Logo Search packages:      
Sourcecode: linux version File versions  Download package

super.c

/*
 * super.c
 *
 * PURPOSE
 *  Super block routines for the OSTA-UDF(tm) filesystem.
 *
 * DESCRIPTION
 *  OSTA-UDF(tm) = Optical Storage Technology Association
 *  Universal Disk Format.
 *
 *  This code is based on version 2.00 of the UDF specification,
 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
 *    http://www.osta.org/
 *    http://www.ecma.ch/
 *    http://www.iso.org/
 *
 * COPYRIGHT
 *  This file is distributed under the terms of the GNU General Public
 *  License (GPL). Copies of the GPL can be obtained from:
 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 *  Each contributing author retains all rights to their own work.
 *
 *  (C) 1998 Dave Boynton
 *  (C) 1998-2004 Ben Fennema
 *  (C) 2000 Stelias Computing Inc
 *
 * HISTORY
 *
 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
 *                added some debugging.
 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
 *  10/16/98      attempting some multi-session support
 *  10/17/98      added freespace count for "df"
 *  11/11/98 gr   added novrs option
 *  11/26/98 dgb  added fileset,anchor mount options
 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced vol descs
 *                rewrote option handling based on isofs
 *  12/20/98      find the free space bitmap (if it exists)
 */

#include "udfdecl.h"

#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/parser.h>
#include <linux/stat.h>
#include <linux/cdrom.h>
#include <linux/nls.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include <linux/vmalloc.h>
#include <asm/byteorder.h>

#include <linux/udf_fs.h>
#include "udf_sb.h"
#include "udf_i.h"

#include <linux/init.h>
#include <asm/uaccess.h>

#define VDS_POS_PRIMARY_VOL_DESC    0
#define VDS_POS_UNALLOC_SPACE_DESC  1
#define VDS_POS_LOGICAL_VOL_DESC    2
#define VDS_POS_PARTITION_DESC            3
#define VDS_POS_IMP_USE_VOL_DESC    4
#define VDS_POS_VOL_DESC_PTR        5
#define VDS_POS_TERMINATING_DESC    6
#define VDS_POS_LENGTH              7

static char error_buf[1024];

/* These are the "meat" - everything else is stuffing */
static int udf_fill_super(struct super_block *, void *, int);
static void udf_put_super(struct super_block *);
static void udf_write_super(struct super_block *);
static int udf_remount_fs(struct super_block *, int *, char *);
static int udf_check_valid(struct super_block *, int, int);
static int udf_vrs(struct super_block *sb, int silent);
static int udf_load_partition(struct super_block *, kernel_lb_addr *);
static int udf_load_logicalvol(struct super_block *, struct buffer_head *,
                         kernel_lb_addr *);
static void udf_load_logicalvolint(struct super_block *, kernel_extent_ad);
static void udf_find_anchor(struct super_block *);
static int udf_find_fileset(struct super_block *, kernel_lb_addr *,
                      kernel_lb_addr *);
static void udf_load_pvoldesc(struct super_block *, struct buffer_head *);
static void udf_load_fileset(struct super_block *, struct buffer_head *,
                       kernel_lb_addr *);
static int udf_load_partdesc(struct super_block *, struct buffer_head *);
static void udf_open_lvid(struct super_block *);
static void udf_close_lvid(struct super_block *);
static unsigned int udf_count_free(struct super_block *);
static int udf_statfs(struct dentry *, struct kstatfs *);

/* UDF filesystem type */
static int udf_get_sb(struct file_system_type *fs_type,
                  int flags, const char *dev_name, void *data,
                  struct vfsmount *mnt)
{
      return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
}

static struct file_system_type udf_fstype = {
      .owner            = THIS_MODULE,
      .name       = "udf",
      .get_sb           = udf_get_sb,
      .kill_sb    = kill_block_super,
      .fs_flags   = FS_REQUIRES_DEV,
};

static struct kmem_cache *udf_inode_cachep;

static struct inode *udf_alloc_inode(struct super_block *sb)
{
      struct udf_inode_info *ei;
      ei = (struct udf_inode_info *)kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
      if (!ei)
            return NULL;

      ei->i_unique = 0;
      ei->i_lenExtents = 0;
      ei->i_next_alloc_block = 0;
      ei->i_next_alloc_goal = 0;
      ei->i_strat4096 = 0;

      return &ei->vfs_inode;
}

static void udf_destroy_inode(struct inode *inode)
{
      kmem_cache_free(udf_inode_cachep, UDF_I(inode));
}

static void init_once(struct kmem_cache *cachep, void *foo)
{
      struct udf_inode_info *ei = (struct udf_inode_info *)foo;

      ei->i_ext.i_data = NULL;
      inode_init_once(&ei->vfs_inode);
}

static int init_inodecache(void)
{
      udf_inode_cachep = kmem_cache_create("udf_inode_cache",
                                   sizeof(struct udf_inode_info),
                                   0, (SLAB_RECLAIM_ACCOUNT |
                                     SLAB_MEM_SPREAD),
                                   init_once);
      if (!udf_inode_cachep)
            return -ENOMEM;
      return 0;
}

static void destroy_inodecache(void)
{
      kmem_cache_destroy(udf_inode_cachep);
}

/* Superblock operations */
static const struct super_operations udf_sb_ops = {
      .alloc_inode      = udf_alloc_inode,
      .destroy_inode    = udf_destroy_inode,
      .write_inode      = udf_write_inode,
      .delete_inode     = udf_delete_inode,
      .clear_inode      = udf_clear_inode,
      .put_super  = udf_put_super,
      .write_super      = udf_write_super,
      .statfs           = udf_statfs,
      .remount_fs = udf_remount_fs,
};

struct udf_options {
      unsigned char novrs;
      unsigned int blocksize;
      unsigned int session;
      unsigned int lastblock;
      unsigned int anchor;
      unsigned int volume;
      unsigned short partition;
      unsigned int fileset;
      unsigned int rootdir;
      unsigned int flags;
      mode_t umask;
      gid_t gid;
      uid_t uid;
      struct nls_table *nls_map;
};

static int __init init_udf_fs(void)
{
      int err;

      err = init_inodecache();
      if (err)
            goto out1;
      err = register_filesystem(&udf_fstype);
      if (err)
            goto out;

      return 0;

out:
      destroy_inodecache();

out1:
      return err;
}

static void __exit exit_udf_fs(void)
{
      unregister_filesystem(&udf_fstype);
      destroy_inodecache();
}

module_init(init_udf_fs)
module_exit(exit_udf_fs)

/*
 * udf_parse_options
 *
 * PURPOSE
 *    Parse mount options.
 *
 * DESCRIPTION
 *    The following mount options are supported:
 *
 *    gid=        Set the default group.
 *    umask=            Set the default umask.
 *    uid=        Set the default user.
 *    bs=         Set the block size.
 *    unhide            Show otherwise hidden files.
 *    undelete    Show deleted files in lists.
 *    adinicb           Embed data in the inode (default)
 *    noadinicb   Don't embed data in the inode
 *    shortad           Use short ad's
 *    longad            Use long ad's (default)
 *    nostrict    Unset strict conformance
 *    iocharset=  Set the NLS character set
 *
 *    The remaining are for debugging and disaster recovery:
 *
 *    novrs       Skip volume sequence recognition
 *
 *    The following expect a offset from 0.
 *
 *    session=    Set the CDROM session (default= last session)
 *    anchor=           Override standard anchor location. (default= 256)
 *    volume=           Override the VolumeDesc location. (unused)
 *    partition=  Override the PartitionDesc location. (unused)
 *    lastblock=  Set the last block of the filesystem/
 *
 *    The following expect a offset from the partition root.
 *
 *    fileset=    Override the fileset block location. (unused)
 *    rootdir=    Override the root directory location. (unused)
 *          WARNING: overriding the rootdir to a non-directory may
 *          yield highly unpredictable results.
 *
 * PRE-CONDITIONS
 *    options           Pointer to mount options string.
 *    uopts       Pointer to mount options variable.
 *
 * POST-CONDITIONS
 *    <return>    1     Mount options parsed okay.
 *    <return>    0     Error parsing mount options.
 *
 * HISTORY
 *    July 1, 1997 - Andrew E. Mileski
 *    Written, tested, and released.
 */

