Logo Search packages:      
Sourcecode: linux version File versions  Download package

thermal.c

/*
 *  acpi_thermal.c - ACPI Thermal Zone Driver ($Revision: 41 $)
 *
 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or (at
 *  your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *  This driver fully implements the ACPI thermal policy as described in the
 *  ACPI 2.0 Specification.
 *
 *  TBD: 1. Implement passive cooling hysteresis.
 *       2. Enhance passive cooling (CPU) states/limit interface to support
 *          concepts of 'multiple limiters', upper/lower limits, etc.
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dmi.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/kmod.h>
#include <linux/seq_file.h>
#include <linux/reboot.h>
#include <asm/uaccess.h>

#include <acpi/acpi_bus.h>
#include <acpi/acpi_drivers.h>

#define ACPI_THERMAL_COMPONENT            0x04000000
#define ACPI_THERMAL_CLASS          "thermal_zone"
#define ACPI_THERMAL_DEVICE_NAME    "Thermal Zone"
#define ACPI_THERMAL_FILE_STATE           "state"
#define ACPI_THERMAL_FILE_TEMPERATURE     "temperature"
#define ACPI_THERMAL_FILE_TRIP_POINTS     "trip_points"
#define ACPI_THERMAL_FILE_COOLING_MODE    "cooling_mode"
#define ACPI_THERMAL_FILE_POLLING_FREQ    "polling_frequency"
#define ACPI_THERMAL_NOTIFY_TEMPERATURE   0x80
#define ACPI_THERMAL_NOTIFY_THRESHOLDS    0x81
#define ACPI_THERMAL_NOTIFY_DEVICES 0x82
#define ACPI_THERMAL_NOTIFY_CRITICAL      0xF0
#define ACPI_THERMAL_NOTIFY_HOT           0xF1
#define ACPI_THERMAL_MODE_ACTIVE    0x00

#define ACPI_THERMAL_MAX_ACTIVE     10
#define ACPI_THERMAL_MAX_LIMIT_STR_LEN 65

#define KELVIN_TO_CELSIUS(t)    (long)(((long)t-2732>=0) ? ((long)t-2732+5)/10 : ((long)t-2732-5)/10)
#define CELSIUS_TO_KELVIN(t)  ((t+273)*10)

#define _COMPONENT            ACPI_THERMAL_COMPONENT
ACPI_MODULE_NAME("thermal");

MODULE_AUTHOR("Paul Diefenbaugh");
MODULE_DESCRIPTION("ACPI Thermal Zone Driver");
MODULE_LICENSE("GPL");

static int act;
module_param(act, int, 0644);
MODULE_PARM_DESC(act, "Disable or override all lowest active trip points.");

static int crt;
module_param(crt, int, 0644);
MODULE_PARM_DESC(crt, "Disable or lower all critical trip points.");

static int tzp;
module_param(tzp, int, 0444);
MODULE_PARM_DESC(tzp, "Thermal zone polling frequency, in 1/10 seconds.");

static int nocrt;
module_param(nocrt, int, 0);
MODULE_PARM_DESC(nocrt, "Set to take no action upon ACPI thermal zone critical trips points.");

static int off;
module_param(off, int, 0);
MODULE_PARM_DESC(off, "Set to disable ACPI thermal support.");

static int psv;
module_param(psv, int, 0644);
MODULE_PARM_DESC(psv, "Disable or override all passive trip points.");

static int acpi_thermal_add(struct acpi_device *device);
static int acpi_thermal_remove(struct acpi_device *device, int type);
static int acpi_thermal_resume(struct acpi_device *device);
static int acpi_thermal_state_open_fs(struct inode *inode, struct file *file);
static int acpi_thermal_temp_open_fs(struct inode *inode, struct file *file);
static int acpi_thermal_trip_open_fs(struct inode *inode, struct file *file);
static int acpi_thermal_cooling_open_fs(struct inode *inode, struct file *file);
static ssize_t acpi_thermal_write_cooling_mode(struct file *,
                                     const char __user *, size_t,
                                     loff_t *);
static int acpi_thermal_polling_open_fs(struct inode *inode, struct file *file);
static ssize_t acpi_thermal_write_polling(struct file *, const char __user *,
                                size_t, loff_t *);

static const struct acpi_device_id  thermal_device_ids[] = {
      {ACPI_THERMAL_HID, 0},
      {"", 0},
};
MODULE_DEVICE_TABLE(acpi, thermal_device_ids);

static struct acpi_driver acpi_thermal_driver = {
      .name = "thermal",
      .class = ACPI_THERMAL_CLASS,
      .ids = thermal_device_ids,
      .ops = {
            .add = acpi_thermal_add,
            .remove = acpi_thermal_remove,
            .resume = acpi_thermal_resume,
            },
};

struct acpi_thermal_state {
      u8 critical:1;
      u8 hot:1;
      u8 passive:1;
      u8 active:1;
      u8 reserved:4;
      int active_index;
};

struct acpi_thermal_state_flags {
      u8 valid:1;
      u8 enabled:1;
      u8 reserved:6;
};

struct acpi_thermal_critical {
      struct acpi_thermal_state_flags flags;
      unsigned long temperature;
};

struct acpi_thermal_hot {
      struct acpi_thermal_state_flags flags;
      unsigned long temperature;
};

struct acpi_thermal_passive {
      struct acpi_thermal_state_flags flags;
      unsigned long temperature;
      unsigned long tc1;
      unsigned long tc2;
      unsigned long tsp;
      struct acpi_handle_list devices;
};

struct acpi_thermal_active {
      struct acpi_thermal_state_flags flags;
      unsigned long temperature;
      struct acpi_handle_list devices;
};

