Logo Search packages:      
Sourcecode: linux version File versions  Download package

tda10086.c

  /*
     Driver for Philips tda10086 DVBS Demodulator

     (c) 2006 Andrew de Quincey

     This program is free software; you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
     the Free Software Foundation; either version 2 of the License, or
     (at your option) any later version.

     This program is distributed in the hope that it will be useful,
     but WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

     GNU General Public License for more details.

     You should have received a copy of the GNU General Public License
     along with this program; if not, write to the Free Software
     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

   */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/slab.h>

#include "dvb_frontend.h"
#include "tda10086.h"

#define SACLK 96000000

struct tda10086_state {
      struct i2c_adapter* i2c;
      const struct tda10086_config* config;
      struct dvb_frontend frontend;

      /* private demod data */
      u32 frequency;
      u32 symbol_rate;
      bool has_lock;
};

static int debug = 0;
#define dprintk(args...) \
      do { \
            if (debug) printk(KERN_DEBUG "tda10086: " args); \
      } while (0)

static int tda10086_write_byte(struct tda10086_state *state, int reg, int data)
{
      int ret;
      u8 b0[] = { reg, data };
      struct i2c_msg msg = { .flags = 0, .buf = b0, .len = 2 };

      msg.addr = state->config->demod_address;
      ret = i2c_transfer(state->i2c, &msg, 1);

      if (ret != 1)
            dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
                  __FUNCTION__, reg, data, ret);

      return (ret != 1) ? ret : 0;
}

static int tda10086_read_byte(struct tda10086_state *state, int reg)
{
      int ret;
      u8 b0[] = { reg };
      u8 b1[] = { 0 };
      struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
                        { .flags = I2C_M_RD, .buf = b1, .len = 1 }};

      msg[0].addr = state->config->demod_address;
      msg[1].addr = state->config->demod_address;
      ret = i2c_transfer(state->i2c, msg, 2);

      if (ret != 2) {
            dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
                  ret);
            return ret;
      }

      return b1[0];
}

static int tda10086_write_mask(struct tda10086_state *state, int reg, int mask, int data)
{
      int val;

      // read a byte and check
      val = tda10086_read_byte(state, reg);
      if (val < 0)
            return val;

      // mask if off
      val = val & ~mask;
      val |= data & 0xff;

      // write it out again
      return tda10086_write_byte(state, reg, val);
}

static int tda10086_init(struct dvb_frontend* fe)
{
      struct tda10086_state* state = fe->demodulator_priv;

      dprintk ("%s\n", __FUNCTION__);

      // reset
      tda10086_write_byte(state, 0x00, 0x00);
      msleep(10);

      // misc setup
      tda10086_write_byte(state, 0x01, 0x94);
      tda10086_write_byte(state, 0x02, 0x35); // NOTE: TT drivers appear to disable CSWP
      tda10086_write_byte(state, 0x03, 0xe4);
      tda10086_write_byte(state, 0x04, 0x43);
      tda10086_write_byte(state, 0x0c, 0x0c);
      tda10086_write_byte(state, 0x1b, 0xb0); // noise threshold
      tda10086_write_byte(state, 0x20, 0x89); // misc
      tda10086_write_byte(state, 0x30, 0x04); // acquisition period length
      tda10086_write_byte(state, 0x32, 0x00); // irq off
      tda10086_write_byte(state, 0x31, 0x56); // setup AFC

      // setup PLL (assumes 16Mhz XIN)
      tda10086_write_byte(state, 0x55, 0x2c); // misc PLL setup
      tda10086_write_byte(state, 0x3a, 0x0b); // M=12
      tda10086_write_byte(state, 0x3b, 0x01); // P=2
      tda10086_write_mask(state, 0x55, 0x20, 0x00); // powerup PLL