enum {
      Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
      Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
      Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
      Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
      Opt_rootdir, Opt_utf8, Opt_iocharset,
      Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore
};

static match_table_t tokens = {
      {Opt_novrs, "novrs"},
      {Opt_nostrict,    "nostrict"},
      {Opt_bs,    "bs=%u"},
      {Opt_unhide,      "unhide"},
      {Opt_undelete,    "undelete"},
      {Opt_noadinicb,   "noadinicb"},
      {Opt_adinicb,     "adinicb"},
      {Opt_shortad,     "shortad"},
      {Opt_longad,      "longad"},
      {Opt_uforget,     "uid=forget"},
      {Opt_uignore,     "uid=ignore"},
      {Opt_gforget,     "gid=forget"},
      {Opt_gignore,     "gid=ignore"},
      {Opt_gid,   "gid=%u"},
      {Opt_uid,   "uid=%u"},
      {Opt_umask, "umask=%o"},
      {Opt_session,     "session=%u"},
      {Opt_lastblock,   "lastblock=%u"},
      {Opt_anchor,      "anchor=%u"},
      {Opt_volume,      "volume=%u"},
      {Opt_partition,   "partition=%u"},
      {Opt_fileset,     "fileset=%u"},
      {Opt_rootdir,     "rootdir=%u"},
      {Opt_utf8,  "utf8"},
      {Opt_iocharset,   "iocharset=%s"},
      {Opt_err,   NULL}
};

static int udf_parse_options(char *options, struct udf_options *uopt)
{
      char *p;
      int option;

      uopt->novrs = 0;
      uopt->blocksize = 2048;
      uopt->partition = 0xFFFF;
      uopt->session = 0xFFFFFFFF;
      uopt->lastblock = 0;
      uopt->anchor = 0;
      uopt->volume = 0xFFFFFFFF;
      uopt->rootdir = 0xFFFFFFFF;
      uopt->fileset = 0xFFFFFFFF;
      uopt->nls_map = NULL;

      if (!options)
            return 1;

      while ((p = strsep(&options, ",")) != NULL) {
            substring_t args[MAX_OPT_ARGS];
            int token;
            if (!*p)
                  continue;

            token = match_token(p, tokens, args);
            switch (token) {
            case Opt_novrs:
                  uopt->novrs = 1;
            case Opt_bs:
                  if (match_int(&args[0], &option))
                        return 0;
                  uopt->blocksize = option;
                  break;
            case Opt_unhide:
                  uopt->flags |= (1 << UDF_FLAG_UNHIDE);
                  break;
            case Opt_undelete:
                  uopt->flags |= (1 << UDF_FLAG_UNDELETE);
                  break;
            case Opt_noadinicb:
                  uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
                  break;
            case Opt_adinicb:
                  uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
                  break;
            case Opt_shortad:
                  uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
                  break;
            case Opt_longad:
                  uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
                  break;
            case Opt_gid:
                  if (match_int(args, &option))
                        return 0;
                  uopt->gid = option;
                  uopt->flags |= (1 << UDF_FLAG_GID_SET);
                  break;
            case Opt_uid:
                  if (match_int(args, &option))
                        return 0;
                  uopt->uid = option;
                  uopt->flags |= (1 << UDF_FLAG_UID_SET);
                  break;
            case Opt_umask:
                  if (match_octal(args, &option))
                        return 0;
                  uopt->umask = option;
                  break;
            case Opt_nostrict:
                  uopt->flags &= ~(1 << UDF_FLAG_STRICT);
                  break;
            case Opt_session:
                  if (match_int(args, &option))
                        return 0;
                  uopt->session = option;
                  break;
            case Opt_lastblock:
                  if (match_int(args, &option))
                        return 0;
                  uopt->lastblock = option;
                  break;
            case Opt_anchor:
                  if (match_int(args, &option))
                        return 0;
                  uopt->anchor = option;
                  break;
            case Opt_volume:
                  if (match_int(args, &option))
                        return 0;
                  uopt->volume = option;
                  break;
            case Opt_partition:
                  if (match_int(args, &option))
                        return 0;
                  uopt->partition = option;
                  break;
            case Opt_fileset:
                  if (match_int(args, &option))
                        return 0;
                  uopt->fileset = option;
                  break;
            case Opt_rootdir:
                  if (match_int(args, &option))
                        return 0;
                  uopt->rootdir = option;
                  break;
            case Opt_utf8:
                  uopt->flags |= (1 << UDF_FLAG_UTF8);
                  break;
#ifdef CONFIG_UDF_NLS
            case Opt_iocharset:
                  uopt->nls_map = load_nls(args[0].from);
                  uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
                  break;
#endif
            case Opt_uignore:
                  uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
                  break;
            case Opt_uforget:
                  uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
                  break;
            case Opt_gignore:
                  uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
                  break;
            case Opt_gforget:
                  uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
                  break;
            default:
                  printk(KERN_ERR "udf: bad mount option \"%s\" "
                         "or missing value\n", p);
                  return 0;
            }
      }
      return 1;
}

void udf_write_super(struct super_block *sb)
{
      lock_kernel();

      if (!(sb->s_flags & MS_RDONLY))
            udf_open_lvid(sb);
      sb->s_dirt = 0;

      unlock_kernel();
}

static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
{
      struct udf_options uopt;

      uopt.flags = UDF_SB(sb)->s_flags;
      uopt.uid   = UDF_SB(sb)->s_uid;
      uopt.gid   = UDF_SB(sb)->s_gid;
      uopt.umask = UDF_SB(sb)->s_umask;

      if (!udf_parse_options(options, &uopt))
            return -EINVAL;

      UDF_SB(sb)->s_flags = uopt.flags;
      UDF_SB(sb)->s_uid   = uopt.uid;
      UDF_SB(sb)->s_gid   = uopt.gid;
      UDF_SB(sb)->s_umask = uopt.umask;

      if (UDF_SB_LVIDBH(sb)) {
            int write_rev = le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFWriteRev);
            if (write_rev > UDF_MAX_WRITE_VERSION)
                  *flags |= MS_RDONLY;
      }

      if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
            return 0;
      if (*flags & MS_RDONLY)
            udf_close_lvid(sb);
      else
            udf_open_lvid(sb);

      return 0;
}

/*
 * udf_set_blocksize
 *
 * PURPOSE
 *    Set the block size to be used in all transfers.
 *
 * DESCRIPTION
 *    To allow room for a DMA transfer, it is best to guess big when unsure.
 *    This routine picks 2048 bytes as the blocksize when guessing. This
 *    should be adequate until devices with larger block sizes become common.
 *
 *    Note that the Linux kernel can currently only deal with blocksizes of
 *    512, 1024, 2048, 4096, and 8192 bytes.
 *
 * PRE-CONDITIONS
 *    sb                Pointer to _locked_ superblock.
 *
 * POST-CONDITIONS
 *    sb->s_blocksize         Blocksize.
 *    sb->s_blocksize_bits    log2 of blocksize.
 *    <return>    0     Blocksize is valid.
 *    <return>    1     Blocksize is invalid.
 *
 * HISTORY
 *    July 1, 1997 - Andrew E. Mileski
 *    Written, tested, and released.
 */
static int udf_set_blocksize(struct super_block *sb, int bsize)
{
      if (!sb_min_blocksize(sb, bsize)) {
            udf_debug("Bad block size (%d)\n", bsize);
            printk(KERN_ERR "udf: bad block size (%d)\n", bsize);
            return 0;
      }

      return sb->s_blocksize;
}

static int udf_vrs(struct super_block *sb, int silent)
{
      struct volStructDesc *vsd = NULL;
      int sector = 32768;
      int sectorsize;
      struct buffer_head *bh = NULL;
      int iso9660 = 0;
      int nsr02 = 0;
      int nsr03 = 0;