struct acpi_thermal_trips {
      struct acpi_thermal_critical critical;
      struct acpi_thermal_hot hot;
      struct acpi_thermal_passive passive;
      struct acpi_thermal_active active[ACPI_THERMAL_MAX_ACTIVE];
};

struct acpi_thermal_flags {
      u8 cooling_mode:1;      /* _SCP */
      u8 devices:1;           /* _TZD */
      u8 reserved:6;
};

struct acpi_thermal {
      struct acpi_device * device;
      acpi_bus_id name;
      unsigned long temperature;
      unsigned long last_temperature;
      unsigned long polling_frequency;
      volatile u8 zombie;
      struct acpi_thermal_flags flags;
      struct acpi_thermal_state state;
      struct acpi_thermal_trips trips;
      struct acpi_handle_list devices;
      struct timer_list timer;
      struct mutex lock;
};

static const struct file_operations acpi_thermal_state_fops = {
      .open = acpi_thermal_state_open_fs,
      .read = seq_read,
      .llseek = seq_lseek,
      .release = single_release,
};

static const struct file_operations acpi_thermal_temp_fops = {
      .open = acpi_thermal_temp_open_fs,
      .read = seq_read,
      .llseek = seq_lseek,
      .release = single_release,
};

static const struct file_operations acpi_thermal_trip_fops = {
      .open = acpi_thermal_trip_open_fs,
      .read = seq_read,
      .llseek = seq_lseek,
      .release = single_release,
};

static const struct file_operations acpi_thermal_cooling_fops = {
      .open = acpi_thermal_cooling_open_fs,
      .read = seq_read,
      .write = acpi_thermal_write_cooling_mode,
      .llseek = seq_lseek,
      .release = single_release,
};

static const struct file_operations acpi_thermal_polling_fops = {
      .open = acpi_thermal_polling_open_fs,
      .read = seq_read,
      .write = acpi_thermal_write_polling,
      .llseek = seq_lseek,
      .release = single_release,
};

/* --------------------------------------------------------------------------
                             Thermal Zone Management
   -------------------------------------------------------------------------- */

static int acpi_thermal_get_temperature(struct acpi_thermal *tz)
{
      acpi_status status = AE_OK;


      if (!tz)
            return -EINVAL;

      tz->last_temperature = tz->temperature;

      status =
          acpi_evaluate_integer(tz->device->handle, "_TMP", NULL, &tz->temperature);
      if (ACPI_FAILURE(status))
            return -ENODEV;

      ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Temperature is %lu dK\n",
                    tz->temperature));

      return 0;
}

static int acpi_thermal_get_polling_frequency(struct acpi_thermal *tz)
{
      acpi_status status = AE_OK;


      if (!tz)
            return -EINVAL;

      status =
          acpi_evaluate_integer(tz->device->handle, "_TZP", NULL,
                          &tz->polling_frequency);
      if (ACPI_FAILURE(status))
            return -ENODEV;

      ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Polling frequency is %lu dS\n",
                    tz->polling_frequency));

      return 0;
}

static int acpi_thermal_set_polling(struct acpi_thermal *tz, int seconds)
{

      if (!tz)
            return -EINVAL;

      tz->polling_frequency = seconds * 10;     /* Convert value to deci-seconds */

      ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                    "Polling frequency set to %lu seconds\n",
                    tz->polling_frequency/10));

      return 0;
}

static int acpi_thermal_set_cooling_mode(struct acpi_thermal *tz, int mode)
{
      acpi_status status = AE_OK;
      union acpi_object arg0 = { ACPI_TYPE_INTEGER };
      struct acpi_object_list arg_list = { 1, &arg0 };
      acpi_handle handle = NULL;


      if (!tz)
            return -EINVAL;

      status = acpi_get_handle(tz->device->handle, "_SCP", &handle);
      if (ACPI_FAILURE(status)) {
            ACPI_DEBUG_PRINT((ACPI_DB_INFO, "_SCP not present\n"));
            return -ENODEV;
      }

      arg0.integer.value = mode;

      status = acpi_evaluate_object(handle, NULL, &arg_list, NULL);
      if (ACPI_FAILURE(status))
            return -ENODEV;

      return 0;
}

static int acpi_thermal_get_trip_points(struct acpi_thermal *tz)
{
      acpi_status status = AE_OK;
      int i = 0;


      if (!tz)
            return -EINVAL;

      /* Critical Shutdown (required) */

      status = acpi_evaluate_integer(tz->device->handle, "_CRT", NULL,
                               &tz->trips.critical.temperature);
      if (ACPI_FAILURE(status)) {
            tz->trips.critical.flags.valid = 0;
            ACPI_EXCEPTION((AE_INFO, status, "No critical threshold"));
            return -ENODEV;
      } else {
            tz->trips.critical.flags.valid = 1;
            ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                          "Found critical threshold [%lu]\n",
                          tz->trips.critical.temperature));
      }

      if (tz->trips.critical.flags.valid == 1) {
            if (crt == -1) {
                  tz->trips.critical.flags.valid = 0;
            } else if (crt > 0) {
                  unsigned long crt_k = CELSIUS_TO_KELVIN(crt);

                  /*
                   * Allow override to lower critical threshold
                   */
                  if (crt_k < tz->trips.critical.temperature)
                        tz->trips.critical.temperature = crt_k;
            }
      }

      /* Critical Sleep (optional) */

      status =
          acpi_evaluate_integer(tz->device->handle, "_HOT", NULL,
                          &tz->trips.hot.temperature);
      if (ACPI_FAILURE(status)) {
            tz->trips.hot.flags.valid = 0;
            ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No hot threshold\n"));
      } else {
            tz->trips.hot.flags.valid = 1;
            ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found hot threshold [%lu]\n",
                          tz->trips.hot.temperature));
      }

