Logo Search packages:      
Sourcecode: linux version File versions  Download package

tsi108_eth.c

/*******************************************************************************

  Copyright(c) 2006 Tundra Semiconductor Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms of the GNU General Public License as published by the Free
  Software Foundation; either version 2 of the License, or (at your option)
  any later version.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*******************************************************************************/

/* This driver is based on the driver code originally developed
 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
 *
 * Currently changes from original version are:
 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
 * - modifications to handle two ports independently and support for
 *   additional PHY devices (alexandre.bounine@tundra.com)
 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
 *
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/rtnetlink.h>
#include <linux/timer.h>
#include <linux/platform_device.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/tsi108.h>

#include "tsi108_eth.h"

#define MII_READ_DELAY 10000  /* max link wait time in msec */

#define TSI108_RXRING_LEN     256

/* NOTE: The driver currently does not support receiving packets
 * larger than the buffer size, so don't decrease this (unless you
 * want to add such support).
 */
#define TSI108_RXBUF_SIZE     1536

#define TSI108_TXRING_LEN     256

#define TSI108_TX_INT_FREQ    64

/* Check the phy status every half a second. */
#define CHECK_PHY_INTERVAL (HZ/2)

static int tsi108_init_one(struct platform_device *pdev);
static int tsi108_ether_remove(struct platform_device *pdev);

struct tsi108_prv_data {
      void  __iomem *regs;    /* Base of normal regs */
      void  __iomem *phyregs; /* Base of register bank used for PHY access */

      struct net_device *dev;
      struct napi_struct napi;

      unsigned int phy;       /* Index of PHY for this interface */
      unsigned int irq_num;
      unsigned int id;
      unsigned int phy_type;

      struct timer_list timer;/* Timer that triggers the check phy function */
      unsigned int rxtail;    /* Next entry in rxring to read */
      unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
      unsigned int rxfree;    /* Number of free, allocated RX buffers */

      unsigned int rxpending; /* Non-zero if there are still descriptors
                         * to be processed from a previous descriptor
                         * interrupt condition that has been cleared */

      unsigned int txtail;    /* Next TX descriptor to check status on */
      unsigned int txhead;    /* Next TX descriptor to use */

      /* Number of free TX descriptors.  This could be calculated from
       * rxhead and rxtail if one descriptor were left unused to disambiguate
       * full and empty conditions, but it's simpler to just keep track
       * explicitly. */

      unsigned int txfree;

      unsigned int phy_ok;          /* The PHY is currently powered on. */

      /* PHY status (duplex is 1 for half, 2 for full,
       * so that the default 0 indicates that neither has
       * yet been configured). */

      unsigned int link_up;
      unsigned int speed;
      unsigned int duplex;

      tx_desc *txring;
      rx_desc *rxring;
      struct sk_buff *txskbs[TSI108_TXRING_LEN];
      struct sk_buff *rxskbs[TSI108_RXRING_LEN];

      dma_addr_t txdma, rxdma;

      /* txlock nests in misclock and phy_lock */

      spinlock_t txlock, misclock;

      /* stats is used to hold the upper bits of each hardware counter,
       * and tmpstats is used to hold the full values for returning
       * to the caller of get_stats().  They must be separate in case
       * an overflow interrupt occurs before the stats are consumed.
       */

      struct net_device_stats stats;
      struct net_device_stats tmpstats;

      /* These stats are kept separate in hardware, thus require individual
       * fields for handling carry.  They are combined in get_stats.
       */

      unsigned long rx_fcs;   /* Add to rx_frame_errors */
      unsigned long rx_short_fcs;   /* Add to rx_frame_errors */
      unsigned long rx_long_fcs;    /* Add to rx_frame_errors */
      unsigned long rx_underruns;   /* Add to rx_length_errors */
      unsigned long rx_overruns;    /* Add to rx_length_errors */

      unsigned long tx_coll_abort;  /* Add to tx_aborted_errors/collisions */
      unsigned long tx_pause_drop;  /* Add to tx_aborted_errors */

      unsigned long mc_hash[16];
      u32 msg_enable;               /* debug message level */
      struct mii_if_info mii_if;
      unsigned int init_media;
};

/* Structure for a device driver */

static struct platform_driver tsi_eth_driver = {
      .probe = tsi108_init_one,
      .remove = tsi108_ether_remove,
      .driver     = {
            .name = "tsi-ethernet",
      },
};

static void tsi108_timed_checker(unsigned long dev_ptr);

static void dump_eth_one(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);

      printk("Dumping %s...\n", dev->name);
      printk("intstat %x intmask %x phy_ok %d"
             " link %d speed %d duplex %d\n",
             TSI_READ(TSI108_EC_INTSTAT),
             TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
             data->link_up, data->speed, data->duplex);

      printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
             data->txhead, data->txtail, data->txfree,
             TSI_READ(TSI108_EC_TXSTAT),
             TSI_READ(TSI108_EC_TXESTAT),
             TSI_READ(TSI108_EC_TXERR));

      printk("RX: head %d, tail %d, free %d, stat %x,"
             " estat %x, err %x, pending %d\n\n",
             data->rxhead, data->rxtail, data->rxfree,
             TSI_READ(TSI108_EC_RXSTAT),
             TSI_READ(TSI108_EC_RXESTAT),
             TSI_READ(TSI108_EC_RXERR), data->rxpending);
}

/* Synchronization is needed between the thread and up/down events.
 * Note that the PHY is accessed through the same registers for both
 * interfaces, so this can't be made interface-specific.
 */

static DEFINE_SPINLOCK(phy_lock);

static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
{
      unsigned i;

      TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
                        (data->phy << TSI108_MAC_MII_ADDR_PHY) |
                        (reg << TSI108_MAC_MII_ADDR_REG));
      TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
      TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
      for (i = 0; i < 100; i++) {
            if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
                  (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
                  break;
            udelay(10);
      }

      if (i == 100)
            return 0xffff;
      else
            return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
}

static void tsi108_write_mii(struct tsi108_prv_data *data,
                        int reg, u16 val)
{
      unsigned i = 100;
      TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
                        (data->phy << TSI108_MAC_MII_ADDR_PHY) |
                        (reg << TSI108_MAC_MII_ADDR_REG));
      TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
      while (i--) {
            if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
                  TSI108_MAC_MII_IND_BUSY))
                  break;
            udelay(10);
      }
}

static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      return tsi108_read_mii(data, reg);
}

static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      tsi108_write_mii(data, reg, val);
}

static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
                              int reg, u16 val)
{
      unsigned i = 1000;
      TSI_WRITE(TSI108_MAC_MII_ADDR,
                       (0x1e << TSI108_MAC_MII_ADDR_PHY)
                       | (reg << TSI108_MAC_MII_ADDR_REG));
      TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
      while(i--) {
            if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
                  return;
            udelay(10);
      }
      printk(KERN_ERR "%s function time out \n", __FUNCTION__);
}

static int mii_speed(struct mii_if_info *mii)
{
      int advert, lpa, val, media;
      int lpa2 = 0;
      int speed;

      if (!mii_link_ok(mii))
            return 0;

      val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
      if ((val & BMSR_ANEGCOMPLETE) == 0)
            return 0;

      advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
      lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
      media = mii_nway_result(advert & lpa);

      if (mii->supports_gmii)
            lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);

      speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
                  (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
      return speed;
}

static void tsi108_check_phy(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      u32 mac_cfg2_reg, portctrl_reg;
      u32 duplex;
      u32 speed;
      unsigned long flags;

      /* Do a dummy read, as for some reason the first read
       * after a link becomes up returns link down, even if
       * it's been a while since the link came up.
       */

      spin_lock_irqsave(&phy_lock, flags);

      if (!data->phy_ok)
            goto out;

      tsi108_read_mii(data, MII_BMSR);

      duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
      data->init_media = 0;

      if (netif_carrier_ok(dev)) {

            speed = mii_speed(&data->mii_if);

            if ((speed != data->speed) || duplex) {

                  mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
                  portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);

                  mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;

                  if (speed == 1000) {
                        mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
                        portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
                  } else {
                        mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
                        portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
                  }

                  data->speed = speed;

                  if (data->mii_if.full_duplex) {
                        mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
                        portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
                        data->duplex = 2;
                  } else {
                        mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
                        portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
                        data->duplex = 1;
                  }

                  TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
                  TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);

                  if (data->link_up == 0) {
                        /* The manual says it can take 3-4 usecs for the speed change
                         * to take effect.
                         */
                        udelay(5);

                        spin_lock(&data->txlock);
                        if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
                              netif_wake_queue(dev);

                        data->link_up = 1;
                        spin_unlock(&data->txlock);
                  }
            }

      } else {
            if (data->link_up == 1) {
                  netif_stop_queue(dev);
                  data->link_up = 0;
                  printk(KERN_NOTICE "%s : link is down\n", dev->name);
            }

            goto out;
      }


out:
      spin_unlock_irqrestore(&phy_lock, flags);
}

static inline void
tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
                  unsigned long *upper)
{
      if (carry & carry_bit)
            *upper += carry_shift;
}

static void tsi108_stat_carry(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      u32 carry1, carry2;

      spin_lock_irq(&data->misclock);

      carry1 = TSI_READ(TSI108_STAT_CARRY1);
      carry2 = TSI_READ(TSI108_STAT_CARRY2);

      TSI_WRITE(TSI108_STAT_CARRY1, carry1);
      TSI_WRITE(TSI108_STAT_CARRY2, carry2);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
                        TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
                        TSI108_STAT_RXPKTS_CARRY,
                        &data->stats.rx_packets);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
                        TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
                        TSI108_STAT_RXMCAST_CARRY,
                        &data->stats.multicast);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
                        TSI108_STAT_RXALIGN_CARRY,
                        &data->stats.rx_frame_errors);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
                        TSI108_STAT_RXLENGTH_CARRY,
                        &data->stats.rx_length_errors);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
                        TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
                        TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
                        TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
                        TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);

      tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
                        TSI108_STAT_RXDROP_CARRY,
                        &data->stats.rx_missed_errors);

      tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
                        TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);

      tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
                        TSI108_STAT_TXPKTS_CARRY,
                        &data->stats.tx_packets);

      tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
                        TSI108_STAT_TXEXDEF_CARRY,
                        &data->stats.tx_aborted_errors);

      tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
                        TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);

      tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
                        TSI108_STAT_TXTCOL_CARRY,
                        &data->stats.collisions);

      tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
                        TSI108_STAT_TXPAUSEDROP_CARRY,
                        &data->tx_pause_drop);

      spin_unlock_irq(&data->misclock);
}

/* Read a stat counter atomically with respect to carries.
 * data->misclock must be held.
 */
static inline unsigned long
tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
             int carry_shift, unsigned long *upper)
{
      int carryreg;
      unsigned long val;

      if (reg < 0xb0)
            carryreg = TSI108_STAT_CARRY1;
      else
            carryreg = TSI108_STAT_CARRY2;

      again:
      val = TSI_READ(reg) | *upper;