      // setup TS interface
      tda10086_write_byte(state, 0x11, 0x81);
      tda10086_write_byte(state, 0x12, 0x81);
      tda10086_write_byte(state, 0x19, 0x40); // parallel mode A + MSBFIRST
      tda10086_write_byte(state, 0x56, 0x80); // powerdown WPLL - unused in the mode we use
      tda10086_write_byte(state, 0x57, 0x08); // bypass WPLL - unused in the mode we use
      tda10086_write_byte(state, 0x10, 0x2a);

      // setup ADC
      tda10086_write_byte(state, 0x58, 0x61); // ADC setup
      tda10086_write_mask(state, 0x58, 0x01, 0x00); // powerup ADC

      // setup AGC
      tda10086_write_byte(state, 0x05, 0x0B);
      tda10086_write_byte(state, 0x37, 0x63);
      tda10086_write_byte(state, 0x3f, 0x0a); // NOTE: flydvb varies it
      tda10086_write_byte(state, 0x40, 0x64);
      tda10086_write_byte(state, 0x41, 0x4f);
      tda10086_write_byte(state, 0x42, 0x43);

      // setup viterbi
      tda10086_write_byte(state, 0x1a, 0x11); // VBER 10^6, DVB, QPSK

      // setup carrier recovery
      tda10086_write_byte(state, 0x3d, 0x80);

      // setup SEC
      tda10086_write_byte(state, 0x36, 0x80); // all SEC off, no 22k tone
      tda10086_write_byte(state, 0x34, (((1<<19) * (22000/1000)) / (SACLK/1000)));      // } tone frequency
      tda10086_write_byte(state, 0x35, (((1<<19) * (22000/1000)) / (SACLK/1000)) >> 8); // }

      return 0;
}

static void tda10086_diseqc_wait(struct tda10086_state *state)
{
      unsigned long timeout = jiffies + msecs_to_jiffies(200);
      while (!(tda10086_read_byte(state, 0x50) & 0x01)) {
            if(time_after(jiffies, timeout)) {
                  printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
                  break;
            }
            msleep(10);
      }
}

static int tda10086_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
      struct tda10086_state* state = fe->demodulator_priv;

      dprintk ("%s\n", __FUNCTION__);

      switch (tone) {
      case SEC_TONE_OFF:
            tda10086_write_byte(state, 0x36, 0x80);
            break;

      case SEC_TONE_ON:
            tda10086_write_byte(state, 0x36, 0x81);
            break;
      }

      return 0;
}

static int tda10086_send_master_cmd (struct dvb_frontend* fe,
                            struct dvb_diseqc_master_cmd* cmd)
{
      struct tda10086_state* state = fe->demodulator_priv;
      int i;
      u8 oldval;

      dprintk ("%s\n", __FUNCTION__);

      if (cmd->msg_len > 6)
            return -EINVAL;
      oldval = tda10086_read_byte(state, 0x36);

      for(i=0; i< cmd->msg_len; i++) {
            tda10086_write_byte(state, 0x48+i, cmd->msg[i]);
      }
      tda10086_write_byte(state, 0x36, 0x88 | ((cmd->msg_len - 1) << 4));

      tda10086_diseqc_wait(state);

      tda10086_write_byte(state, 0x36, oldval);

      return 0;
}

static int tda10086_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
{
      struct tda10086_state* state = fe->demodulator_priv;
      u8 oldval = tda10086_read_byte(state, 0x36);

      dprintk ("%s\n", __FUNCTION__);

      switch(minicmd) {
      case SEC_MINI_A:
            tda10086_write_byte(state, 0x36, 0x84);
            break;

      case SEC_MINI_B:
            tda10086_write_byte(state, 0x36, 0x86);
            break;
      }

      tda10086_diseqc_wait(state);

      tda10086_write_byte(state, 0x36, oldval);

      return 0;
}

static int tda10086_set_inversion(struct tda10086_state *state,
                          struct dvb_frontend_parameters *fe_params)
{
      u8 invval = 0x80;

      dprintk ("%s %i %i\n", __FUNCTION__, fe_params->inversion, state->config->invert);