      /* Passive: Processors (optional) */

      if (psv == -1) {
            status = AE_SUPPORT;
      } else if (psv > 0) {
            tz->trips.passive.temperature = CELSIUS_TO_KELVIN(psv);
            status = AE_OK;
      } else {
            status = acpi_evaluate_integer(tz->device->handle,
                  "_PSV", NULL, &tz->trips.passive.temperature);
      }

      if (ACPI_FAILURE(status)) {
            tz->trips.passive.flags.valid = 0;
            ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No passive threshold\n"));
      } else {
            tz->trips.passive.flags.valid = 1;

            status =
                acpi_evaluate_integer(tz->device->handle, "_TC1", NULL,
                                &tz->trips.passive.tc1);
            if (ACPI_FAILURE(status))
                  tz->trips.passive.flags.valid = 0;

            status =
                acpi_evaluate_integer(tz->device->handle, "_TC2", NULL,
                                &tz->trips.passive.tc2);
            if (ACPI_FAILURE(status))
                  tz->trips.passive.flags.valid = 0;

            status =
                acpi_evaluate_integer(tz->device->handle, "_TSP", NULL,
                                &tz->trips.passive.tsp);
            if (ACPI_FAILURE(status))
                  tz->trips.passive.flags.valid = 0;

            status =
                acpi_evaluate_reference(tz->device->handle, "_PSL", NULL,
                                  &tz->trips.passive.devices);
            if (ACPI_FAILURE(status))
                  tz->trips.passive.flags.valid = 0;

            if (!tz->trips.passive.flags.valid)
                  printk(KERN_WARNING PREFIX "Invalid passive threshold\n");
            else
                  ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                                "Found passive threshold [%lu]\n",
                                tz->trips.passive.temperature));
      }

      /* Active: Fans, etc. (optional) */

      for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) {

            char name[5] = { '_', 'A', 'C', ('0' + i), '\0' };

            if (act == -1)
                  break;      /* disable all active trip points */

            status = acpi_evaluate_integer(tz->device->handle,
                  name, NULL, &tz->trips.active[i].temperature);

            if (ACPI_FAILURE(status)) {
                  if (i == 0) /* no active trip points */
                        break;
                  if (act <= 0)     /* no override requested */
                        break;
                  if (i == 1) {     /* 1 trip point */
                        tz->trips.active[0].temperature =
                              CELSIUS_TO_KELVIN(act);
                  } else {    /* multiple trips */
                        /*
                         * Don't allow override higher than
                         * the next higher trip point
                         */
                        tz->trips.active[i - 1].temperature =
                            (tz->trips.active[i - 2].temperature <
                              CELSIUS_TO_KELVIN(act) ?
                              tz->trips.active[i - 2].temperature :
                              CELSIUS_TO_KELVIN(act));
                  }
                  break;
            }

            name[2] = 'L';
            status =
                acpi_evaluate_reference(tz->device->handle, name, NULL,
                                  &tz->trips.active[i].devices);
            if (ACPI_SUCCESS(status)) {
                  tz->trips.active[i].flags.valid = 1;
                  ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                                "Found active threshold [%d]:[%lu]\n",
                                i, tz->trips.active[i].temperature));
            } else
                  ACPI_EXCEPTION((AE_INFO, status,
                              "Invalid active threshold [%d]", i));
      }

      return 0;
}

static int acpi_thermal_get_devices(struct acpi_thermal *tz)
{
      acpi_status status = AE_OK;


      if (!tz)
            return -EINVAL;

      status =
          acpi_evaluate_reference(tz->device->handle, "_TZD", NULL, &tz->devices);
      if (ACPI_FAILURE(status))
            return -ENODEV;

      return 0;
}

static int acpi_thermal_critical(struct acpi_thermal *tz)
{
      if (!tz || !tz->trips.critical.flags.valid || nocrt)
            return -EINVAL;

      if (tz->temperature >= tz->trips.critical.temperature) {
            printk(KERN_WARNING PREFIX "Critical trip point\n");
            tz->trips.critical.flags.enabled = 1;
      } else if (tz->trips.critical.flags.enabled)
            tz->trips.critical.flags.enabled = 0;

      printk(KERN_EMERG
             "Critical temperature reached (%ld C), shutting down.\n",
             KELVIN_TO_CELSIUS(tz->temperature));
      acpi_bus_generate_proc_event(tz->device, ACPI_THERMAL_NOTIFY_CRITICAL,
                        tz->trips.critical.flags.enabled);
      acpi_bus_generate_netlink_event(tz->device->pnp.device_class,
                                tz->device->dev.bus_id,
                                ACPI_THERMAL_NOTIFY_CRITICAL,
                                tz->trips.critical.flags.enabled);

      orderly_poweroff(true);

      return 0;
}

static int acpi_thermal_hot(struct acpi_thermal *tz)
{
      if (!tz || !tz->trips.hot.flags.valid || nocrt)
            return -EINVAL;

      if (tz->temperature >= tz->trips.hot.temperature) {
            printk(KERN_WARNING PREFIX "Hot trip point\n");
            tz->trips.hot.flags.enabled = 1;
      } else if (tz->trips.hot.flags.enabled)
            tz->trips.hot.flags.enabled = 0;

      acpi_bus_generate_proc_event(tz->device, ACPI_THERMAL_NOTIFY_HOT,
                        tz->trips.hot.flags.enabled);
      acpi_bus_generate_netlink_event(tz->device->pnp.device_class,
                                tz->device->dev.bus_id,
                                ACPI_THERMAL_NOTIFY_HOT,
                                tz->trips.hot.flags.enabled);