      /* Check to see if it overflowed, but the interrupt hasn't
       * been serviced yet.  If so, handle the carry here, and
       * try again.
       */

      if (unlikely(TSI_READ(carryreg) & carry_bit)) {
            *upper += carry_shift;
            TSI_WRITE(carryreg, carry_bit);
            goto again;
      }

      return val;
}

static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
{
      unsigned long excol;

      struct tsi108_prv_data *data = netdev_priv(dev);
      spin_lock_irq(&data->misclock);

      data->tmpstats.rx_packets =
          tsi108_read_stat(data, TSI108_STAT_RXPKTS,
                       TSI108_STAT_CARRY1_RXPKTS,
                       TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);

      data->tmpstats.tx_packets =
          tsi108_read_stat(data, TSI108_STAT_TXPKTS,
                       TSI108_STAT_CARRY2_TXPKTS,
                       TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);

      data->tmpstats.rx_bytes =
          tsi108_read_stat(data, TSI108_STAT_RXBYTES,
                       TSI108_STAT_CARRY1_RXBYTES,
                       TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);

      data->tmpstats.tx_bytes =
          tsi108_read_stat(data, TSI108_STAT_TXBYTES,
                       TSI108_STAT_CARRY2_TXBYTES,
                       TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);

      data->tmpstats.multicast =
          tsi108_read_stat(data, TSI108_STAT_RXMCAST,
                       TSI108_STAT_CARRY1_RXMCAST,
                       TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);

      excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
                         TSI108_STAT_CARRY2_TXEXCOL,
                         TSI108_STAT_TXEXCOL_CARRY,
                         &data->tx_coll_abort);

      data->tmpstats.collisions =
          tsi108_read_stat(data, TSI108_STAT_TXTCOL,
                       TSI108_STAT_CARRY2_TXTCOL,
                       TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);

      data->tmpstats.collisions += excol;

      data->tmpstats.rx_length_errors =
          tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
                       TSI108_STAT_CARRY1_RXLENGTH,
                       TSI108_STAT_RXLENGTH_CARRY,
                       &data->stats.rx_length_errors);

      data->tmpstats.rx_length_errors +=
          tsi108_read_stat(data, TSI108_STAT_RXRUNT,
                       TSI108_STAT_CARRY1_RXRUNT,
                       TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);

      data->tmpstats.rx_length_errors +=
          tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
                       TSI108_STAT_CARRY1_RXJUMBO,
                       TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);

      data->tmpstats.rx_frame_errors =
          tsi108_read_stat(data, TSI108_STAT_RXALIGN,
                       TSI108_STAT_CARRY1_RXALIGN,
                       TSI108_STAT_RXALIGN_CARRY,
                       &data->stats.rx_frame_errors);

      data->tmpstats.rx_frame_errors +=
          tsi108_read_stat(data, TSI108_STAT_RXFCS,
                       TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
                       &data->rx_fcs);

      data->tmpstats.rx_frame_errors +=
          tsi108_read_stat(data, TSI108_STAT_RXFRAG,
                       TSI108_STAT_CARRY1_RXFRAG,
                       TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);

      data->tmpstats.rx_missed_errors =
          tsi108_read_stat(data, TSI108_STAT_RXDROP,
                       TSI108_STAT_CARRY1_RXDROP,
                       TSI108_STAT_RXDROP_CARRY,
                       &data->stats.rx_missed_errors);

      /* These three are maintained by software. */
      data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
      data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;

      data->tmpstats.tx_aborted_errors =
          tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
                       TSI108_STAT_CARRY2_TXEXDEF,
                       TSI108_STAT_TXEXDEF_CARRY,
                       &data->stats.tx_aborted_errors);

      data->tmpstats.tx_aborted_errors +=
          tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
                       TSI108_STAT_CARRY2_TXPAUSE,
                       TSI108_STAT_TXPAUSEDROP_CARRY,
                       &data->tx_pause_drop);

      data->tmpstats.tx_aborted_errors += excol;

      data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
      data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
          data->tmpstats.rx_crc_errors +
          data->tmpstats.rx_frame_errors +
          data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;

      spin_unlock_irq(&data->misclock);
      return &data->tmpstats;
}

static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
{
      TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
                       TSI108_EC_RXQ_PTRHIGH_VALID);

      TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
                       | TSI108_EC_RXCTRL_QUEUE0);
}

static void tsi108_restart_tx(struct tsi108_prv_data * data)
{
      TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
                       TSI108_EC_TXQ_PTRHIGH_VALID);

      TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
                       TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
}

/* txlock must be held by caller, with IRQs disabled, and
 * with permission to re-enable them when the lock is dropped.
 */
static void tsi108_complete_tx(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      int tx;
      struct sk_buff *skb;
      int release = 0;

      while (!data->txfree || data->txhead != data->txtail) {
            tx = data->txtail;

            if (data->txring[tx].misc & TSI108_TX_OWN)
                  break;

            skb = data->txskbs[tx];

            if (!(data->txring[tx].misc & TSI108_TX_OK))
                  printk("%s: bad tx packet, misc %x\n",
                         dev->name, data->txring[tx].misc);

            data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
            data->txfree++;

            if (data->txring[tx].misc & TSI108_TX_EOF) {
                  dev_kfree_skb_any(skb);
                  release++;
            }
      }

      if (release) {
            if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
                  netif_wake_queue(dev);
      }
}

static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      int frags = skb_shinfo(skb)->nr_frags + 1;
      int i;

      if (!data->phy_ok && net_ratelimit())
            printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);

      if (!data->link_up) {
            printk(KERN_ERR "%s: Transmit while link is down!\n",
                   dev->name);
            netif_stop_queue(dev);
            return NETDEV_TX_BUSY;
      }

      if (data->txfree < MAX_SKB_FRAGS + 1) {
            netif_stop_queue(dev);

            if (net_ratelimit())
                  printk(KERN_ERR "%s: Transmit with full tx ring!\n",
                         dev->name);
            return NETDEV_TX_BUSY;
      }

      if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
            netif_stop_queue(dev);
      }

      spin_lock_irq(&data->txlock);

      for (i = 0; i < frags; i++) {
            int misc = 0;
            int tx = data->txhead;

