(&priv->hw)) {
            /* The firmware needs to be reloaded */
            if (spectrum_dl_firmware(&priv->hw, link) != 0) {
                  printk(KERN_ERR PFX "Firmware download failed\n");
                  err = -ENODEV;
            }
      } else {
            /* Soft reset using COR and HCR */
            spectrum_reset(link, 0);
      }

      return 0;
}

/********************************************************************/
/* PCMCIA stuff                                           */
/********************************************************************/

/*
 * This creates an "instance" of the driver, allocating local data
 * structures for one device.  The device is registered with Card
 * Services.
 * 
 * The dev_link structure is initialized, but we don't actually
 * configure the card at this point -- we wait until we receive a card
 * insertion event.  */
static int
spectrum_cs_probe(struct pcmcia_device *link)
{
      struct net_device *dev;
      struct orinoco_private *priv;
      struct orinoco_pccard *card;

      dev = alloc_orinocodev(sizeof(*card), spectrum_cs_hard_reset);
      if (! dev)
            return -ENOMEM;
      priv = netdev_priv(dev);
      card = priv->card;

      /* Link both structures together */
      card->p_dev = link;
      link->priv = dev;

      /* Interrupt setup */
      link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
      link->irq.IRQInfo1 = IRQ_LEVEL_ID;
      link->irq.Handler = orinoco_interrupt;
      link->irq.Instance = dev; 

      /* General socket configuration defaults can go here.  In this
       * client, we assume very little, and rely on the CIS for
       * almost everything.  In most clients, many details (i.e.,
       * number, sizes, and attributes of IO windows) are fixed by
       * the nature of the device, and can be hard-wired here. */
      link->conf.Attributes = 0;
      link->conf.IntType = INT_MEMORY_AND_IO;

      return spectrum_cs_config(link);
}                       /* spectrum_cs_attach */

/*
 * This deletes a driver "instance".  The device is de-registered with
 * Card Services.  If it has been released, all local data structures
 * are freed.  Otherwise, the structures will be freed when the device
 * is released.
 */
static void spectrum_cs_detach(struct pcmcia_device *link)
{
      struct net_device *dev = link->priv;

      if (link->dev_node)
            unregister_netdev(dev);

      spectrum_cs_release(link);

      free_orinocodev(dev);
}                       /* spectrum_cs_detach */

/*
 * spectrum_cs_config() is scheduled to run after a CARD_INSERTION
 * event is received, to configure the PCMCIA socket, and to make the
 * device available to the system.
 */

static int
spectrum_cs_config(struct pcmcia_device *link)
{
      struct net_device *dev = link->priv;
      struct orinoco_private *priv = netdev_priv(dev);
      struct orinoco_pccard *card = priv->card;
      hermes_t *hw = &priv->hw;
      int last_fn, last_ret;
      u_char buf[64];
      config_info_t conf;
      tuple_t tuple;
      cisparse_t parse;
      void __iomem *mem;

      /* Look up the current Vcc */
      CS_CHECK(GetConfigurationInfo,
             pcmcia_get_configuration_info(link, &conf));

      /*
       * In this loop, we scan the CIS for configuration table
       * entries, each of which describes a valid card
       * configuration, including voltage, IO window, memory window,
       * and interrupt settings.
       *
       * We make no assumptions about the card to be configured: we
       * use just the information available in the CIS.  In an ideal
       * world, this would work for any PCMCIA card, but it requires
       * a complete and accurate CIS.  In practice, a driver usually
       * "knows" most of these things without consulting the CIS,
       * and most client drivers will only use the CIS to fill in
       * implementation-defined details.
       */
      tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
      tuple.Attributes = 0;
      tuple.TupleData = buf;
      tuple.TupleDataMax = sizeof(buf);
      tuple.TupleOffset = 0;
      CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
      while (1) {
            cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
            cistpl_cftable_entry_t dflt = { .index = 0 };

            if ( (pcmcia_get_tuple_data(link, &tuple) != 0)
                || (pcmcia_parse_tuple(link, &tuple, &parse) != 0))
                  goto next_entry;

            if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
                  dflt = *cfg;
            if (cfg->index == 0)
                  goto next_entry;
            link->conf.ConfigIndex = cfg->index;