      /* Block size must be a multiple of 512 */
      if (sb->s_blocksize & 511)
            return 0;

      if (sb->s_blocksize < sizeof(struct volStructDesc))
            sectorsize = sizeof(struct volStructDesc);
      else
            sectorsize = sb->s_blocksize;

      sector += (UDF_SB_SESSION(sb) << sb->s_blocksize_bits);

      udf_debug("Starting at sector %u (%ld byte sectors)\n",
              (sector >> sb->s_blocksize_bits), sb->s_blocksize);
      /* Process the sequence (if applicable) */
      for (; !nsr02 && !nsr03; sector += sectorsize) {
            /* Read a block */
            bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
            if (!bh)
                  break;

            /* Look for ISO  descriptors */
            vsd = (struct volStructDesc *)(bh->b_data +
                                     (sector & (sb->s_blocksize - 1)));

            if (vsd->stdIdent[0] == 0) {
                  brelse(bh);
                  break;
            } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
                  iso9660 = sector;
                  switch (vsd->structType) {
                  case 0:
                        udf_debug("ISO9660 Boot Record found\n");
                        break;
                  case 1:
                        udf_debug
                            ("ISO9660 Primary Volume Descriptor found\n");
                        break;
                  case 2:
                        udf_debug
                            ("ISO9660 Supplementary Volume Descriptor found\n");
                        break;
                  case 3:
                        udf_debug
                            ("ISO9660 Volume Partition Descriptor found\n");
                        break;
                  case 255:
                        udf_debug
                            ("ISO9660 Volume Descriptor Set Terminator found\n");
                        break;
                  default:
                        udf_debug("ISO9660 VRS (%u) found\n",
                                vsd->structType);
                        break;
                  }
            } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) {
            } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, VSD_STD_ID_LEN)) {
                  brelse(bh);
                  break;
            } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) {
                  nsr02 = sector;
            } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) {
                  nsr03 = sector;
            }
            brelse(bh);
      }

      if (nsr03)
            return nsr03;
      else if (nsr02)
            return nsr02;
      else if (sector - (UDF_SB_SESSION(sb) << sb->s_blocksize_bits) == 32768)
            return -1;
      else
            return 0;
}

/*
 * udf_find_anchor
 *
 * PURPOSE
 *    Find an anchor volume descriptor.
 *
 * PRE-CONDITIONS
 *    sb                Pointer to _locked_ superblock.
 *    lastblock         Last block on media.
 *
 * POST-CONDITIONS
 *    <return>          1 if not found, 0 if ok
 *
 * HISTORY
 *    July 1, 1997 - Andrew E. Mileski
 *    Written, tested, and released.
 */
static void udf_find_anchor(struct super_block *sb)
{
      int lastblock = UDF_SB_LASTBLOCK(sb);
      struct buffer_head *bh = NULL;
      uint16_t ident;
      uint32_t location;
      int i;

      if (lastblock) {
            int varlastblock = udf_variable_to_fixed(lastblock);
            int last[] =  { lastblock, lastblock - 2,
                        lastblock - 150, lastblock - 152,
                        varlastblock, varlastblock - 2,
                        varlastblock - 150, varlastblock - 152 };

            lastblock = 0;

            /* Search for an anchor volume descriptor pointer */

            /*  according to spec, anchor is in either:
             *     block 256
             *     lastblock-256
             *     lastblock
             *  however, if the disc isn't closed, it could be 512 */

            for (i = 0; !lastblock && i < ARRAY_SIZE(last); i++) {
                  if (last[i] < 0 || !(bh = sb_bread(sb, last[i]))) {
                        ident = location = 0;
                  } else {
                        ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent);
                        location = le32_to_cpu(((tag *)bh->b_data)->tagLocation);
                        brelse(bh);
                  }

                  if (ident == TAG_IDENT_AVDP) {
                        if (location == last[i] - UDF_SB_SESSION(sb)) {
                              lastblock = UDF_SB_ANCHOR(sb)[0] = last[i] - UDF_SB_SESSION(sb);
                              UDF_SB_ANCHOR(sb)[1] = last[i] - 256 - UDF_SB_SESSION(sb);
                        } else if (location == udf_variable_to_fixed(last[i]) - UDF_SB_SESSION(sb)) {
                              UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
                              lastblock = UDF_SB_ANCHOR(sb)[0] = udf_variable_to_fixed(last[i]) - UDF_SB_SESSION(sb);
                              UDF_SB_ANCHOR(sb)[1] = lastblock - 256 - UDF_SB_SESSION(sb);
                        } else {
                              udf_debug("Anchor found at block %d, location mismatch %d.\n",
                                      last[i], location);
                        }
                  } else if (ident == TAG_IDENT_FE || ident == TAG_IDENT_EFE) {
                        lastblock = last[i];
                        UDF_SB_ANCHOR(sb)[3] = 512;
                  } else {
                        if (last[i] < 256 || !(bh = sb_bread(sb, last[i] - 256))) {
                              ident = location = 0;
                        } else {
                              ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent);
                              location = le32_to_cpu(((tag *)bh->b_data)->tagLocation);
                              brelse(bh);
                        }

                        if (ident == TAG_IDENT_AVDP &&
                            location == last[i] - 256 - UDF_SB_SESSION(sb)) {
                              lastblock = last[i];
                              UDF_SB_ANCHOR(sb)[1] = last[i] - 256;
                        } else {
                              if (last[i] < 312 + UDF_SB_SESSION(sb) ||
                                  !(bh = sb_bread(sb, last[i] - 312 - UDF_SB_SESSION(sb)))) {
                                    ident = location = 0;
                              } else {
                                    ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent);
                                    location = le32_to_cpu(((tag *)bh->b_data)->tagLocation);
                                    brelse(bh);
                              }

                              if (ident == TAG_IDENT_AVDP &&
                                  location == udf_variable_to_fixed(last[i]) - 256) {
                                    UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
                                    lastblock = udf_variable_to_fixed(last[i]);
                                    UDF_SB_ANCHOR(sb)[1] = lastblock - 256;
                              }
                        }
                  }
            }
      }

      if (!lastblock) {
            /* We havn't found the lastblock. check 312 */
            if ((bh = sb_bread(sb, 312 + UDF_SB_SESSION(sb)))) {
                  ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent);
                  location = le32_to_cpu(((tag *)bh->b_data)->tagLocation);
                  brelse(bh);

                  if (ident == TAG_IDENT_AVDP && location == 256)
                        UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
            }
      }

      for (i = 0; i < ARRAY_SIZE(UDF_SB_ANCHOR(sb)); i++) {
            if (UDF_SB_ANCHOR(sb)[i]) {
                  if (!(bh = udf_read_tagged(sb, UDF_SB_ANCHOR(sb)[i],
                                       UDF_SB_ANCHOR(sb)[i], &ident))) {
                        UDF_SB_ANCHOR(sb)[i] = 0;
                  } else {
                        brelse(bh);
                        if ((ident != TAG_IDENT_AVDP) &&
                            (i || (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE))) {
                              UDF_SB_ANCHOR(sb)[i] = 0;
                        }
                  }
            }
      }

      UDF_SB_LASTBLOCK(sb) = lastblock;
}

static int udf_find_fileset(struct super_block *sb, kernel_lb_addr *fileset, kernel_lb_addr *root)
{
      struct buffer_head *bh = NULL;
      long lastblock;
      uint16_t ident;

      if (fileset->logicalBlockNum != 0xFFFFFFFF ||
          fileset->partitionReferenceNum != 0xFFFF) {
            bh = udf_read_ptagged(sb, *fileset, 0, &ident);

            if (!bh) {
                  return 1;
            } else if (ident != TAG_IDENT_FSD) {
                  brelse(bh);
                  return 1;
            }

      }

      if (!bh) { /* Search backwards through the partitions */
            kernel_lb_addr newfileset;

/* --> cvg: FIXME - is it reasonable? */
            return 1;

            for (newfileset.partitionReferenceNum = UDF_SB_NUMPARTS(sb) - 1;
                 (newfileset.partitionReferenceNum != 0xFFFF &&
                  fileset->logicalBlockNum == 0xFFFFFFFF &&
                  fileset->partitionReferenceNum == 0xFFFF);
                 newfileset.partitionReferenceNum--) {
                  lastblock = UDF_SB_PARTLEN(sb, newfileset.partitionReferenceNum);
                  newfileset.logicalBlockNum = 0;

                  do {
                        bh = udf_read_ptagged(sb, newfileset, 0, &ident);
                        if (!bh) {
                              newfileset.logicalBlockNum++;
                              continue;
                        }