      switch(fe_params->inversion) {
      case INVERSION_OFF:
            if (state->config->invert)
                  invval = 0x40;
            break;
      case INVERSION_ON:
            if (!state->config->invert)
                  invval = 0x40;
            break;
      case INVERSION_AUTO:
            invval = 0x00;
            break;
      }
      tda10086_write_mask(state, 0x0c, 0xc0, invval);

      return 0;
}

static int tda10086_set_symbol_rate(struct tda10086_state *state,
                            struct dvb_frontend_parameters *fe_params)
{
      u8 dfn = 0;
      u8 afs = 0;
      u8 byp = 0;
      u8 reg37 = 0x43;
      u8 reg42 = 0x43;
      u64 big;
      u32 tmp;
      u32 bdr;
      u32 bdri;
      u32 symbol_rate = fe_params->u.qpsk.symbol_rate;

      dprintk ("%s %i\n", __FUNCTION__, symbol_rate);

      // setup the decimation and anti-aliasing filters..
      if (symbol_rate < (u32) (SACLK * 0.0137)) {
            dfn=4;
            afs=1;
      } else if (symbol_rate < (u32) (SACLK * 0.0208)) {
            dfn=4;
            afs=0;
      } else if (symbol_rate < (u32) (SACLK * 0.0270)) {
            dfn=3;
            afs=1;
      } else if (symbol_rate < (u32) (SACLK * 0.0416)) {
            dfn=3;
            afs=0;
      } else if (symbol_rate < (u32) (SACLK * 0.0550)) {
            dfn=2;
            afs=1;
      } else if (symbol_rate < (u32) (SACLK * 0.0833)) {
            dfn=2;
            afs=0;
      } else if (symbol_rate < (u32) (SACLK * 0.1100)) {
            dfn=1;
            afs=1;
      } else if (symbol_rate < (u32) (SACLK * 0.1666)) {
            dfn=1;
            afs=0;
      } else if (symbol_rate < (u32) (SACLK * 0.2200)) {
            dfn=0;
            afs=1;
      } else if (symbol_rate < (u32) (SACLK * 0.3333)) {
            dfn=0;
            afs=0;
      } else {
            reg37 = 0x63;
            reg42 = 0x4f;
            byp=1;
      }

      // calculate BDR
      big = (1ULL<<21) * ((u64) symbol_rate/1000ULL) * (1ULL<<dfn);
      big += ((SACLK/1000ULL)-1ULL);
      do_div(big, (SACLK/1000ULL));
      bdr = big & 0xfffff;

      // calculate BDRI
      tmp = (1<<dfn)*(symbol_rate/1000);
      bdri = ((32 * (SACLK/1000)) + (tmp-1)) / tmp;

      tda10086_write_byte(state, 0x21, (afs << 7) | dfn);
      tda10086_write_mask(state, 0x20, 0x08, byp << 3);
      tda10086_write_byte(state, 0x06, bdr);
      tda10086_write_byte(state, 0x07, bdr >> 8);
      tda10086_write_byte(state, 0x08, bdr >> 16);
      tda10086_write_byte(state, 0x09, bdri);
      tda10086_write_byte(state, 0x37, reg37);
      tda10086_write_byte(state, 0x42, reg42);

      return 0;
}

static int tda10086_set_fec(struct tda10086_state *state,
                      struct dvb_frontend_parameters *fe_params)
{
      u8 fecval;

      dprintk ("%s %i\n", __FUNCTION__, fe_params->u.qpsk.fec_inner);

      switch(fe_params->u.qpsk.fec_inner) {
      case FEC_1_2:
            fecval = 0x00;
            break;
      case FEC_2_3:
            fecval = 0x01;
            break;
      case FEC_3_4:
            fecval = 0x02;
            break;
      case FEC_4_5:
            fecval = 0x03;
            break;
      case FEC_5_6:
            fecval = 0x04;
            break;
      case FEC_6_7:
            fecval = 0x05;
            break;
      case FEC_7_8:
            fecval = 0x06;
            break;
      case FEC_8_9:
            fecval = 0x07;
            break;
      case FEC_AUTO:
            fecval = 0x08;
            break;
      default:
            return -1;
      }
      tda10086_write_byte(state, 0x0d, fecval);