            /* Use power settings for Vcc and Vpp if present */
            /* Note that the CIS values need to be rescaled */
            if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
                  if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) {
                        DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n",  conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000);
                        if (!ignore_cis_vcc)
                              goto next_entry;
                  }
            } else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) {
                  if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) {
                        DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n",  conf.Vcc, dflt.vcc.param[CISTPL_POWER_VNOM] / 10000);
                        if(!ignore_cis_vcc)
                              goto next_entry;
                  }
            }

            if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
                  link->conf.Vpp =
                      cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
            else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM))
                  link->conf.Vpp =
                      dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000;
            
            /* Do we need to allocate an interrupt? */
            link->conf.Attributes |= CONF_ENABLE_IRQ;

            /* IO window settings */
            link->io.NumPorts1 = link->io.NumPorts2 = 0;
            if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {
                  cistpl_io_t *io =
                      (cfg->io.nwin) ? &cfg->io : &dflt.io;
                  link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
                  if (!(io->flags & CISTPL_IO_8BIT))
                        link->io.Attributes1 =
                            IO_DATA_PATH_WIDTH_16;
                  if (!(io->flags & CISTPL_IO_16BIT))
                        link->io.Attributes1 =
                            IO_DATA_PATH_WIDTH_8;
                  link->io.IOAddrLines =
                      io->flags & CISTPL_IO_LINES_MASK;
                  link->io.BasePort1 = io->win[0].base;
                  link->io.NumPorts1 = io->win[0].len;
                  if (io->nwin > 1) {
                        link->io.Attributes2 =
                            link->io.Attributes1;
                        link->io.BasePort2 = io->win[1].base;
                        link->io.NumPorts2 = io->win[1].len;
                  }

                  /* This reserves IO space but doesn't actually enable it */
                  if (pcmcia_request_io(link, &link->io) != 0)
                        goto next_entry;
            }


            /* If we got this far, we're cool! */

            break;
            
      next_entry:
            pcmcia_disable_device(link);
            last_ret = pcmcia_get_next_tuple(link, &tuple);
            if (last_ret  == CS_NO_MORE_ITEMS) {
                  printk(KERN_ERR PFX "GetNextTuple(): No matching "
                         "CIS configuration.  Maybe you need the "
                         "ignore_cis_vcc=1 parameter.\n");
                  goto cs_failed;
            }
      }

      /*
       * Allocate an interrupt line.  Note that this does not assign
       * a handler to the interrupt, unless the 'Handler' member of
       * the irq structure is initialized.
       */
      CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));

      /* We initialize the hermes structure before completing PCMCIA
       * configuration just in case the interrupt handler gets
       * called. */
      mem = ioport_map(link->io.BasePort1, link->io.NumPorts1);
      if (!mem)
            goto cs_failed;

      hermes_struct_init(hw, mem, HERMES_16BIT_REGSPACING);

      /*
       * This actually configures the PCMCIA socket -- setting up
       * the I/O windows and the interrupt mapping, and putting the
       * card and host interface into "Memory and IO" mode.
       */
      CS_CHECK(RequestConfiguration,
             pcmcia_request_configuration(link, &link->conf));

      /* Ok, we have the configuration, prepare to register the netdev */
      dev->base_addr = link->io.BasePort1;
      dev->irq = link->irq.AssignedIRQ;
      card->node.major = card->node.minor = 0;

      /* Reset card and download firmware */
      if (spectrum_cs_hard_reset(priv) != 0) {
            goto failed;
      }

      SET_NETDEV_DEV(dev, &handle_to_dev(link));
      /* Tell the stack we exist */
      if (register_netdev(dev) != 0) {
            printk(KERN_ERR PFX "register_netdev() failed\n");
            goto failed;
      }