      /* TBD: Call user-mode "sleep(S4)" function */

      return 0;
}

static void acpi_thermal_passive(struct acpi_thermal *tz)
{
      int result = 1;
      struct acpi_thermal_passive *passive = NULL;
      int trend = 0;
      int i = 0;


      if (!tz || !tz->trips.passive.flags.valid)
            return;

      passive = &(tz->trips.passive);

      /*
       * Above Trip?
       * -----------
       * Calculate the thermal trend (using the passive cooling equation)
       * and modify the performance limit for all passive cooling devices
       * accordingly.  Note that we assume symmetry.
       */
      if (tz->temperature >= passive->temperature) {
            trend =
                (passive->tc1 * (tz->temperature - tz->last_temperature)) +
                (passive->tc2 * (tz->temperature - passive->temperature));
            ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                          "trend[%d]=(tc1[%lu]*(tmp[%lu]-last[%lu]))+(tc2[%lu]*(tmp[%lu]-psv[%lu]))\n",
                          trend, passive->tc1, tz->temperature,
                          tz->last_temperature, passive->tc2,
                          tz->temperature, passive->temperature));
            passive->flags.enabled = 1;
            /* Heating up? */
            if (trend > 0)
                  for (i = 0; i < passive->devices.count; i++)
                        acpi_processor_set_thermal_limit(passive->
                                                 devices.
                                                 handles[i],
                                                 ACPI_PROCESSOR_LIMIT_INCREMENT);
            /* Cooling off? */
            else if (trend < 0) {
                  for (i = 0; i < passive->devices.count; i++)
                        /*
                         * assume that we are on highest
                         * freq/lowest thrott and can leave
                         * passive mode, even in error case
                         */
                        if (!acpi_processor_set_thermal_limit
                            (passive->devices.handles[i],
                             ACPI_PROCESSOR_LIMIT_DECREMENT))
                              result = 0;
                  /*
                   * Leave cooling mode, even if the temp might
                   * higher than trip point This is because some
                   * machines might have long thermal polling
                   * frequencies (tsp) defined. We will fall back
                   * into passive mode in next cycle (probably quicker)
                   */
                  if (result) {
                        passive->flags.enabled = 0;
                        ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                                      "Disabling passive cooling, still above threshold,"
                                      " but we are cooling down\n"));
                  }
            }
            return;
      }

      /*
       * Below Trip?
       * -----------
       * Implement passive cooling hysteresis to slowly increase performance
       * and avoid thrashing around the passive trip point.  Note that we
       * assume symmetry.
       */
      if (!passive->flags.enabled)
            return;
      for (i = 0; i < passive->devices.count; i++)
            if (!acpi_processor_set_thermal_limit
                (passive->devices.handles[i],
                 ACPI_PROCESSOR_LIMIT_DECREMENT))
                  result = 0;
      if (result) {
            passive->flags.enabled = 0;
            ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                          "Disabling passive cooling (zone is cool)\n"));
      }
}

static void acpi_thermal_active(struct acpi_thermal *tz)
{
      int result = 0;
      struct acpi_thermal_active *active = NULL;
      int i = 0;
      int j = 0;
      unsigned long maxtemp = 0;


      if (!tz)
            return;

      for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) {
            active = &(tz->trips.active[i]);
            if (!active || !active->flags.valid)
                  break;
            if (tz->temperature >= active->temperature) {
                  /*
                   * Above Threshold?
                   * ----------------
                   * If not already enabled, turn ON all cooling devices
                   * associated with this active threshold.
                   */
                  if (active->temperature > maxtemp)
                        tz->state.active_index = i;
                  maxtemp = active->temperature;
                  if (active->flags.enabled)
                        continue;
                  for (j = 0; j < active->devices.count; j++) {
                        result =
                            acpi_bus_set_power(active->devices.
                                           handles[j],
                                           ACPI_STATE_D0);
                        if (result) {
                              printk(KERN_WARNING PREFIX
                                          "Unable to turn cooling device [%p] 'on'\n",
                                          active->devices.
                                          handles[j]);
                              continue;
                        }
                        active->flags.enabled = 1;
                        ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                                      "Cooling device [%p] now 'on'\n",
                                      active->devices.handles[j]));
                  }
                  continue;
            }
            if (!active->flags.enabled)
                  continue;
            /*
             * Below Threshold?
             * ----------------
             * Turn OFF all cooling devices associated with this
             * threshold.
             */
            for (j = 0; j < active->devices.count; j++) {
                  result = acpi_bus_set_power(active->devices.handles[j],
                                        ACPI_STATE_D3);
                  if (result) {
                        printk(KERN_WARNING PREFIX
                                    "Unable to turn cooling device [%p] 'off'\n",
                                    active->devices.handles[j]);
                        continue;
                  }
                  active->flags.enabled = 0;
                  ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                                "Cooling device [%p] now 'off'\n",
                                active->devices.handles[j]));
            }
      }
}

static void acpi_thermal_check(void *context);

static void acpi_thermal_run(unsigned long data)
{
      struct acpi_thermal *tz = (struct acpi_thermal *)data;
      if (!tz->zombie)
            acpi_os_execute(OSL_GPE_HANDLER, acpi_thermal_check, (void *)data);
}

static void acpi_thermal_check(void *data)
{
      int result = 0;
      struct acpi_thermal *tz = data;
      unsigned long sleep_time = 0;
      unsigned long timeout_jiffies = 0;
      int i = 0;
      struct acpi_thermal_state state;


      if (!tz) {
            printk(KERN_ERR PREFIX "Invalid (NULL) context\n");
            return;
      }

      /* Check if someone else is already running */
      if (!mutex_trylock(&tz->lock))
            return;

      state = tz->state;

      result = acpi_thermal_get_temperature(tz);
      if (result)
            goto unlock;

      memset(&tz->state, 0, sizeof(tz->state));