            /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
             * the interrupt bit.  TX descriptor-complete interrupts are
             * enabled when the queue fills up, and masked when there is
             * still free space.  This way, when saturating the outbound
             * link, the tx interrupts are kept to a reasonable level.
             * When the queue is not full, reclamation of skbs still occurs
             * as new packets are transmitted, or on a queue-empty
             * interrupt.
             */

            if ((tx % TSI108_TX_INT_FREQ == 0) &&
                ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
                  misc = TSI108_TX_INT;

            data->txskbs[tx] = skb;

            if (i == 0) {
                  data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
                              skb->len - skb->data_len, DMA_TO_DEVICE);
                  data->txring[tx].len = skb->len - skb->data_len;
                  misc |= TSI108_TX_SOF;
            } else {
                  skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];

                  data->txring[tx].buf0 =
                      dma_map_page(NULL, frag->page, frag->page_offset,
                                  frag->size, DMA_TO_DEVICE);
                  data->txring[tx].len = frag->size;
            }

            if (i == frags - 1)
                  misc |= TSI108_TX_EOF;

            if (netif_msg_pktdata(data)) {
                  int i;
                  printk("%s: Tx Frame contents (%d)\n", dev->name,
                         skb->len);
                  for (i = 0; i < skb->len; i++)
                        printk(" %2.2x", skb->data[i]);
                  printk(".\n");
            }
            data->txring[tx].misc = misc | TSI108_TX_OWN;

            data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
            data->txfree--;
      }

      tsi108_complete_tx(dev);

      /* This must be done after the check for completed tx descriptors,
       * so that the tail pointer is correct.
       */

      if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
            tsi108_restart_tx(data);

      spin_unlock_irq(&data->txlock);
      return NETDEV_TX_OK;
}

static int tsi108_complete_rx(struct net_device *dev, int budget)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      int done = 0;

      while (data->rxfree && done != budget) {
            int rx = data->rxtail;
            struct sk_buff *skb;

            if (data->rxring[rx].misc & TSI108_RX_OWN)
                  break;

            skb = data->rxskbs[rx];
            data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
            data->rxfree--;
            done++;

            if (data->rxring[rx].misc & TSI108_RX_BAD) {
                  spin_lock_irq(&data->misclock);

                  if (data->rxring[rx].misc & TSI108_RX_CRC)
                        data->stats.rx_crc_errors++;
                  if (data->rxring[rx].misc & TSI108_RX_OVER)
                        data->stats.rx_fifo_errors++;

                  spin_unlock_irq(&data->misclock);

                  dev_kfree_skb_any(skb);
                  continue;
            }
            if (netif_msg_pktdata(data)) {
                  int i;
                  printk("%s: Rx Frame contents (%d)\n",
                         dev->name, data->rxring[rx].len);
                  for (i = 0; i < data->rxring[rx].len; i++)
                        printk(" %2.2x", skb->data[i]);
                  printk(".\n");
            }

            skb_put(skb, data->rxring[rx].len);
            skb->protocol = eth_type_trans(skb, dev);
            netif_receive_skb(skb);
            dev->last_rx = jiffies;
      }

      return done;
}

static int tsi108_refill_rx(struct net_device *dev, int budget)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      int done = 0;

      while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
            int rx = data->rxhead;
            struct sk_buff *skb;

            data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
            if (!skb)
                  break;

            skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */

            data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
                                          TSI108_RX_SKB_SIZE,
                                          DMA_FROM_DEVICE);

            /* Sometimes the hardware sets blen to zero after packet
             * reception, even though the manual says that it's only ever
             * modified by the driver.
             */

            data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
            data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;

            data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
            data->rxfree++;
            done++;
      }

      if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
                     TSI108_EC_RXSTAT_QUEUE0))
            tsi108_restart_rx(data, dev);

      return done;
}

static int tsi108_poll(struct napi_struct *napi, int budget)
{
      struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
      struct net_device *dev = data->dev;
      u32 estat = TSI_READ(TSI108_EC_RXESTAT);
      u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
      int num_received = 0, num_filled = 0;

      intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
          TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;

      TSI_WRITE(TSI108_EC_RXESTAT, estat);
      TSI_WRITE(TSI108_EC_INTSTAT, intstat);

      if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
            num_received = tsi108_complete_rx(dev, budget);

      /* This should normally fill no more slots than the number of
       * packets received in tsi108_complete_rx().  The exception
       * is when we previously ran out of memory for RX SKBs.  In that
       * case, it's helpful to obey the budget, not only so that the
       * CPU isn't hogged, but so that memory (which may still be low)
       * is not hogged by one device.
       *
       * A work unit is considered to be two SKBs to allow us to catch
       * up when the ring has shrunk due to out-of-memory but we're
       * still removing the full budget's worth of packets each time.
       */

      if (data->rxfree < TSI108_RXRING_LEN)
            num_filled = tsi108_refill_rx(dev, budget * 2);

      if (intstat & TSI108_INT_RXERROR) {
            u32 err = TSI_READ(TSI108_EC_RXERR);
            TSI_WRITE(TSI108_EC_RXERR, err);

            if (err) {
                  if (net_ratelimit())
                        printk(KERN_DEBUG "%s: RX error %x\n",
                               dev->name, err);

                  if (!(TSI_READ(TSI108_EC_RXSTAT) &
                        TSI108_EC_RXSTAT_QUEUE0))
                        tsi108_restart_rx(data, dev);
            }
      }

      if (intstat & TSI108_INT_RXOVERRUN) {
            spin_lock_irq(&data->misclock);
            data->stats.rx_fifo_errors++;
            spin_unlock_irq(&data->misclock);
      }

      if (num_received < budget) {
            data->rxpending = 0;
            netif_rx_complete(dev, napi);