                        switch (ident) {
                        case TAG_IDENT_SBD:
                        {
                              struct spaceBitmapDesc *sp;
                              sp = (struct spaceBitmapDesc *)bh->b_data;
                              newfileset.logicalBlockNum += 1 +
                                    ((le32_to_cpu(sp->numOfBytes) +
                                      sizeof(struct spaceBitmapDesc) - 1)
                                     >> sb->s_blocksize_bits);
                              brelse(bh);
                              break;
                        }
                        case TAG_IDENT_FSD:
                              *fileset = newfileset;
                              break;
                        default:
                              newfileset.logicalBlockNum++;
                              brelse(bh);
                              bh = NULL;
                              break;
                        }
                  } while (newfileset.logicalBlockNum < lastblock &&
                         fileset->logicalBlockNum == 0xFFFFFFFF &&
                         fileset->partitionReferenceNum == 0xFFFF);
            }
      }

      if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
           fileset->partitionReferenceNum != 0xFFFF) && bh) {
            udf_debug("Fileset at block=%d, partition=%d\n",
                    fileset->logicalBlockNum,
                    fileset->partitionReferenceNum);

            UDF_SB_PARTITION(sb) = fileset->partitionReferenceNum;
            udf_load_fileset(sb, bh, root);
            brelse(bh);
            return 0;
      }
      return 1;
}

static void udf_load_pvoldesc(struct super_block *sb, struct buffer_head *bh)
{
      struct primaryVolDesc *pvoldesc;
      time_t recording;
      long recording_usec;
      struct ustr instr;
      struct ustr outstr;

      pvoldesc = (struct primaryVolDesc *)bh->b_data;

      if (udf_stamp_to_time(&recording, &recording_usec,
                        lets_to_cpu(pvoldesc->recordingDateAndTime))) {
            kernel_timestamp ts;
            ts = lets_to_cpu(pvoldesc->recordingDateAndTime);
            udf_debug("recording time %ld/%ld, %04u/%02u/%02u %02u:%02u (%x)\n",
                    recording, recording_usec,
                    ts.year, ts.month, ts.day, ts.hour,
                    ts.minute, ts.typeAndTimezone);
            UDF_SB_RECORDTIME(sb).tv_sec = recording;
            UDF_SB_RECORDTIME(sb).tv_nsec = recording_usec * 1000;
      }

      if (!udf_build_ustr(&instr, pvoldesc->volIdent, 32)) {
            if (udf_CS0toUTF8(&outstr, &instr)) {
                  strncpy(UDF_SB_VOLIDENT(sb), outstr.u_name,
                        outstr.u_len > 31 ? 31 : outstr.u_len);
                  udf_debug("volIdent[] = '%s'\n", UDF_SB_VOLIDENT(sb));
            }
      }

      if (!udf_build_ustr(&instr, pvoldesc->volSetIdent, 128)) {
            if (udf_CS0toUTF8(&outstr, &instr))
                  udf_debug("volSetIdent[] = '%s'\n", outstr.u_name);
      }
}

static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
                       kernel_lb_addr *root)
{
      struct fileSetDesc *fset;

      fset = (struct fileSetDesc *)bh->b_data;

      *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);

      UDF_SB_SERIALNUM(sb) = le16_to_cpu(fset->descTag.tagSerialNum);

      udf_debug("Rootdir at block=%d, partition=%d\n",
              root->logicalBlockNum, root->partitionReferenceNum);
}

static int udf_load_partdesc(struct super_block *sb, struct buffer_head *bh)
{
      struct partitionDesc *p;
      int i;

      p = (struct partitionDesc *)bh->b_data;

      for (i = 0; i < UDF_SB_NUMPARTS(sb); i++) {
            udf_debug("Searching map: (%d == %d)\n",
                    UDF_SB_PARTMAPS(sb)[i].s_partition_num, le16_to_cpu(p->partitionNumber));
            if (UDF_SB_PARTMAPS(sb)[i].s_partition_num == le16_to_cpu(p->partitionNumber)) {
                  UDF_SB_PARTLEN(sb,i) = le32_to_cpu(p->partitionLength); /* blocks */
                  UDF_SB_PARTROOT(sb,i) = le32_to_cpu(p->partitionStartingLocation);
                  if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_READ_ONLY)
                        UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_READ_ONLY;
                  if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_WRITE_ONCE)
                        UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_WRITE_ONCE;
                  if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_REWRITABLE)
                        UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_REWRITABLE;
                  if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_OVERWRITABLE)
                        UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_OVERWRITABLE;

                  if (!strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) ||
                      !strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) {
                        struct partitionHeaderDesc *phd;

                        phd = (struct partitionHeaderDesc *)(p->partitionContentsUse);
                        if (phd->unallocSpaceTable.extLength) {
                              kernel_lb_addr loc = {
                                    .logicalBlockNum = le32_to_cpu(phd->unallocSpaceTable.extPosition),
                                    .partitionReferenceNum = i,
                              };

                              UDF_SB_PARTMAPS(sb)[i].s_uspace.s_table =
                                    udf_iget(sb, loc);
                              if (!UDF_SB_PARTMAPS(sb)[i].s_uspace.s_table) {
                                    udf_debug("cannot load unallocSpaceTable (part %d)\n", i);
                                    return 1;
                              }
                              UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_UNALLOC_TABLE;
                              udf_debug("unallocSpaceTable (part %d) @ %ld\n",
                                      i, UDF_SB_PARTMAPS(sb)[i].s_uspace.s_table->i_ino);
                        }
                        if (phd->unallocSpaceBitmap.extLength) {
                              UDF_SB_ALLOC_BITMAP(sb, i, s_uspace);
                              if (UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap != NULL) {
                                    UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap->s_extLength =
                                          le32_to_cpu(phd->unallocSpaceBitmap.extLength);
                                    UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap->s_extPosition =
                                          le32_to_cpu(phd->unallocSpaceBitmap.extPosition);
                                    UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_UNALLOC_BITMAP;
                                    udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
                                            i, UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap->s_extPosition);
                              }
                        }
                        if (phd->partitionIntegrityTable.extLength)
                              udf_debug("partitionIntegrityTable (part %d)\n", i);
                        if (phd->freedSpaceTable.extLength) {
                              kernel_lb_addr loc = {
                                    .logicalBlockNum = le32_to_cpu(phd->freedSpaceTable.extPosition),
                                    .partitionReferenceNum = i,
                              };

                              UDF_SB_PARTMAPS(sb)[i].s_fspace.s_table =
                                    udf_iget(sb, loc);
                              if (!UDF_SB_PARTMAPS(sb)[i].s_fspace.s_table) {
                                    udf_debug("cannot load freedSpaceTable (part %d)\n", i);
                                    return 1;
                              }
                              UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_FREED_TABLE;
                              udf_debug("freedSpaceTable (part %d) @ %ld\n",
                                      i, UDF_SB_PARTMAPS(sb)[i].s_fspace.s_table->i_ino);
                        }
                        if (phd->freedSpaceBitmap.extLength) {
                              UDF_SB_ALLOC_BITMAP(sb, i, s_fspace);
                              if (UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap != NULL) {
                                    UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap->s_extLength =
                                          le32_to_cpu(phd->freedSpaceBitmap.extLength);
                                    UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap->s_extPosition =
                                          le32_to_cpu(phd->freedSpaceBitmap.extPosition);
                                    UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_FREED_BITMAP;
                                    udf_debug("freedSpaceBitmap (part %d) @ %d\n",
                                            i, UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap->s_extPosition);
                              }
                        }
                  }
                  break;
            }
      }
      if (i == UDF_SB_NUMPARTS(sb)) {
            udf_debug("Partition (%d) not found in partition map\n",
                    le16_to_cpu(p->partitionNumber));
      } else {
            udf_debug("Partition (%d:%d type %x) starts at physical %d, block length %d\n",
                    le16_to_cpu(p->partitionNumber), i, UDF_SB_PARTTYPE(sb,i),
                    UDF_SB_PARTROOT(sb,i), UDF_SB_PARTLEN(sb,i));
      }
      return 0;
}

static int udf_load_logicalvol(struct super_block *sb, struct buffer_head *bh,
                         kernel_lb_addr *fileset)
{
      struct logicalVolDesc *lvd;
      int i, j, offset;
      uint8_t type;

      lvd = (struct logicalVolDesc *)bh->b_data;