      /*
       * Check Trip Points
       * -----------------
       * Compare the current temperature to the trip point values to see
       * if we've entered one of the thermal policy states.  Note that
       * this function determines when a state is entered, but the 
       * individual policy decides when it is exited (e.g. hysteresis).
       */
      if (tz->trips.critical.flags.valid)
            state.critical |=
                (tz->temperature >= tz->trips.critical.temperature);
      if (tz->trips.hot.flags.valid)
            state.hot |= (tz->temperature >= tz->trips.hot.temperature);
      if (tz->trips.passive.flags.valid)
            state.passive |=
                (tz->temperature >= tz->trips.passive.temperature);
      for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++)
            if (tz->trips.active[i].flags.valid)
                  state.active |=
                      (tz->temperature >=
                       tz->trips.active[i].temperature);

      /*
       * Invoke Policy
       * -------------
       * Separated from the above check to allow individual policy to 
       * determine when to exit a given state.
       */
      if (state.critical)
            acpi_thermal_critical(tz);
      if (state.hot)
            acpi_thermal_hot(tz);
      if (state.passive)
            acpi_thermal_passive(tz);
      if (state.active)
            acpi_thermal_active(tz);

      /*
       * Calculate State
       * ---------------
       * Again, separated from the above two to allow independent policy
       * decisions.
       */
      tz->state.critical = tz->trips.critical.flags.enabled;
      tz->state.hot = tz->trips.hot.flags.enabled;
      tz->state.passive = tz->trips.passive.flags.enabled;
      tz->state.active = 0;
      for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++)
            tz->state.active |= tz->trips.active[i].flags.enabled;

      /*
       * Calculate Sleep Time
       * --------------------
       * If we're in the passive state, use _TSP's value.  Otherwise
       * use the default polling frequency (e.g. _TZP).  If no polling
       * frequency is specified then we'll wait forever (at least until
       * a thermal event occurs).  Note that _TSP and _TZD values are
       * given in 1/10th seconds (we must covert to milliseconds).
       */
      if (tz->state.passive) {
            sleep_time = tz->trips.passive.tsp * 100;
            timeout_jiffies =  jiffies + (HZ * sleep_time) / 1000;
      } else if (tz->polling_frequency > 0) {
            sleep_time = tz->polling_frequency * 100;
            timeout_jiffies =  round_jiffies(jiffies + (HZ * sleep_time) / 1000);
      }

      ACPI_DEBUG_PRINT((ACPI_DB_INFO, "%s: temperature[%lu] sleep[%lu]\n",
                    tz->name, tz->temperature, sleep_time));

      /*
       * Schedule Next Poll
       * ------------------
       */
      if (!sleep_time) {
            if (timer_pending(&(tz->timer)))
                  del_timer(&(tz->timer));
      } else {
            if (timer_pending(&(tz->timer)))
                  mod_timer(&(tz->timer), timeout_jiffies);
            else {
                  tz->timer.data = (unsigned long)tz;
                  tz->timer.function = acpi_thermal_run;
                  tz->timer.expires = timeout_jiffies;
                  add_timer(&(tz->timer));
            }
      }
      unlock:
      mutex_unlock(&tz->lock);
}

/* --------------------------------------------------------------------------
                              FS Interface (/proc)
   -------------------------------------------------------------------------- */

static struct proc_dir_entry *acpi_thermal_dir;

static int acpi_thermal_state_seq_show(struct seq_file *seq, void *offset)
{
      struct acpi_thermal *tz = seq->private;


      if (!tz)
            goto end;

      seq_puts(seq, "state:                   ");

      if (!tz->state.critical && !tz->state.hot && !tz->state.passive
          && !tz->state.active)
            seq_puts(seq, "ok\n");
      else {
            if (tz->state.critical)
                  seq_puts(seq, "critical ");
            if (tz->state.hot)
                  seq_puts(seq, "hot ");
            if (tz->state.passive)
                  seq_puts(seq, "passive ");
            if (tz->state.active)
                  seq_printf(seq, "active[%d]", tz->state.active_index);
            seq_puts(seq, "\n");
      }

      end:
      return 0;
}

static int acpi_thermal_state_open_fs(struct inode *inode, struct file *file)
{
      return single_open(file, acpi_thermal_state_seq_show, PDE(inode)->data);
}

static int acpi_thermal_temp_seq_show(struct seq_file *seq, void *offset)
{
      int result = 0;
      struct acpi_thermal *tz = seq->private;


      if (!tz)
            goto end;

      result = acpi_thermal_get_temperature(tz);
      if (result)
            goto end;

      seq_printf(seq, "temperature:             %ld C\n",
               KELVIN_TO_CELSIUS(tz->temperature));

      end:
      return 0;
}

static int acpi_thermal_temp_open_fs(struct inode *inode, struct file *file)
{
      return single_open(file, acpi_thermal_temp_seq_show, PDE(inode)->data);
}

static int acpi_thermal_trip_seq_show(struct seq_file *seq, void *offset)
{
      struct acpi_thermal *tz = seq->private;
      struct acpi_device *device;
      acpi_status status;

      int i = 0;
      int j = 0;


      if (!tz)
            goto end;

      if (tz->trips.critical.flags.valid)
            seq_printf(seq, "critical (S5):           %ld C%s",
                     KELVIN_TO_CELSIUS(tz->trips.critical.temperature),
                     nocrt ? " <disabled>\n" : "\n");

      if (tz->trips.hot.flags.valid)
            seq_printf(seq, "hot (S4):                %ld C%s",
                     KELVIN_TO_CELSIUS(tz->trips.hot.temperature),
                     nocrt ? " <disabled>\n" : "\n");