            TSI_WRITE(TSI108_EC_INTMASK,
                             TSI_READ(TSI108_EC_INTMASK)
                             & ~(TSI108_INT_RXQUEUE0
                               | TSI108_INT_RXTHRESH |
                               TSI108_INT_RXOVERRUN |
                               TSI108_INT_RXERROR |
                               TSI108_INT_RXWAIT));
      } else {
            data->rxpending = 1;
      }

      return num_received;
}

static void tsi108_rx_int(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);

      /* A race could cause dev to already be scheduled, so it's not an
       * error if that happens (and interrupts shouldn't be re-masked,
       * because that can cause harmful races, if poll has already
       * unmasked them but not cleared LINK_STATE_SCHED).
       *
       * This can happen if this code races with tsi108_poll(), which masks
       * the interrupts after tsi108_irq_one() read the mask, but before
       * netif_rx_schedule is called.  It could also happen due to calls
       * from tsi108_check_rxring().
       */

      if (netif_rx_schedule_prep(dev, &data->napi)) {
            /* Mask, rather than ack, the receive interrupts.  The ack
             * will happen in tsi108_poll().
             */

            TSI_WRITE(TSI108_EC_INTMASK,
                             TSI_READ(TSI108_EC_INTMASK) |
                             TSI108_INT_RXQUEUE0
                             | TSI108_INT_RXTHRESH |
                             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
                             TSI108_INT_RXWAIT);
            __netif_rx_schedule(dev, &data->napi);
      } else {
            if (!netif_running(dev)) {
                  /* This can happen if an interrupt occurs while the
                   * interface is being brought down, as the START
                   * bit is cleared before the stop function is called.
                   *
                   * In this case, the interrupts must be masked, or
                   * they will continue indefinitely.
                   *
                   * There's a race here if the interface is brought down
                   * and then up in rapid succession, as the device could
                   * be made running after the above check and before
                   * the masking below.  This will only happen if the IRQ
                   * thread has a lower priority than the task brining
                   * up the interface.  Fixing this race would likely
                   * require changes in generic code.
                   */

                  TSI_WRITE(TSI108_EC_INTMASK,
                                   TSI_READ
                                   (TSI108_EC_INTMASK) |
                                   TSI108_INT_RXQUEUE0 |
                                   TSI108_INT_RXTHRESH |
                                   TSI108_INT_RXOVERRUN |
                                   TSI108_INT_RXERROR |
                                   TSI108_INT_RXWAIT);
            }
      }
}

/* If the RX ring has run out of memory, try periodically
 * to allocate some more, as otherwise poll would never
 * get called (apart from the initial end-of-queue condition).
 *
 * This is called once per second (by default) from the thread.
 */

static void tsi108_check_rxring(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);

      /* A poll is scheduled, as opposed to caling tsi108_refill_rx
       * directly, so as to keep the receive path single-threaded
       * (and thus not needing a lock).
       */

      if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
            tsi108_rx_int(dev);
}

static void tsi108_tx_int(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      u32 estat = TSI_READ(TSI108_EC_TXESTAT);

      TSI_WRITE(TSI108_EC_TXESTAT, estat);
      TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
                       TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
      if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
            u32 err = TSI_READ(TSI108_EC_TXERR);
            TSI_WRITE(TSI108_EC_TXERR, err);

            if (err && net_ratelimit())
                  printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
      }

      if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
            spin_lock(&data->txlock);
            tsi108_complete_tx(dev);
            spin_unlock(&data->txlock);
      }
}


static irqreturn_t tsi108_irq(int irq, void *dev_id)
{
      struct net_device *dev = dev_id;
      struct tsi108_prv_data *data = netdev_priv(dev);
      u32 stat = TSI_READ(TSI108_EC_INTSTAT);

      if (!(stat & TSI108_INT_ANY))
            return IRQ_NONE;  /* Not our interrupt */

      stat &= ~TSI_READ(TSI108_EC_INTMASK);

      if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
                TSI108_INT_TXERROR))
            tsi108_tx_int(dev);
      if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
                TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
                TSI108_INT_RXERROR))
            tsi108_rx_int(dev);

      if (stat & TSI108_INT_SFN) {
            if (net_ratelimit())
                  printk(KERN_DEBUG "%s: SFN error\n", dev->name);
            TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
      }

      if (stat & TSI108_INT_STATCARRY) {
            tsi108_stat_carry(dev);
            TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
      }

      return IRQ_HANDLED;
}

static void tsi108_stop_ethernet(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      int i = 1000;
      /* Disable all TX and RX queues ... */
      TSI_WRITE(TSI108_EC_TXCTRL, 0);
      TSI_WRITE(TSI108_EC_RXCTRL, 0);

      /* ...and wait for them to become idle */
      while(i--) {
            if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
                  break;
            udelay(10);
      }
      i = 1000;
      while(i--){
            if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
                  return;
            udelay(10);
      }
      printk(KERN_ERR "%s function time out \n", __FUNCTION__);
}

static void tsi108_reset_ether(struct tsi108_prv_data * data)
{
      TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
      udelay(100);
      TSI_WRITE(TSI108_MAC_CFG1, 0);

      TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
      udelay(100);
      TSI_WRITE(TSI108_EC_PORTCTRL,
                       TSI_READ(TSI108_EC_PORTCTRL) &
                       ~TSI108_EC_PORTCTRL_STATRST);

      TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
      udelay(100);
      TSI_WRITE(TSI108_EC_TXCFG,
                       TSI_READ(TSI108_EC_TXCFG) &
                       ~TSI108_EC_TXCFG_RST);

      TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
      udelay(100);
      TSI_WRITE(TSI108_EC_RXCFG,
                       TSI_READ(TSI108_EC_RXCFG) &
                       ~TSI108_EC_RXCFG_RST);

      TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
                       TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
                       TSI108_MAC_MII_MGMT_RST);
      udelay(100);
      TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
                       (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
                       ~(TSI108_MAC_MII_MGMT_RST |
                         TSI108_MAC_MII_MGMT_CLK)) | 0x07);
}

static int tsi108_get_mac(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
      u32 word2 = TSI_READ(TSI108_MAC_ADDR2);

      /* Note that the octets are reversed from what the manual says,
       * producing an even weirder ordering...
       */
      if (word2 == 0 && word1 == 0) {
            dev->dev_addr[0] = 0x00;
            dev->dev_addr[1] = 0x06;
            dev->dev_addr[2] = 0xd2;
            dev->dev_addr[3] = 0x00;
            dev->dev_addr[4] = 0x00;
            if (0x8 == data->phy)
                  dev->dev_addr[5] = 0x01;
            else
                  dev->dev_addr[5] = 0x02;

            word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);

            word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
                (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);

            TSI_WRITE(TSI108_MAC_ADDR1, word1);
            TSI_WRITE(TSI108_MAC_ADDR2, word2);
      } else {
            dev->dev_addr[0] = (word2 >> 16) & 0xff;
            dev->dev_addr[1] = (word2 >> 24) & 0xff;
            dev->dev_addr[2] = (word1 >> 0) & 0xff;
            dev->dev_addr[3] = (word1 >> 8) & 0xff;
            dev->dev_addr[4] = (word1 >> 16) & 0xff;
            dev->dev_addr[5] = (word1 >> 24) & 0xff;
      }

      if (!is_valid_ether_addr(dev->dev_addr)) {
            printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
            return -EINVAL;
      }

      return 0;
}

static int tsi108_set_mac(struct net_device *dev, void *addr)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      u32 word1, word2;
      int i;

      if (!is_valid_ether_addr(addr))
            return -EINVAL;

      for (i = 0; i < 6; i++)
            /* +2 is for the offset of the HW addr type */
            dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];

      word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);

      word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
          (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);

      spin_lock_irq(&data->misclock);
      TSI_WRITE(TSI108_MAC_ADDR1, word1);
      TSI_WRITE(TSI108_MAC_ADDR2, word2);
      spin_lock(&data->txlock);

      if (data->txfree && data->link_up)
            netif_wake_queue(dev);

      spin_unlock(&data->txlock);
      spin_unlock_irq(&data->misclock);
      return 0;
}

/* Protected by dev->xmit_lock. */
static void tsi108_set_rx_mode(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);

      if (dev->flags & IFF_PROMISC) {
            rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
            rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
            goto out;
      }

      rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);

      if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
            int i;
            struct dev_mc_list *mc = dev->mc_list;
            rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;

            memset(data->mc_hash, 0, sizeof(data->mc_hash));

            while (mc) {
                  u32 hash, crc;

                  if (mc->dmi_addrlen == 6) {
                        crc = ether_crc(6, mc->dmi_addr);
                        hash = crc >> 23;

                        __set_bit(hash, &data->mc_hash[0]);
                  } else {
                        printk(KERN_ERR
                               "%s: got multicast address of length %d "
                               "instead of 6.\n", dev->name,
                               mc->dmi_addrlen);
                  }

                  mc = mc->next;
            }

            TSI_WRITE(TSI108_EC_HASHADDR,
                             TSI108_EC_HASHADDR_AUTOINC |
                             TSI108_EC_HASHADDR_MCAST);

            for (i = 0; i < 16; i++) {
                  /* The manual says that the hardware may drop
                   * back-to-back writes to the data register.
                   */
                  udelay(1);
                  TSI_WRITE(TSI108_EC_HASHDATA,
                                   data->mc_hash[i]);
            }
      }

      out:
      TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
}

static void tsi108_init_phy(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      u32 i = 0;
      u16 phyval = 0;
      unsigned long flags;

      spin_lock_irqsave(&phy_lock, flags);

      tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
      while (i--){
            if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
                  break;
            udelay(10);
      }
      if (i == 0)
            printk(KERN_ERR "%s function time out \n", __FUNCTION__);

      if (data->phy_type == TSI108_PHY_BCM54XX) {
            tsi108_write_mii(data, 0x09, 0x0300);
            tsi108_write_mii(data, 0x10, 0x1020);
            tsi108_write_mii(data, 0x1c, 0x8c00);
      }

      tsi108_write_mii(data,
                   MII_BMCR,
                   BMCR_ANENABLE | BMCR_ANRESTART);
      while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
            cpu_relax();

      /* Set G/MII mode and receive clock select in TBI control #2.  The
       * second port won't work if this isn't done, even though we don't
       * use TBI mode.
       */

      tsi108_write_tbi(data, 0x11, 0x30);