      UDF_SB_ALLOC_PARTMAPS(sb, le32_to_cpu(lvd->numPartitionMaps));

      for (i = 0, offset = 0;
           i < UDF_SB_NUMPARTS(sb) && offset < le32_to_cpu(lvd->mapTableLength);
           i++, offset += ((struct genericPartitionMap *)&(lvd->partitionMaps[offset]))->partitionMapLength) {
            type = ((struct genericPartitionMap *)&(lvd->partitionMaps[offset]))->partitionMapType;
            if (type == 1) {
                  struct genericPartitionMap1 *gpm1 = (struct genericPartitionMap1 *)&(lvd->partitionMaps[offset]);
                  UDF_SB_PARTTYPE(sb,i) = UDF_TYPE1_MAP15;
                  UDF_SB_PARTVSN(sb,i) = le16_to_cpu(gpm1->volSeqNum);
                  UDF_SB_PARTNUM(sb,i) = le16_to_cpu(gpm1->partitionNum);
                  UDF_SB_PARTFUNC(sb,i) = NULL;
            } else if (type == 2) {
                  struct udfPartitionMap2 *upm2 = (struct udfPartitionMap2 *)&(lvd->partitionMaps[offset]);
                  if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, strlen(UDF_ID_VIRTUAL))) {
                        if (le16_to_cpu(((__le16 *)upm2->partIdent.identSuffix)[0]) == 0x0150) {
                              UDF_SB_PARTTYPE(sb,i) = UDF_VIRTUAL_MAP15;
                              UDF_SB_PARTFUNC(sb,i) = udf_get_pblock_virt15;
                        } else if (le16_to_cpu(((__le16 *)upm2->partIdent.identSuffix)[0]) == 0x0200) {
                              UDF_SB_PARTTYPE(sb,i) = UDF_VIRTUAL_MAP20;
                              UDF_SB_PARTFUNC(sb,i) = udf_get_pblock_virt20;
                        }
                  } else if (!strncmp(upm2->partIdent.ident, UDF_ID_SPARABLE, strlen(UDF_ID_SPARABLE))) {
                        uint32_t loc;
                        uint16_t ident;
                        struct sparingTable *st;
                        struct sparablePartitionMap *spm = (struct sparablePartitionMap *)&(lvd->partitionMaps[offset]);

                        UDF_SB_PARTTYPE(sb,i) = UDF_SPARABLE_MAP15;
                        UDF_SB_TYPESPAR(sb,i).s_packet_len = le16_to_cpu(spm->packetLength);
                        for (j = 0; j < spm->numSparingTables; j++) {
                              loc = le32_to_cpu(spm->locSparingTable[j]);
                              UDF_SB_TYPESPAR(sb,i).s_spar_map[j] =
                                    udf_read_tagged(sb, loc, loc, &ident);
                              if (UDF_SB_TYPESPAR(sb,i).s_spar_map[j] != NULL) {
                                    st = (struct sparingTable *)UDF_SB_TYPESPAR(sb,i).s_spar_map[j]->b_data;
                                    if (ident != 0 ||
                                        strncmp(st->sparingIdent.ident, UDF_ID_SPARING, strlen(UDF_ID_SPARING))) {
                                          brelse(UDF_SB_TYPESPAR(sb,i).s_spar_map[j]);
                                          UDF_SB_TYPESPAR(sb,i).s_spar_map[j] = NULL;
                                    }
                              }
                        }
                        UDF_SB_PARTFUNC(sb,i) = udf_get_pblock_spar15;
                  } else {
                        udf_debug("Unknown ident: %s\n", upm2->partIdent.ident);
                        continue;
                  }
                  UDF_SB_PARTVSN(sb,i) = le16_to_cpu(upm2->volSeqNum);
                  UDF_SB_PARTNUM(sb,i) = le16_to_cpu(upm2->partitionNum);
            }
            udf_debug("Partition (%d:%d) type %d on volume %d\n",
                    i, UDF_SB_PARTNUM(sb,i), type, UDF_SB_PARTVSN(sb,i));
      }

      if (fileset) {
            long_ad *la = (long_ad *)&(lvd->logicalVolContentsUse[0]);

            *fileset = lelb_to_cpu(la->extLocation);
            udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
                    fileset->logicalBlockNum,
                    fileset->partitionReferenceNum);
      }
      if (lvd->integritySeqExt.extLength)
            udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));

      return 0;
}

/*
 * udf_load_logicalvolint
 *
 */
static void udf_load_logicalvolint(struct super_block *sb, kernel_extent_ad loc)
{
      struct buffer_head *bh = NULL;
      uint16_t ident;

      while (loc.extLength > 0 &&
             (bh = udf_read_tagged(sb, loc.extLocation,
                             loc.extLocation, &ident)) &&
             ident == TAG_IDENT_LVID) {
            UDF_SB_LVIDBH(sb) = bh;

            if (UDF_SB_LVID(sb)->nextIntegrityExt.extLength)
                  udf_load_logicalvolint(sb, leea_to_cpu(UDF_SB_LVID(sb)->nextIntegrityExt));

            if (UDF_SB_LVIDBH(sb) != bh)
                  brelse(bh);
            loc.extLength -= sb->s_blocksize;
            loc.extLocation++;
      }
      if (UDF_SB_LVIDBH(sb) != bh)
            brelse(bh);
}

/*
 * udf_process_sequence
 *
 * PURPOSE
 *    Process a main/reserve volume descriptor sequence.
 *
 * PRE-CONDITIONS
 *    sb                Pointer to _locked_ superblock.
 *    block             First block of first extent of the sequence.
 *    lastblock         Lastblock of first extent of the sequence.
 *
 * HISTORY
 *    July 1, 1997 - Andrew E. Mileski
 *    Written, tested, and released.
 */
static int udf_process_sequence(struct super_block *sb, long block, long lastblock,
                         kernel_lb_addr *fileset)
{
      struct buffer_head *bh = NULL;
      struct udf_vds_record vds[VDS_POS_LENGTH];
      struct generic_desc *gd;
      struct volDescPtr *vdp;
      int done = 0;
      int i, j;
      uint32_t vdsn;
      uint16_t ident;
      long next_s = 0, next_e = 0;

      memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);

      /* Read the main descriptor sequence */
      for (; (!done && block <= lastblock); block++) {

            bh = udf_read_tagged(sb, block, block, &ident);
            if (!bh)
                  break;

            /* Process each descriptor (ISO 13346 3/8.3-8.4) */
            gd = (struct generic_desc *)bh->b_data;
            vdsn = le32_to_cpu(gd->volDescSeqNum);
            switch (ident) {
            case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
                  if (vdsn >= vds[VDS_POS_PRIMARY_VOL_DESC].volDescSeqNum) {
                        vds[VDS_POS_PRIMARY_VOL_DESC].volDescSeqNum = vdsn;
                        vds[VDS_POS_PRIMARY_VOL_DESC].block = block;
                  }
                  break;
            case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
                  if (vdsn >= vds[VDS_POS_VOL_DESC_PTR].volDescSeqNum) {
                        vds[VDS_POS_VOL_DESC_PTR].volDescSeqNum = vdsn;
                        vds[VDS_POS_VOL_DESC_PTR].block = block;