      return 0;
}

static int tda10086_set_frontend(struct dvb_frontend* fe,
                         struct dvb_frontend_parameters *fe_params)
{
      struct tda10086_state *state = fe->demodulator_priv;
      int ret;
      u32 freq = 0;
      int freqoff;

      dprintk ("%s\n", __FUNCTION__);

      // modify parameters for tuning
      tda10086_write_byte(state, 0x02, 0x35);
      state->has_lock = false;

      // set params
      if (fe->ops.tuner_ops.set_params) {
            fe->ops.tuner_ops.set_params(fe, fe_params);
            if (fe->ops.i2c_gate_ctrl)
                  fe->ops.i2c_gate_ctrl(fe, 0);

            if (fe->ops.tuner_ops.get_frequency)
                  fe->ops.tuner_ops.get_frequency(fe, &freq);
            if (fe->ops.i2c_gate_ctrl)
                  fe->ops.i2c_gate_ctrl(fe, 0);
      }

      // calcluate the frequency offset (in *Hz* not kHz)
      freqoff = fe_params->frequency - freq;
      freqoff = ((1<<16) * freqoff) / (SACLK/1000);
      tda10086_write_byte(state, 0x3d, 0x80 | ((freqoff >> 8) & 0x7f));
      tda10086_write_byte(state, 0x3e, freqoff);

      if ((ret = tda10086_set_inversion(state, fe_params)) < 0)
            return ret;
      if ((ret = tda10086_set_symbol_rate(state, fe_params)) < 0)
            return ret;
      if ((ret = tda10086_set_fec(state, fe_params)) < 0)
            return ret;

      // soft reset + disable TS output until lock
      tda10086_write_mask(state, 0x10, 0x40, 0x40);
      tda10086_write_mask(state, 0x00, 0x01, 0x00);

      state->symbol_rate = fe_params->u.qpsk.symbol_rate;
      state->frequency = fe_params->frequency;
      return 0;
}

static int tda10086_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
{
      struct tda10086_state* state = fe->demodulator_priv;
      u8 val;
      int tmp;
      u64 tmp64;

      dprintk ("%s\n", __FUNCTION__);

      // check for invalid symbol rate
      if (fe_params->u.qpsk.symbol_rate < 500000)
            return -EINVAL;

      // calculate the updated frequency (note: we convert from Hz->kHz)
      tmp64 = tda10086_read_byte(state, 0x52);
      tmp64 |= (tda10086_read_byte(state, 0x51) << 8);
      if (tmp64 & 0x8000)
            tmp64 |= 0xffffffffffff0000ULL;
      tmp64 = (tmp64 * (SACLK/1000ULL));
      do_div(tmp64, (1ULL<<15) * (1ULL<<1));
      fe_params->frequency = (int) state->frequency + (int) tmp64;

      // the inversion
      val = tda10086_read_byte(state, 0x0c);
      if (val & 0x80) {
            switch(val & 0x40) {
            case 0x00:
                  fe_params->inversion = INVERSION_OFF;
                  if (state->config->invert)
                        fe_params->inversion = INVERSION_ON;
                  break;
            default:
                  fe_params->inversion = INVERSION_ON;
                  if (state->config->invert)
                        fe_params->inversion = INVERSION_OFF;
                  break;
            }
      } else {
            tda10086_read_byte(state, 0x0f);
            switch(val & 0x02) {
            case 0x00:
                  fe_params->inversion = INVERSION_OFF;
                  if (state->config->invert)
                        fe_params->inversion = INVERSION_ON;
                  break;
            default:
                  fe_params->inversion = INVERSION_ON;
                  if (state->config->invert)
                        fe_params->inversion = INVERSION_OFF;
                  break;
            }
      }