      if (tz->trips.passive.flags.valid) {
            seq_printf(seq,
                     "passive:                 %ld C: tc1=%lu tc2=%lu tsp=%lu devices=",
                     KELVIN_TO_CELSIUS(tz->trips.passive.temperature),
                     tz->trips.passive.tc1, tz->trips.passive.tc2,
                     tz->trips.passive.tsp);
            for (j = 0; j < tz->trips.passive.devices.count; j++) {
                  status = acpi_bus_get_device(tz->trips.passive.devices.
                                         handles[j], &device);
                  seq_printf(seq, "%4.4s ", status ? "" :
                           acpi_device_bid(device));
            }
            seq_puts(seq, "\n");
      }

      for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) {
            if (!(tz->trips.active[i].flags.valid))
                  break;
            seq_printf(seq, "active[%d]:               %ld C: devices=",
                     i,
                     KELVIN_TO_CELSIUS(tz->trips.active[i].temperature));
            for (j = 0; j < tz->trips.active[i].devices.count; j++){
                  status = acpi_bus_get_device(tz->trips.active[i].
                                         devices.handles[j],
                                         &device);
                  seq_printf(seq, "%4.4s ", status ? "" :
                           acpi_device_bid(device));
            }
            seq_puts(seq, "\n");
      }

      end:
      return 0;
}

static int acpi_thermal_trip_open_fs(struct inode *inode, struct file *file)
{
      return single_open(file, acpi_thermal_trip_seq_show, PDE(inode)->data);
}

static int acpi_thermal_cooling_seq_show(struct seq_file *seq, void *offset)
{
      struct acpi_thermal *tz = seq->private;


      if (!tz)
            goto end;

      if (!tz->flags.cooling_mode)
            seq_puts(seq, "<setting not supported>\n");
      else
            seq_puts(seq, "0 - Active; 1 - Passive\n");

      end:
      return 0;
}

static int acpi_thermal_cooling_open_fs(struct inode *inode, struct file *file)
{
      return single_open(file, acpi_thermal_cooling_seq_show,
                     PDE(inode)->data);
}

static ssize_t
acpi_thermal_write_cooling_mode(struct file *file,
                        const char __user * buffer,
                        size_t count, loff_t * ppos)
{
      struct seq_file *m = file->private_data;
      struct acpi_thermal *tz = m->private;
      int result = 0;
      char mode_string[12] = { '\0' };


      if (!tz || (count > sizeof(mode_string) - 1))
            return -EINVAL;

      if (!tz->flags.cooling_mode)
            return -ENODEV;

      if (copy_from_user(mode_string, buffer, count))
            return -EFAULT;

      mode_string[count] = '\0';

      result = acpi_thermal_set_cooling_mode(tz,
                                     simple_strtoul(mode_string, NULL,
                                                0));
      if (result)
            return result;

      acpi_thermal_check(tz);

      return count;
}

static int acpi_thermal_polling_seq_show(struct seq_file *seq, void *offset)
{
      struct acpi_thermal *tz = seq->private;


      if (!tz)
            goto end;

      if (!tz->polling_frequency) {
            seq_puts(seq, "<polling disabled>\n");
            goto end;
      }

      seq_printf(seq, "polling frequency:       %lu seconds\n",
               (tz->polling_frequency / 10));

      end:
      return 0;
}

static int acpi_thermal_polling_open_fs(struct inode *inode, struct file *file)
{
      return single_open(file, acpi_thermal_polling_seq_show,
                     PDE(inode)->data);
}

static ssize_t
acpi_thermal_write_polling(struct file *file,
                     const char __user * buffer,
                     size_t count, loff_t * ppos)
{
      struct seq_file *m = file->private_data;
      struct acpi_thermal *tz = m->private;
      int result = 0;
      char polling_string[12] = { '\0' };
      int seconds = 0;


      if (!tz || (count > sizeof(polling_string) - 1))
            return -EINVAL;

      if (copy_from_user(polling_string, buffer, count))
            return -EFAULT;

      polling_string[count] = '\0';

      seconds = simple_strtoul(polling_string, NULL, 0);

      result = acpi_thermal_set_polling(tz, seconds);
      if (result)
            return result;

      acpi_thermal_check(tz);

      return count;
}

static int acpi_thermal_add_fs(struct acpi_device *device)
{
      struct proc_dir_entry *entry = NULL;


      if (!acpi_device_dir(device)) {
            acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device),
                                         acpi_thermal_dir);
            if (!acpi_device_dir(device))
                  return -ENODEV;
            acpi_device_dir(device)->owner = THIS_MODULE;
      }

      /* 'state' [R] */
      entry = create_proc_entry(ACPI_THERMAL_FILE_STATE,
                          S_IRUGO, acpi_device_dir(device));
      if (!entry)
            return -ENODEV;
      else {
            entry->proc_fops = &acpi_thermal_state_fops;
            entry->data = acpi_driver_data(device);
            entry->owner = THIS_MODULE;
      }

      /* 'temperature' [R] */
      entry = create_proc_entry(ACPI_THERMAL_FILE_TEMPERATURE,
                          S_IRUGO, acpi_device_dir(device));
      if (!entry)
            return -ENODEV;
      else {
            entry->proc_fops = &acpi_thermal_temp_fops;
            entry->data = acpi_driver_data(device);
            entry->owner = THIS_MODULE;
      }

      /* 'trip_points' [R] */
      entry = create_proc_entry(ACPI_THERMAL_FILE_TRIP_POINTS,
                          S_IRUGO,
                          acpi_device_dir(device));
      if (!entry)
            return -ENODEV;
      else {
            entry->proc_fops = &acpi_thermal_trip_fops;
            entry->data = acpi_driver_data(device);
            entry->owner = THIS_MODULE;
      }