                        vdp = (struct volDescPtr *)bh->b_data;
                        next_s = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
                        next_e = le32_to_cpu(vdp->nextVolDescSeqExt.extLength);
                        next_e = next_e >> sb->s_blocksize_bits;
                        next_e += next_s;
                  }
                  break;
            case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
                  if (vdsn >= vds[VDS_POS_IMP_USE_VOL_DESC].volDescSeqNum) {
                        vds[VDS_POS_IMP_USE_VOL_DESC].volDescSeqNum = vdsn;
                        vds[VDS_POS_IMP_USE_VOL_DESC].block = block;
                  }
                  break;
            case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
                  if (!vds[VDS_POS_PARTITION_DESC].block)
                        vds[VDS_POS_PARTITION_DESC].block = block;
                  break;
            case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
                  if (vdsn >= vds[VDS_POS_LOGICAL_VOL_DESC].volDescSeqNum) {
                        vds[VDS_POS_LOGICAL_VOL_DESC].volDescSeqNum = vdsn;
                        vds[VDS_POS_LOGICAL_VOL_DESC].block = block;
                  }
                  break;
            case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
                  if (vdsn >= vds[VDS_POS_UNALLOC_SPACE_DESC].volDescSeqNum) {
                        vds[VDS_POS_UNALLOC_SPACE_DESC].volDescSeqNum = vdsn;
                        vds[VDS_POS_UNALLOC_SPACE_DESC].block = block;
                  }
                  break;
            case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
                  vds[VDS_POS_TERMINATING_DESC].block = block;
                  if (next_e) {
                        block = next_s;
                        lastblock = next_e;
                        next_s = next_e = 0;
                  } else {
                        done = 1;
                  }
                  break;
            }
            brelse(bh);
      }
      for (i = 0; i < VDS_POS_LENGTH; i++) {
            if (vds[i].block) {
                  bh = udf_read_tagged(sb, vds[i].block, vds[i].block, &ident);

                  if (i == VDS_POS_PRIMARY_VOL_DESC) {
                        udf_load_pvoldesc(sb, bh);
                  } else if (i == VDS_POS_LOGICAL_VOL_DESC) {
                        udf_load_logicalvol(sb, bh, fileset);
                  } else if (i == VDS_POS_PARTITION_DESC) {
                        struct buffer_head *bh2 = NULL;
                        if (udf_load_partdesc(sb, bh)) {
                              brelse(bh);
                              return 1;
                        }
                        for (j = vds[i].block + 1; j <  vds[VDS_POS_TERMINATING_DESC].block; j++) {
                              bh2 = udf_read_tagged(sb, j, j, &ident);
                              gd = (struct generic_desc *)bh2->b_data;
                              if (ident == TAG_IDENT_PD)
                                    if (udf_load_partdesc(sb, bh2)) {
                                          brelse(bh);
                                          brelse(bh2);
                                          return 1;
                                    }
                              brelse(bh2);
                        }
                  }
                  brelse(bh);
            }
      }

      return 0;
}

/*
 * udf_check_valid()
 */
static int udf_check_valid(struct super_block *sb, int novrs, int silent)
{
      long block;

      if (novrs) {
            udf_debug("Validity check skipped because of novrs option\n");
            return 0;
      }
      /* Check that it is NSR02 compliant */
      /* Process any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
      else if ((block = udf_vrs(sb, silent)) == -1) {
            udf_debug("Failed to read byte 32768. Assuming open disc. "
                    "Skipping validity check\n");
            if (!UDF_SB_LASTBLOCK(sb))
                  UDF_SB_LASTBLOCK(sb) = udf_get_last_block(sb);
            return 0;
      } else {
            return !block;
      }
}

static int udf_load_partition(struct super_block *sb, kernel_lb_addr *fileset)
{
      struct anchorVolDescPtr *anchor;
      uint16_t ident;
      struct buffer_head *bh;
      long main_s, main_e, reserve_s, reserve_e;
      int i, j;

      if (!sb)
            return 1;

      for (i = 0; i < ARRAY_SIZE(UDF_SB_ANCHOR(sb)); i++) {
            if (UDF_SB_ANCHOR(sb)[i] &&
                (bh = udf_read_tagged(sb, UDF_SB_ANCHOR(sb)[i],
                                UDF_SB_ANCHOR(sb)[i], &ident))) {
                  anchor = (struct anchorVolDescPtr *)bh->b_data;

                  /* Locate the main sequence */
                  main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
                  main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength );
                  main_e = main_e >> sb->s_blocksize_bits;
                  main_e += main_s;

                  /* Locate the reserve sequence */
                  reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
                  reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
                  reserve_e = reserve_e >> sb->s_blocksize_bits;
                  reserve_e += reserve_s;

                  brelse(bh);

                  /* Process the main & reserve sequences */
                  /* responsible for finding the PartitionDesc(s) */
                  if (!(udf_process_sequence(sb, main_s, main_e, fileset) &&
                        udf_process_sequence(sb, reserve_s, reserve_e, fileset))) {
                        break;
                  }
            }
      }

      if (i == ARRAY_SIZE(UDF_SB_ANCHOR(sb))) {
            udf_debug("No Anchor block found\n");
            return 1;
      } else
            udf_debug("Using anchor in block %d\n", UDF_SB_ANCHOR(sb)[i]);

      for (i = 0; i < UDF_SB_NUMPARTS(sb); i++) {
            kernel_lb_addr uninitialized_var(ino);
            switch (UDF_SB_PARTTYPE(sb, i)) {
            case UDF_VIRTUAL_MAP15:
            case UDF_VIRTUAL_MAP20:
                  if (!UDF_SB_LASTBLOCK(sb)) {
                        UDF_SB_LASTBLOCK(sb) = udf_get_last_block(sb);
                        udf_find_anchor(sb);
                  }

                  if (!UDF_SB_LASTBLOCK(sb)) {
                        udf_debug("Unable to determine Lastblock (For "
                                "Virtual Partition)\n");
                        return 1;
                  }

                  for (j = 0; j < UDF_SB_NUMPARTS(sb); j++) {
                        if (j != i &&
                            UDF_SB_PARTVSN(sb, i) == UDF_SB_PARTVSN(sb, j) &&
                            UDF_SB_PARTNUM(sb, i) == UDF_SB_PARTNUM(sb, j)) {
                              ino.partitionReferenceNum = j;
                              ino.logicalBlockNum = UDF_SB_LASTBLOCK(sb) - UDF_SB_PARTROOT(sb, j);
                              break;
                        }
                  }

                  if (j == UDF_SB_NUMPARTS(sb))
                        return 1;

                  if (!(UDF_SB_VAT(sb) = udf_iget(sb, ino)))
                        return 1;

                  if (UDF_SB_PARTTYPE(sb, i) == UDF_VIRTUAL_MAP15) {
                        UDF_SB_TYPEVIRT(sb, i).s_start_offset =
                              udf_ext0_offset(UDF_SB_VAT(sb));
                        UDF_SB_TYPEVIRT(sb, i).s_num_entries =
                              (UDF_SB_VAT(sb)->i_size - 36) >> 2;
                  } else if (UDF_SB_PARTTYPE(sb, i) == UDF_VIRTUAL_MAP20) {
                        struct buffer_head *bh = NULL;
                        uint32_t pos;

                        pos = udf_block_map(UDF_SB_VAT(sb), 0);
                        bh = sb_bread(sb, pos);
                        if (!bh)
                              return 1;
                        UDF_SB_TYPEVIRT(sb, i).s_start_offset =
                              le16_to_cpu(((struct virtualAllocationTable20 *)bh->b_data +
                                         udf_ext0_offset(UDF_SB_VAT(sb)))->lengthHeader) +
                              udf_ext0_offset(UDF_SB_VAT(sb));
                        UDF_SB_TYPEVIRT(sb, i).s_num_entries = (UDF_SB_VAT(sb)->i_size -
                                                      UDF_SB_TYPEVIRT(sb, i).s_start_offset) >> 2;
                        brelse(bh);
                  }
                  UDF_SB_PARTROOT(sb, i) = udf_get_pblock(sb, 0, i, 0);
                  UDF_SB_PARTLEN(sb, i) = UDF_SB_PARTLEN(sb, ino.partitionReferenceNum);
            }
      }
      return 0;
}

static void udf_open_lvid(struct super_block *sb)
{
      if (UDF_SB_LVIDBH(sb)) {
            int i;
            kernel_timestamp cpu_time;

            UDF_SB_LVIDIU(sb)->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
            UDF_SB_LVIDIU(sb)->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
            if (udf_time_to_stamp(&cpu_time, CURRENT_TIME))
                  UDF_SB_LVID(sb)->recordingDateAndTime = cpu_to_lets(cpu_time);
            UDF_SB_LVID(sb)->integrityType = LVID_INTEGRITY_TYPE_OPEN;