      /* At this point, the dev_node_t structure(s) needs to be
       * initialized and arranged in a linked list at link->dev_node. */
      strcpy(card->node.dev_name, dev->name);
      link->dev_node = &card->node; /* link->dev_node being non-NULL is also
                                    used to indicate that the
                                    net_device has been registered */

      /* Finally, report what we've done */
      printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s, irq %d, io "
             "0x%04x-0x%04x\n", dev->name, dev->dev.parent->bus_id,
             link->irq.AssignedIRQ, link->io.BasePort1,
             link->io.BasePort1 + link->io.NumPorts1 - 1);

      return 0;

 cs_failed:
      cs_error(link, last_fn, last_ret);

 failed:
      spectrum_cs_release(link);
      return -ENODEV;
}                       /* spectrum_cs_config */

/*
 * After a card is removed, spectrum_cs_release() will unregister the
 * device, and release the PCMCIA configuration.  If the device is
 * still open, this will be postponed until it is closed.
 */
static void
spectrum_cs_release(struct pcmcia_device *link)
{
      struct net_device *dev = link->priv;
      struct orinoco_private *priv = netdev_priv(dev);
      unsigned long flags;

      /* We're committed to taking the device away now, so mark the
       * hardware as unavailable */
      spin_lock_irqsave(&priv->lock, flags);
      priv->hw_unavailable++;
      spin_unlock_irqrestore(&priv->lock, flags);

      pcmcia_disable_device(link);
      if (priv->hw.iobase)
            ioport_unmap(priv->hw.iobase);
}                       /* spectrum_cs_release */


static int
spectrum_cs_suspend(struct pcmcia_device *link)
{
      struct net_device *dev = link->priv;
      struct orinoco_private *priv = netdev_priv(dev);
      int err = 0;

      /* Mark the device as stopped, to block IO until later */
      spin_lock(&priv->lock);

      err = __orinoco_down(dev);
      if (err)
            printk(KERN_WARNING "%s: Error %d downing interface\n",
                   dev->name, err);

      netif_device_detach(dev);
      priv->hw_unavailable++;

      spin_unlock(&priv->lock);

      return err;
}

static int
spectrum_cs_resume(struct pcmcia_device *link)
{
      struct net_device *dev = link->priv;
      struct orinoco_private *priv = netdev_priv(dev);

      netif_device_attach(dev);
      priv->hw_unavailable--;
      schedule_work(&priv->reset_work);

      return 0;
}


/********************************************************************/
/* Module initialization                                  */
/********************************************************************/

/* Can't be declared "const" or the whole __initdata section will
 * become const */
static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION
      " (Pavel Roskin <proski@gnu.org>,"
      " David Gibson <hermes@gibson.dropbear.id.au>, et al)";

static struct pcmcia_device_id spectrum_cs_ids[] = {
      PCMCIA_DEVICE_MANF_CARD(0x026c, 0x0001), /* Symbol Spectrum24 LA4137 */
      PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0001), /* Socket Communications CF */
      PCMCIA_DEVICE_PROD_ID12("Intel", "PRO/Wireless LAN PC Card", 0x816cc815, 0x6fbf459a), /* 2011B, not 2011 */
      PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, spectrum_cs_ids);

static struct pcmcia_driver orinoco_driver = {
      .owner            = THIS_MODULE,
      .drv        = {
            .name = DRIVER_NAME,
      },
      .probe            = spectrum_cs_probe,
      .remove           = spectrum_cs_detach,
      .suspend    = spectrum_cs_suspend,
      .resume           = spectrum_cs_resume,
      .id_table       = spectrum_cs_ids,
};

static int __init
init_spectrum_cs(void)
{
      printk(KERN_DEBUG "%s\n", version);

      return pcmcia_register_driver(&orinoco_driver);
}

static void __exit
exit_spectrum_cs(void)
{
      pcmcia_unregister_driver(&orinoco_driver);
}

module_init(init_spectrum_cs);
module_exit(exit_spectrum_cs);

Generated by  Doxygen 1.6.0   Back to index