      /* 'cooling_mode' [R/W] */
      entry = create_proc_entry(ACPI_THERMAL_FILE_COOLING_MODE,
                          S_IFREG | S_IRUGO | S_IWUSR,
                          acpi_device_dir(device));
      if (!entry)
            return -ENODEV;
      else {
            entry->proc_fops = &acpi_thermal_cooling_fops;
            entry->data = acpi_driver_data(device);
            entry->owner = THIS_MODULE;
      }

      /* 'polling_frequency' [R/W] */
      entry = create_proc_entry(ACPI_THERMAL_FILE_POLLING_FREQ,
                          S_IFREG | S_IRUGO | S_IWUSR,
                          acpi_device_dir(device));
      if (!entry)
            return -ENODEV;
      else {
            entry->proc_fops = &acpi_thermal_polling_fops;
            entry->data = acpi_driver_data(device);
            entry->owner = THIS_MODULE;
      }

      return 0;
}

static int acpi_thermal_remove_fs(struct acpi_device *device)
{

      if (acpi_device_dir(device)) {
            remove_proc_entry(ACPI_THERMAL_FILE_POLLING_FREQ,
                          acpi_device_dir(device));
            remove_proc_entry(ACPI_THERMAL_FILE_COOLING_MODE,
                          acpi_device_dir(device));
            remove_proc_entry(ACPI_THERMAL_FILE_TRIP_POINTS,
                          acpi_device_dir(device));
            remove_proc_entry(ACPI_THERMAL_FILE_TEMPERATURE,
                          acpi_device_dir(device));
            remove_proc_entry(ACPI_THERMAL_FILE_STATE,
                          acpi_device_dir(device));
            remove_proc_entry(acpi_device_bid(device), acpi_thermal_dir);
            acpi_device_dir(device) = NULL;
      }

      return 0;
}

/* --------------------------------------------------------------------------
                                 Driver Interface
   -------------------------------------------------------------------------- */

static void acpi_thermal_notify(acpi_handle handle, u32 event, void *data)
{
      struct acpi_thermal *tz = data;
      struct acpi_device *device = NULL;


      if (!tz)
            return;

      device = tz->device;

      switch (event) {
      case ACPI_THERMAL_NOTIFY_TEMPERATURE:
            acpi_thermal_check(tz);
            break;
      case ACPI_THERMAL_NOTIFY_THRESHOLDS:
            acpi_thermal_get_trip_points(tz);
            acpi_thermal_check(tz);
            acpi_bus_generate_proc_event(device, event, 0);
            acpi_bus_generate_netlink_event(device->pnp.device_class,
                                      device->dev.bus_id, event, 0);
            break;
      case ACPI_THERMAL_NOTIFY_DEVICES:
            if (tz->flags.devices)
                  acpi_thermal_get_devices(tz);
            acpi_bus_generate_proc_event(device, event, 0);
            acpi_bus_generate_netlink_event(device->pnp.device_class,
                                      device->dev.bus_id, event, 0);
            break;
      default:
            ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                          "Unsupported event [0x%x]\n", event));
            break;
      }

      return;
}

static int acpi_thermal_get_info(struct acpi_thermal *tz)
{
      int result = 0;


      if (!tz)
            return -EINVAL;

      /* Get temperature [_TMP] (required) */
      result = acpi_thermal_get_temperature(tz);
      if (result)
            return result;

      /* Get trip points [_CRT, _PSV, etc.] (required) */
      result = acpi_thermal_get_trip_points(tz);
      if (result)
            return result;

      /* Set the cooling mode [_SCP] to active cooling (default) */
      result = acpi_thermal_set_cooling_mode(tz, ACPI_THERMAL_MODE_ACTIVE);
      if (!result)
            tz->flags.cooling_mode = 1;

      /* Get default polling frequency [_TZP] (optional) */
      if (tzp)
            tz->polling_frequency = tzp;
      else
            acpi_thermal_get_polling_frequency(tz);

      /* Get devices in this thermal zone [_TZD] (optional) */
      result = acpi_thermal_get_devices(tz);
      if (!result)
            tz->flags.devices = 1;

      return 0;
}

static int acpi_thermal_add(struct acpi_device *device)
{
      int result = 0;
      acpi_status status = AE_OK;
      struct acpi_thermal *tz = NULL;


      if (!device)
            return -EINVAL;

      tz = kzalloc(sizeof(struct acpi_thermal), GFP_KERNEL);
      if (!tz)
            return -ENOMEM;

      tz->device = device;
      strcpy(tz->name, device->pnp.bus_id);
      strcpy(acpi_device_name(device), ACPI_THERMAL_DEVICE_NAME);
      strcpy(acpi_device_class(device), ACPI_THERMAL_CLASS);
      acpi_driver_data(device) = tz;
      mutex_init(&tz->lock);
      result = acpi_thermal_get_info(tz);
      if (result)
            goto end;

      result = acpi_thermal_add_fs(device);
      if (result)
            goto end;

      init_timer(&tz->timer);

      acpi_thermal_check(tz);

      status = acpi_install_notify_handler(device->handle,
                                   ACPI_DEVICE_NOTIFY,
                                   acpi_thermal_notify, tz);
      if (ACPI_FAILURE(status)) {
            result = -ENODEV;
            goto end;
      }

      printk(KERN_INFO PREFIX "%s [%s] (%ld C)\n",
             acpi_device_name(device), acpi_device_bid(device),
             KELVIN_TO_CELSIUS(tz->temperature));

      end:
      if (result) {
            acpi_thermal_remove_fs(device);
            kfree(tz);
      }

      return result;
}

static int acpi_thermal_remove(struct acpi_device *device, int type)
{
      acpi_status status = AE_OK;
      struct acpi_thermal *tz = NULL;


      if (!device || !acpi_driver_data(device))
            return -EINVAL;

      tz = acpi_driver_data(device);