      /* FIXME: It seems to take more than 2 back-to-back reads to the
       * PHY_STAT register before the link up status bit is set.
       */

      data->link_up = 1;

      while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
             BMSR_LSTATUS)) {
            if (i++ > (MII_READ_DELAY / 10)) {
                  data->link_up = 0;
                  break;
            }
            spin_unlock_irqrestore(&phy_lock, flags);
            msleep(10);
            spin_lock_irqsave(&phy_lock, flags);
      }

      printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
      data->phy_ok = 1;
      data->init_media = 1;
      spin_unlock_irqrestore(&phy_lock, flags);
}

static void tsi108_kill_phy(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      unsigned long flags;

      spin_lock_irqsave(&phy_lock, flags);
      tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
      data->phy_ok = 0;
      spin_unlock_irqrestore(&phy_lock, flags);
}

static int tsi108_open(struct net_device *dev)
{
      int i;
      struct tsi108_prv_data *data = netdev_priv(dev);
      unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
      unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);

      i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
      if (i != 0) {
            printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
                   data->id, data->irq_num);
            return i;
      } else {
            dev->irq = data->irq_num;
            printk(KERN_NOTICE
                   "tsi108_open : Port %d Assigned IRQ %d to %s\n",
                   data->id, dev->irq, dev->name);
      }

      data->rxring = dma_alloc_coherent(NULL, rxring_size,
                  &data->rxdma, GFP_KERNEL);

      if (!data->rxring) {
            printk(KERN_DEBUG
                   "TSI108_ETH: failed to allocate memory for rxring!\n");
            return -ENOMEM;
      } else {
            memset(data->rxring, 0, rxring_size);
      }

      data->txring = dma_alloc_coherent(NULL, txring_size,
                  &data->txdma, GFP_KERNEL);

      if (!data->txring) {
            printk(KERN_DEBUG
                   "TSI108_ETH: failed to allocate memory for txring!\n");
            pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
            return -ENOMEM;
      } else {
            memset(data->txring, 0, txring_size);
      }

      for (i = 0; i < TSI108_RXRING_LEN; i++) {
            data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
            data->rxring[i].blen = TSI108_RXBUF_SIZE;
            data->rxring[i].vlan = 0;
      }

      data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;

      data->rxtail = 0;
      data->rxhead = 0;

      for (i = 0; i < TSI108_RXRING_LEN; i++) {
            struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);

            if (!skb) {
                  /* Bah.  No memory for now, but maybe we'll get
                   * some more later.
                   * For now, we'll live with the smaller ring.
                   */
                  printk(KERN_WARNING
                         "%s: Could only allocate %d receive skb(s).\n",
                         dev->name, i);
                  data->rxhead = i;
                  break;
            }

            data->rxskbs[i] = skb;
            /* Align the payload on a 4-byte boundary */
            skb_reserve(skb, 2);
            data->rxskbs[i] = skb;
            data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
            data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
      }

      data->rxfree = i;
      TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);

      for (i = 0; i < TSI108_TXRING_LEN; i++) {
            data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
            data->txring[i].misc = 0;
      }

      data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
      data->txtail = 0;
      data->txhead = 0;
      data->txfree = TSI108_TXRING_LEN;
      TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
      tsi108_init_phy(dev);

      napi_enable(&data->napi);

      setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
      mod_timer(&data->timer, jiffies + 1);

      tsi108_restart_rx(data, dev);

      TSI_WRITE(TSI108_EC_INTSTAT, ~0);

      TSI_WRITE(TSI108_EC_INTMASK,
                       ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
                         TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
                         TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
                         TSI108_INT_SFN | TSI108_INT_STATCARRY));

      TSI_WRITE(TSI108_MAC_CFG1,
                       TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
      netif_start_queue(dev);
      return 0;
}

static int tsi108_close(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);

      netif_stop_queue(dev);
      napi_disable(&data->napi);

      del_timer_sync(&data->timer);

      tsi108_stop_ethernet(dev);
      tsi108_kill_phy(dev);
      TSI_WRITE(TSI108_EC_INTMASK, ~0);
      TSI_WRITE(TSI108_MAC_CFG1, 0);

      /* Check for any pending TX packets, and drop them. */

      while (!data->txfree || data->txhead != data->txtail) {
            int tx = data->txtail;
            struct sk_buff *skb;
            skb = data->txskbs[tx];
            data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
            data->txfree++;
            dev_kfree_skb(skb);
      }

      synchronize_irq(data->irq_num);
      free_irq(data->irq_num, dev);

      /* Discard the RX ring. */

      while (data->rxfree) {
            int rx = data->rxtail;
            struct sk_buff *skb;

            skb = data->rxskbs[rx];
            data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
            data->rxfree--;
            dev_kfree_skb(skb);
      }

      dma_free_coherent(0,
                      TSI108_RXRING_LEN * sizeof(rx_desc),
                      data->rxring, data->rxdma);
      dma_free_coherent(0,
                      TSI108_TXRING_LEN * sizeof(tx_desc),
                      data->txring, data->txdma);

      return 0;
}

static void tsi108_init_mac(struct net_device *dev)
{
      struct tsi108_prv_data *data = netdev_priv(dev);

      TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
                       TSI108_MAC_CFG2_PADCRC);

      TSI_WRITE(TSI108_EC_TXTHRESH,
                       (192 << TSI108_EC_TXTHRESH_STARTFILL) |
                       (192 << TSI108_EC_TXTHRESH_STOPFILL));

      TSI_WRITE(TSI108_STAT_CARRYMASK1,
                       ~(TSI108_STAT_CARRY1_RXBYTES |
                         TSI108_STAT_CARRY1_RXPKTS |
                         TSI108_STAT_CARRY1_RXFCS |
                         TSI108_STAT_CARRY1_RXMCAST |
                         TSI108_STAT_CARRY1_RXALIGN |
                         TSI108_STAT_CARRY1_RXLENGTH |
                         TSI108_STAT_CARRY1_RXRUNT |
                         TSI108_STAT_CARRY1_RXJUMBO |
                         TSI108_STAT_CARRY1_RXFRAG |
                         TSI108_STAT_CARRY1_RXJABBER |
                         TSI108_STAT_CARRY1_RXDROP));

      TSI_WRITE(TSI108_STAT_CARRYMASK2,
                       ~(TSI108_STAT_CARRY2_TXBYTES |
                         TSI108_STAT_CARRY2_TXPKTS |
                         TSI108_STAT_CARRY2_TXEXDEF |
                         TSI108_STAT_CARRY2_TXEXCOL |
                         TSI108_STAT_CARRY2_TXTCOL |
                         TSI108_STAT_CARRY2_TXPAUSE));

      TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
      TSI_WRITE(TSI108_MAC_CFG1, 0);

      TSI_WRITE(TSI108_EC_RXCFG,
                       TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);

      TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
                       TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
                       TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
                                    TSI108_EC_TXQ_CFG_SFNPORT));

      TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
                       TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
                       TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
                                    TSI108_EC_RXQ_CFG_SFNPORT));

      TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
                       TSI108_EC_TXQ_BUFCFG_BURST256 |
                       TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
                                    TSI108_EC_TXQ_BUFCFG_SFNPORT));

      TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
                       TSI108_EC_RXQ_BUFCFG_BURST256 |
                       TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
                                    TSI108_EC_RXQ_BUFCFG_SFNPORT));

      TSI_WRITE(TSI108_EC_INTMASK, ~0);
}

static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
      struct tsi108_prv_data *data = netdev_priv(dev);
      return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
}

static int
tsi108_init_one(struct platform_device *pdev)
{
      struct net_device *dev = NULL;
      struct tsi108_prv_data *data = NULL;
      hw_info *einfo;
      int err = 0;
      DECLARE_MAC_BUF(mac);

      einfo = pdev->dev.platform_data;

      if (NULL == einfo) {
            printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
                   pdev->id);
            return -ENODEV;
      }

      /* Create an ethernet device instance */

      dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
      if (!dev) {
            printk("tsi108_eth: Could not allocate a device structure\n");
            return -ENOMEM;
      }

      printk("tsi108_eth%d: probe...\n", pdev->id);
      data = netdev_priv(dev);
      data->dev = dev;

      pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
                  pdev->id, einfo->regs, einfo->phyregs,
                  einfo->phy, einfo->irq_num);

      data->regs = ioremap(einfo->regs, 0x400);
      if (NULL == data->regs) {
            err = -ENOMEM;
            goto regs_fail;
      }

      data->phyregs = ioremap(einfo->phyregs, 0x400);
      if (NULL == data->phyregs) {
            err = -ENOMEM;
            goto regs_fail;
      }
/* MII setup */
      data->mii_if.dev = dev;
      data->mii_if.mdio_read = tsi108_mdio_read;
      data->mii_if.mdio_write = tsi108_mdio_write;
      data->mii_if.phy_id = einfo->phy;
      data->mii_if.phy_id_mask = 0x1f;
      data->mii_if.reg_num_mask = 0x1f;
      data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);

      data->phy = einfo->phy;
      data->phy_type = einfo->phy_type;
      data->irq_num = einfo->irq_num;
      data->id = pdev->id;
      dev->open = tsi108_open;
      dev->stop = tsi108_close;
      dev->hard_start_xmit = tsi108_send_packet;
      dev->set_mac_address = tsi108_set_mac;
      dev->set_multicast_list = tsi108_set_rx_mode;
      dev->get_stats = tsi108_get_stats;
      netif_napi_add(dev, &data->napi, tsi108_poll, 64);
      dev->do_ioctl = tsi108_do_ioctl;

      /* Apparently, the Linux networking code won't use scatter-gather
       * if the hardware doesn't do checksums.  However, it's faster
       * to checksum in place and use SG, as (among other reasons)
       * the cache won't be dirtied (which then has to be flushed
       * before DMA).  The checksumming is done by the driver (via
       * a new function skb_csum_dev() in net/core/skbuff.c).
       */

      dev->features = NETIF_F_HIGHDMA;

      spin_lock_init(&data->txlock);
      spin_lock_init(&data->misclock);

      tsi108_reset_ether(data);
      tsi108_kill_phy(dev);

      if ((err = tsi108_get_mac(dev)) != 0) {
            printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
                   dev->name);
            goto register_fail;
      }

      tsi108_init_mac(dev);
      err = register_netdev(dev);
      if (err) {
            printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
                        dev->name);
            goto register_fail;
      }

      printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %s\n",
             dev->name, print_mac(mac, dev->dev_addr));
#ifdef DEBUG
      data->msg_enable = DEBUG;
      dump_eth_one(dev);
#endif

      return 0;

register_fail:
      iounmap(data->regs);
      iounmap(data->phyregs);

regs_fail:
      free_netdev(dev);
      return err;
}

/* There's no way to either get interrupts from the PHY when
 * something changes, or to have the Tsi108 automatically communicate
 * with the PHY to reconfigure itself.
 *
 * Thus, we have to do it using a timer.
 */

static void tsi108_timed_checker(unsigned long dev_ptr)
{
      struct net_device *dev = (struct net_device *)dev_ptr;
      struct tsi108_prv_data *data = netdev_priv(dev);

      tsi108_check_phy(dev);
      tsi108_check_rxring(dev);
      mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
}

static int tsi108_ether_init(void)
{
      int ret;
      ret = platform_driver_register (&tsi_eth_driver);
      if (ret < 0){
            printk("tsi108_ether_init: error initializing ethernet "
                   "device\n");
            return ret;
      }
      return 0;
}

static int tsi108_ether_remove(struct platform_device *pdev)
{
      struct net_device *dev = platform_get_drvdata(pdev);
      struct tsi108_prv_data *priv = netdev_priv(dev);

      unregister_netdev(dev);
      tsi108_stop_ethernet(dev);
      platform_set_drvdata(pdev, NULL);
      iounmap(priv->regs);
      iounmap(priv->phyregs);
      free_netdev(dev);

      return 0;
}
static void tsi108_ether_exit(void)
{
      platform_driver_unregister(&tsi_eth_driver);
}

module_init(tsi108_ether_init);
module_exit(tsi108_ether_exit);

MODULE_AUTHOR("Tundra Semiconductor Corporation");
MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index