            UDF_SB_LVID(sb)->descTag.descCRC = cpu_to_le16(udf_crc((char *)UDF_SB_LVID(sb) + sizeof(tag),
                                                       le16_to_cpu(UDF_SB_LVID(sb)->descTag.descCRCLength), 0));

            UDF_SB_LVID(sb)->descTag.tagChecksum = 0;
            for (i = 0; i < 16; i++)
                  if (i != 4)
                        UDF_SB_LVID(sb)->descTag.tagChecksum +=
                              ((uint8_t *) &(UDF_SB_LVID(sb)->descTag))[i];

            mark_buffer_dirty(UDF_SB_LVIDBH(sb));
      }
}

static void udf_close_lvid(struct super_block *sb)
{
      kernel_timestamp cpu_time;
      int i;

      if (UDF_SB_LVIDBH(sb) &&
          UDF_SB_LVID(sb)->integrityType == LVID_INTEGRITY_TYPE_OPEN) {
            UDF_SB_LVIDIU(sb)->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
            UDF_SB_LVIDIU(sb)->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
            if (udf_time_to_stamp(&cpu_time, CURRENT_TIME))
                  UDF_SB_LVID(sb)->recordingDateAndTime = cpu_to_lets(cpu_time);
            if (UDF_MAX_WRITE_VERSION > le16_to_cpu(UDF_SB_LVIDIU(sb)->maxUDFWriteRev))
                  UDF_SB_LVIDIU(sb)->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
            if (UDF_SB_UDFREV(sb) > le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFReadRev))
                  UDF_SB_LVIDIU(sb)->minUDFReadRev = cpu_to_le16(UDF_SB_UDFREV(sb));
            if (UDF_SB_UDFREV(sb) > le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFWriteRev))
                  UDF_SB_LVIDIU(sb)->minUDFWriteRev = cpu_to_le16(UDF_SB_UDFREV(sb));
            UDF_SB_LVID(sb)->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);

            UDF_SB_LVID(sb)->descTag.descCRC =
                  cpu_to_le16(udf_crc((char *)UDF_SB_LVID(sb) + sizeof(tag),
                                  le16_to_cpu(UDF_SB_LVID(sb)->descTag.descCRCLength), 0));

            UDF_SB_LVID(sb)->descTag.tagChecksum = 0;
            for (i = 0; i < 16; i++)
                  if (i != 4)
                        UDF_SB_LVID(sb)->descTag.tagChecksum +=
                              ((uint8_t *)&(UDF_SB_LVID(sb)->descTag))[i];

            mark_buffer_dirty(UDF_SB_LVIDBH(sb));
      }
}

/*
 * udf_read_super
 *
 * PURPOSE
 *    Complete the specified super block.
 *
 * PRE-CONDITIONS
 *    sb                Pointer to superblock to complete - never NULL.
 *    sb->s_dev         Device to read suberblock from.
 *    options                 Pointer to mount options.
 *    silent                  Silent flag.
 *
 * HISTORY
 *    July 1, 1997 - Andrew E. Mileski
 *    Written, tested, and released.
 */
static int udf_fill_super(struct super_block *sb, void *options, int silent)
{
      int i;
      struct inode *inode = NULL;
      struct udf_options uopt;
      kernel_lb_addr rootdir, fileset;
      struct udf_sb_info *sbi;

      uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
      uopt.uid = -1;
      uopt.gid = -1;
      uopt.umask = 0;

      sbi = kmalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
      if (!sbi)
            return -ENOMEM;

      sb->s_fs_info = sbi;
      memset(UDF_SB(sb), 0x00, sizeof(struct udf_sb_info));

      mutex_init(&sbi->s_alloc_mutex);

      if (!udf_parse_options((char *)options, &uopt))
            goto error_out;

      if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
          uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
            udf_error(sb, "udf_read_super",
                    "utf8 cannot be combined with iocharset\n");
            goto error_out;
      }
#ifdef CONFIG_UDF_NLS
      if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
            uopt.nls_map = load_nls_default();
            if (!uopt.nls_map)
                  uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
            else
                  udf_debug("Using default NLS map\n");
      }
#endif
      if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
            uopt.flags |= (1 << UDF_FLAG_UTF8);

      fileset.logicalBlockNum = 0xFFFFFFFF;
      fileset.partitionReferenceNum = 0xFFFF;

      UDF_SB(sb)->s_flags = uopt.flags;
      UDF_SB(sb)->s_uid = uopt.uid;
      UDF_SB(sb)->s_gid = uopt.gid;
      UDF_SB(sb)->s_umask = uopt.umask;
      UDF_SB(sb)->s_nls_map = uopt.nls_map;

      /* Set the block size for all transfers */
      if (!udf_set_blocksize(sb, uopt.blocksize))
            goto error_out;

      if (uopt.session == 0xFFFFFFFF)
            UDF_SB_SESSION(sb) = udf_get_last_session(sb);
      else
            UDF_SB_SESSION(sb) = uopt.session;

      udf_debug("Multi-session=%d\n", UDF_SB_SESSION(sb));

      UDF_SB_LASTBLOCK(sb) = uopt.lastblock;
      UDF_SB_ANCHOR(sb)[0] = UDF_SB_ANCHOR(sb)[1] = 0;
      UDF_SB_ANCHOR(sb)[2] = uopt.anchor;
      UDF_SB_ANCHOR(sb)[3] = 256;

      if (udf_check_valid(sb, uopt.novrs, silent)) { /* read volume recognition sequences */
            printk("UDF-fs: No VRS found\n");
            goto error_out;
      }

      udf_find_anchor(sb);

      /* Fill in the rest of the superblock */
      sb->s_op = &udf_sb_ops;
      sb->dq_op = NULL;
      sb->s_dirt = 0;
      sb->s_magic = UDF_SUPER_MAGIC;
      sb->s_time_gran = 1000;

      if (udf_load_partition(sb, &fileset)) {
            printk("UDF-fs: No partition found (1)\n");
            goto error_out;
      }

      udf_debug("Lastblock=%d\n", UDF_SB_LASTBLOCK(sb));

      if (UDF_SB_LVIDBH(sb)) {
            uint16_t minUDFReadRev = le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFReadRev);
            uint16_t minUDFWriteRev = le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFWriteRev);
            /* uint16_t maxUDFWriteRev = le16_to_cpu(UDF_SB_LVIDIU(sb)->maxUDFWriteRev); */

            if (minUDFReadRev > UDF_MAX_READ_VERSION) {
                  printk("UDF-fs: minUDFReadRev=%x (max is %x)\n",
                         le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFReadRev),
                         UDF_MAX_READ_VERSION);
                  goto error_out;
            } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
                  sb->s_flags |= MS_RDONLY;
            }

            UDF_SB_UDFREV(sb) = minUDFWriteRev;

            if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
                  UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
            if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
                  UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
      }

      if (!UDF_SB_NUMPARTS(sb)) {
            printk("UDF-fs: No partition found (2)\n");
            goto error_out;
      }

      if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_READ_ONLY) {
            printk("UDF-fs: Partition marked readonly; forcing readonly mount\n");
            sb->s_flags |= MS_RDONLY;
      }

      if (udf_find_fileset(sb, &fileset, &rootdir)) {
            printk("UDF-fs: No fileset found\n");
            goto error_out;
      }

      if (!silent) {
            kernel_timestamp ts;
            udf_time_to_stamp(&ts, UDF_SB_RECORDTIME(sb));
            udf_info("UDF %s (%s) Mounting volume '%s', "
                   "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
                   UDFFS_VERSION, UDFFS_DATE,
                   UDF_SB_VOLIDENT(sb), ts.year, ts.month, ts.day, ts.hour, ts.minute,
                   ts.typeAndTimezone);
      }
      if (!(sb->s_flags & MS_RDONLY))
            udf_open_lvid(sb);

      /* Assign the root inode */
      /* assign inodes by physical block number */
      /* perhaps it's not extensible enough, but for now ... */
      inode = udf_iget(sb, rootdir);
      if (!inode) {
            printk("UDF-fs: Error in udf_iget, block=%d, partition=%d\n",
                   rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
            goto error_out;
      }