      /* avoid timer adding new defer task */
      tz->zombie = 1;
      /* wait for running timer (on other CPUs) finish */
      del_timer_sync(&(tz->timer));
      /* synchronize deferred task */
      acpi_os_wait_events_complete(NULL);
      /* deferred task may reinsert timer */
      del_timer_sync(&(tz->timer));

      status = acpi_remove_notify_handler(device->handle,
                                  ACPI_DEVICE_NOTIFY,
                                  acpi_thermal_notify);

      /* Terminate policy */
      if (tz->trips.passive.flags.valid && tz->trips.passive.flags.enabled) {
            tz->trips.passive.flags.enabled = 0;
            acpi_thermal_passive(tz);
      }
      if (tz->trips.active[0].flags.valid
          && tz->trips.active[0].flags.enabled) {
            tz->trips.active[0].flags.enabled = 0;
            acpi_thermal_active(tz);
      }

      acpi_thermal_remove_fs(device);
      mutex_destroy(&tz->lock);
      kfree(tz);
      return 0;
}

static int acpi_thermal_resume(struct acpi_device *device)
{
      struct acpi_thermal *tz = NULL;
      int i, j, power_state, result;


      if (!device || !acpi_driver_data(device))
            return -EINVAL;

      tz = acpi_driver_data(device);

      for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) {
            if (!(&tz->trips.active[i]))
                  break;
            if (!tz->trips.active[i].flags.valid)
                  break;
            tz->trips.active[i].flags.enabled = 1;
            for (j = 0; j < tz->trips.active[i].devices.count; j++) {
                  result = acpi_bus_get_power(tz->trips.active[i].devices.
                      handles[j], &power_state);
                  if (result || (power_state != ACPI_STATE_D0)) {
                        tz->trips.active[i].flags.enabled = 0;
                        break;
                  }
            }
            tz->state.active |= tz->trips.active[i].flags.enabled;
      }

      acpi_thermal_check(tz);

      return AE_OK;
}

#ifdef CONFIG_DMI
static int thermal_act(const struct dmi_system_id *d) {

      if (act == 0) {
            printk(KERN_NOTICE "ACPI: %s detected: "
                  "disabling all active thermal trip points\n", d->ident);
            act = -1;
      }
      return 0;
}
static int thermal_nocrt(const struct dmi_system_id *d) {

      printk(KERN_NOTICE "ACPI: %s detected: "
            "disabling all critical thermal trip point actions.\n", d->ident);
      nocrt = 1;
      return 0;
}
static int thermal_tzp(const struct dmi_system_id *d) {

      if (tzp == 0) {
            printk(KERN_NOTICE "ACPI: %s detected: "
                  "enabling thermal zone polling\n", d->ident);
            tzp = 300;  /* 300 dS = 30 Seconds */
      }
      return 0;
}
static int thermal_psv(const struct dmi_system_id *d) {

      if (psv == 0) {
            printk(KERN_NOTICE "ACPI: %s detected: "
                  "disabling all passive thermal trip points\n", d->ident);
            psv = -1;
      }
      return 0;
}

static struct dmi_system_id thermal_dmi_table[] __initdata = {
      /*
       * Award BIOS on this AOpen makes thermal control almost worthless.
       * http://bugzilla.kernel.org/show_bug.cgi?id=8842
       */
      {
       .callback = thermal_act,
       .ident = "AOpen i915GMm-HFS",
       .matches = {
            DMI_MATCH(DMI_BOARD_VENDOR, "AOpen"),
            DMI_MATCH(DMI_BOARD_NAME, "i915GMm-HFS"),
            },
      },
      {
       .callback = thermal_psv,
       .ident = "AOpen i915GMm-HFS",
       .matches = {
            DMI_MATCH(DMI_BOARD_VENDOR, "AOpen"),
            DMI_MATCH(DMI_BOARD_NAME, "i915GMm-HFS"),
            },
      },
      {
       .callback = thermal_tzp,
       .ident = "AOpen i915GMm-HFS",
       .matches = {
            DMI_MATCH(DMI_BOARD_VENDOR, "AOpen"),
            DMI_MATCH(DMI_BOARD_NAME, "i915GMm-HFS"),
            },
      },
      {
       .callback = thermal_nocrt,
       .ident = "Gigabyte GA-7ZX",
       .matches = {
            DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
            DMI_MATCH(DMI_BOARD_NAME, "7ZX"),
            },
      },
      {}
};
#endif /* CONFIG_DMI */

static int __init acpi_thermal_init(void)
{
      int result = 0;

      dmi_check_system(thermal_dmi_table);

      if (off) {
            printk(KERN_NOTICE "ACPI: thermal control disabled\n");
            return -ENODEV;
      }
      acpi_thermal_dir = proc_mkdir(ACPI_THERMAL_CLASS, acpi_root_dir);
      if (!acpi_thermal_dir)
            return -ENODEV;
      acpi_thermal_dir->owner = THIS_MODULE;

      result = acpi_bus_register_driver(&acpi_thermal_driver);
      if (result < 0) {
            remove_proc_entry(ACPI_THERMAL_CLASS, acpi_root_dir);
            return -ENODEV;
      }

      return 0;
}

static void __exit acpi_thermal_exit(void)
{

      acpi_bus_unregister_driver(&acpi_thermal_driver);

      remove_proc_entry(ACPI_THERMAL_CLASS, acpi_root_dir);

      return;
}

module_init(acpi_thermal_init);
module_exit(acpi_thermal_exit);

Generated by  Doxygen 1.6.0   Back to index