      // calculate the updated symbol rate
      tmp = tda10086_read_byte(state, 0x1d);
      if (tmp & 0x80)
            tmp |= 0xffffff00;
      tmp = (tmp * 480 * (1<<1)) / 128;
      tmp = ((state->symbol_rate/1000) * tmp) / (1000000/1000);
      fe_params->u.qpsk.symbol_rate = state->symbol_rate + tmp;

      // the FEC
      val = (tda10086_read_byte(state, 0x0d) & 0x70) >> 4;
      switch(val) {
      case 0x00:
            fe_params->u.qpsk.fec_inner = FEC_1_2;
            break;
      case 0x01:
            fe_params->u.qpsk.fec_inner = FEC_2_3;
            break;
      case 0x02:
            fe_params->u.qpsk.fec_inner = FEC_3_4;
            break;
      case 0x03:
            fe_params->u.qpsk.fec_inner = FEC_4_5;
            break;
      case 0x04:
            fe_params->u.qpsk.fec_inner = FEC_5_6;
            break;
      case 0x05:
            fe_params->u.qpsk.fec_inner = FEC_6_7;
            break;
      case 0x06:
            fe_params->u.qpsk.fec_inner = FEC_7_8;
            break;
      case 0x07:
            fe_params->u.qpsk.fec_inner = FEC_8_9;
            break;
      }

      return 0;
}

static int tda10086_read_status(struct dvb_frontend* fe, fe_status_t *fe_status)
{
      struct tda10086_state* state = fe->demodulator_priv;
      u8 val;

      dprintk ("%s\n", __FUNCTION__);

      val = tda10086_read_byte(state, 0x0e);
      *fe_status = 0;
      if (val & 0x01)
            *fe_status |= FE_HAS_SIGNAL;
      if (val & 0x02)
            *fe_status |= FE_HAS_CARRIER;
      if (val & 0x04)
            *fe_status |= FE_HAS_VITERBI;
      if (val & 0x08)
            *fe_status |= FE_HAS_SYNC;
      if (val & 0x10) {
            *fe_status |= FE_HAS_LOCK;
            if (!state->has_lock) {
                  state->has_lock = true;
                  // modify parameters for stable reception
                  tda10086_write_byte(state, 0x02, 0x00);
            }
      }

      return 0;
}

static int tda10086_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
{
      struct tda10086_state* state = fe->demodulator_priv;
      u8 _str;

      dprintk ("%s\n", __FUNCTION__);

      _str = 0xff - tda10086_read_byte(state, 0x43);
      *signal = (_str << 8) | _str;

      return 0;
}

static int tda10086_read_snr(struct dvb_frontend* fe, u16 * snr)
{
      struct tda10086_state* state = fe->demodulator_priv;
      u8 _snr;

      dprintk ("%s\n", __FUNCTION__);

      _snr = 0xff - tda10086_read_byte(state, 0x1c);
      *snr = (_snr << 8) | _snr;

      return 0;
}

static int tda10086_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
      struct tda10086_state* state = fe->demodulator_priv;

      dprintk ("%s\n", __FUNCTION__);

      // read it
      *ucblocks = tda10086_read_byte(state, 0x18) & 0x7f;

      // reset counter
      tda10086_write_byte(state, 0x18, 0x00);
      tda10086_write_byte(state, 0x18, 0x80);

      return 0;
}

static int tda10086_read_ber(struct dvb_frontend* fe, u32* ber)
{
      struct tda10086_state* state = fe->demodulator_priv;

      dprintk ("%s\n", __FUNCTION__);