      /* Allocate a dentry for the root inode */
      sb->s_root = d_alloc_root(inode);
      if (!sb->s_root) {
            printk("UDF-fs: Couldn't allocate root dentry\n");
            iput(inode);
            goto error_out;
      }
      sb->s_maxbytes = MAX_LFS_FILESIZE;
      return 0;

error_out:
      if (UDF_SB_VAT(sb))
            iput(UDF_SB_VAT(sb));
      if (UDF_SB_NUMPARTS(sb)) {
            if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_TABLE)
                  iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_table);
            if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_TABLE)
                  iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_table);
            if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_BITMAP)
                  UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb), s_uspace);
            if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_BITMAP)
                  UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb), s_fspace);
            if (UDF_SB_PARTTYPE(sb, UDF_SB_PARTITION(sb)) == UDF_SPARABLE_MAP15) {
                  for (i = 0; i < 4; i++)
                        brelse(UDF_SB_TYPESPAR(sb, UDF_SB_PARTITION(sb)).s_spar_map[i]);
            }
      }
#ifdef CONFIG_UDF_NLS
      if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
            unload_nls(UDF_SB(sb)->s_nls_map);
#endif
      if (!(sb->s_flags & MS_RDONLY))
            udf_close_lvid(sb);
      brelse(UDF_SB_LVIDBH(sb));
      UDF_SB_FREE(sb);
      kfree(sbi);
      sb->s_fs_info = NULL;

      return -EINVAL;
}

void udf_error(struct super_block *sb, const char *function,
             const char *fmt, ...)
{
      va_list args;

      if (!(sb->s_flags & MS_RDONLY)) {
            /* mark sb error */
            sb->s_dirt = 1;
      }
      va_start(args, fmt);
      vsnprintf(error_buf, sizeof(error_buf), fmt, args);
      va_end(args);
      printk (KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
            sb->s_id, function, error_buf);
}

void udf_warning(struct super_block *sb, const char *function,
             const char *fmt, ...)
{
      va_list args;

      va_start(args, fmt);
      vsnprintf(error_buf, sizeof(error_buf), fmt, args);
      va_end(args);
      printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
             sb->s_id, function, error_buf);
}

/*
 * udf_put_super
 *
 * PURPOSE
 *    Prepare for destruction of the superblock.
 *
 * DESCRIPTION
 *    Called before the filesystem is unmounted.
 *
 * HISTORY
 *    July 1, 1997 - Andrew E. Mileski
 *    Written, tested, and released.
 */
static void udf_put_super(struct super_block *sb)
{
      int i;

      if (UDF_SB_VAT(sb))
            iput(UDF_SB_VAT(sb));
      if (UDF_SB_NUMPARTS(sb)) {
            if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_TABLE)
                  iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_table);
            if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_TABLE)
                  iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_table);
            if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_BITMAP)
                  UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb), s_uspace);
            if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_BITMAP)
                  UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb), s_fspace);
            if (UDF_SB_PARTTYPE(sb, UDF_SB_PARTITION(sb)) == UDF_SPARABLE_MAP15) {
                  for (i = 0; i < 4; i++)
                        brelse(UDF_SB_TYPESPAR(sb, UDF_SB_PARTITION(sb)).s_spar_map[i]);
            }
      }
#ifdef CONFIG_UDF_NLS
      if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
            unload_nls(UDF_SB(sb)->s_nls_map);
#endif
      if (!(sb->s_flags & MS_RDONLY))
            udf_close_lvid(sb);
      brelse(UDF_SB_LVIDBH(sb));
      UDF_SB_FREE(sb);
      kfree(sb->s_fs_info);
      sb->s_fs_info = NULL;
}

/*
 * udf_stat_fs
 *
 * PURPOSE
 *    Return info about the filesystem.
 *
 * DESCRIPTION
 *    Called by sys_statfs()
 *
 * HISTORY
 *    July 1, 1997 - Andrew E. Mileski
 *    Written, tested, and released.
 */
static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
{
      struct super_block *sb = dentry->d_sb;

      buf->f_type = UDF_SUPER_MAGIC;
      buf->f_bsize = sb->s_blocksize;
      buf->f_blocks = UDF_SB_PARTLEN(sb, UDF_SB_PARTITION(sb));
      buf->f_bfree = udf_count_free(sb);
      buf->f_bavail = buf->f_bfree;
      buf->f_files = (UDF_SB_LVIDBH(sb) ?
                  (le32_to_cpu(UDF_SB_LVIDIU(sb)->numFiles) +
                   le32_to_cpu(UDF_SB_LVIDIU(sb)->numDirs)) : 0) + buf->f_bfree;
      buf->f_ffree = buf->f_bfree;
      /* __kernel_fsid_t f_fsid */
      buf->f_namelen = UDF_NAME_LEN - 2;

      return 0;
}

static unsigned char udf_bitmap_lookup[16] = {
      0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
};

static unsigned int udf_count_free_bitmap(struct super_block *sb, struct udf_bitmap *bitmap)
{
      struct buffer_head *bh = NULL;
      unsigned int accum = 0;
      int index;
      int block = 0, newblock;
      kernel_lb_addr loc;
      uint32_t bytes;
      uint8_t value;
      uint8_t *ptr;
      uint16_t ident;
      struct spaceBitmapDesc *bm;

      lock_kernel();

      loc.logicalBlockNum = bitmap->s_extPosition;
      loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
      bh = udf_read_ptagged(sb, loc, 0, &ident);

      if (!bh) {
            printk(KERN_ERR "udf: udf_count_free failed\n");
            goto out;
      } else if (ident != TAG_IDENT_SBD) {
            brelse(bh);
            printk(KERN_ERR "udf: udf_count_free failed\n");
            goto out;
      }

      bm = (struct spaceBitmapDesc *)bh->b_data;
      bytes = le32_to_cpu(bm->numOfBytes);
      index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
      ptr = (uint8_t *)bh->b_data;

      while (bytes > 0) {
            while ((bytes > 0) && (index < sb->s_blocksize)) {
                  value = ptr[index];
                  accum += udf_bitmap_lookup[value & 0x0f];
                  accum += udf_bitmap_lookup[value >> 4];
                  index++;
                  bytes--;
            }
            if (bytes) {
                  brelse(bh);
                  newblock = udf_get_lb_pblock(sb, loc, ++block);
                  bh = udf_tread(sb, newblock);
                  if (!bh) {
                        udf_debug("read failed\n");
                        goto out;
                  }
                  index = 0;
                  ptr = (uint8_t *)bh->b_data;
            }
      }
      brelse(bh);

out:
      unlock_kernel();

      return accum;
}

static unsigned int udf_count_free_table(struct super_block *sb, struct inode *table)
{
      unsigned int accum = 0;
      uint32_t elen;
      kernel_lb_addr eloc;
      int8_t etype;
      struct extent_position epos;

      lock_kernel();

      epos.block = UDF_I_LOCATION(table);
      epos.offset = sizeof(struct unallocSpaceEntry);
      epos.bh = NULL;

      while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
            accum += (elen >> table->i_sb->s_blocksize_bits);
      }
      brelse(epos.bh);

      unlock_kernel();

      return accum;
}

static unsigned int udf_count_free(struct super_block *sb)
{
      unsigned int accum = 0;

      if (UDF_SB_LVIDBH(sb)) {
            if (le32_to_cpu(UDF_SB_LVID(sb)->numOfPartitions) > UDF_SB_PARTITION(sb)) {
                  accum = le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)]);
                  if (accum == 0xFFFFFFFF)
                        accum = 0;
            }
      }

      if (accum)
            return accum;

      if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_BITMAP) {
            accum += udf_count_free_bitmap(sb,
                                     UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_bitmap);
      }
      if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_BITMAP) {
            accum += udf_count_free_bitmap(sb,
                                     UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_bitmap);
      }
      if (accum)
            return accum;

      if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_TABLE) {
            accum += udf_count_free_table(sb,
                                    UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_table);
      }
      if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_TABLE) {
            accum += udf_count_free_table(sb,
                                    UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_table);
      }

      return accum;
}

Generated by  Doxygen 1.6.0   Back to index