      // read it
      *ber = 0;
      *ber |= tda10086_read_byte(state, 0x15);
      *ber |= tda10086_read_byte(state, 0x16) << 8;
      *ber |= (tda10086_read_byte(state, 0x17) & 0xf) << 16;

      return 0;
}

static int tda10086_sleep(struct dvb_frontend* fe)
{
      struct tda10086_state* state = fe->demodulator_priv;

      dprintk ("%s\n", __FUNCTION__);

      tda10086_write_mask(state, 0x00, 0x08, 0x08);

      return 0;
}

static int tda10086_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
      struct tda10086_state* state = fe->demodulator_priv;

      dprintk ("%s\n", __FUNCTION__);

      if (enable) {
            tda10086_write_mask(state, 0x00, 0x10, 0x10);
      } else {
            tda10086_write_mask(state, 0x00, 0x10, 0x00);
      }

      return 0;
}

static int tda10086_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
      if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) {
            fesettings->min_delay_ms = 50;
            fesettings->step_size = 2000;
            fesettings->max_drift = 8000;
      } else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) {
            fesettings->min_delay_ms = 100;
            fesettings->step_size = 1500;
            fesettings->max_drift = 9000;
      } else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) {
            fesettings->min_delay_ms = 100;
            fesettings->step_size = 1000;
            fesettings->max_drift = 8000;
      } else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) {
            fesettings->min_delay_ms = 100;
            fesettings->step_size = 500;
            fesettings->max_drift = 7000;
      } else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) {
            fesettings->min_delay_ms = 200;
            fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
            fesettings->max_drift = 14 * fesettings->step_size;
      } else {
            fesettings->min_delay_ms = 200;
            fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
            fesettings->max_drift = 18 * fesettings->step_size;
      }

      return 0;
}

static void tda10086_release(struct dvb_frontend* fe)
{
      struct tda10086_state *state = fe->demodulator_priv;
      tda10086_sleep(fe);
      kfree(state);
}

static struct dvb_frontend_ops tda10086_ops = {

      .info = {
            .name     = "Philips TDA10086 DVB-S",
            .type     = FE_QPSK,
            .frequency_min    = 950000,
            .frequency_max    = 2150000,
            .frequency_stepsize = 125,     /* kHz for QPSK frontends */
            .symbol_rate_min  = 1000000,
            .symbol_rate_max  = 45000000,
            .caps = FE_CAN_INVERSION_AUTO |
                  FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
                  FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
                  FE_CAN_QPSK
      },

      .release = tda10086_release,

      .init = tda10086_init,
      .sleep = tda10086_sleep,
      .i2c_gate_ctrl = tda10086_i2c_gate_ctrl,

      .set_frontend = tda10086_set_frontend,
      .get_frontend = tda10086_get_frontend,
      .get_tune_settings = tda10086_get_tune_settings,

      .read_status = tda10086_read_status,
      .read_ber = tda10086_read_ber,
      .read_signal_strength = tda10086_read_signal_strength,
      .read_snr = tda10086_read_snr,
      .read_ucblocks = tda10086_read_ucblocks,

      .diseqc_send_master_cmd = tda10086_send_master_cmd,
      .diseqc_send_burst = tda10086_send_burst,
      .set_tone = tda10086_set_tone,
};

struct dvb_frontend* tda10086_attach(const struct tda10086_config* config,
                             struct i2c_adapter* i2c)
{
      struct tda10086_state *state;

      dprintk ("%s\n", __FUNCTION__);

      /* allocate memory for the internal state */
      state = kmalloc(sizeof(struct tda10086_state), GFP_KERNEL);
      if (!state)
            return NULL;

      /* setup the state */
      state->config = config;
      state->i2c = i2c;

      /* check if the demod is there */
      if (tda10086_read_byte(state, 0x1e) != 0xe1) {
            kfree(state);
            return NULL;
      }

      /* create dvb_frontend */
      memcpy(&state->frontend.ops, &tda10086_ops, sizeof(struct dvb_frontend_ops));
      state->frontend.demodulator_priv = state;
      return &state->frontend;
}

module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");

MODULE_DESCRIPTION("Philips TDA10086 DVB-S Demodulator");
MODULE_AUTHOR("Andrew de Quincey");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(tda10086_attach);

Generated by  Doxygen 1.6.0   Back to index