Logo Search packages:      
Sourcecode: linux version File versions  Download package

super.c

/*
 *  linux/fs/ufs/super.c
 *
 * Copyright (C) 1998
 * Daniel Pirkl <daniel.pirkl@email.cz>
 * Charles University, Faculty of Mathematics and Physics
 */

/* Derived from
 *
 *  linux/fs/ext2/super.c
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 */
 
/*
 * Inspired by
 *
 *  linux/fs/ufs/super.c
 *
 * Copyright (C) 1996
 * Adrian Rodriguez (adrian@franklins-tower.rutgers.edu)
 * Laboratory for Computer Science Research Computing Facility
 * Rutgers, The State University of New Jersey
 *
 * Copyright (C) 1996  Eddie C. Dost  (ecd@skynet.be)
 *
 * Kernel module support added on 96/04/26 by
 * Stefan Reinauer <stepan@home.culture.mipt.ru>
 *
 * Module usage counts added on 96/04/29 by
 * Gertjan van Wingerde <gertjan@cs.vu.nl>
 *
 * Clean swab support on 19970406 by
 * Francois-Rene Rideau <fare@tunes.org>
 *
 * 4.4BSD (FreeBSD) support added on February 1st 1998 by
 * Niels Kristian Bech Jensen <nkbj@image.dk> partially based
 * on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>.
 *
 * NeXTstep support added on February 5th 1998 by
 * Niels Kristian Bech Jensen <nkbj@image.dk>.
 *
 * write support Daniel Pirkl <daniel.pirkl@email.cz> 1998
 * 
 * HP/UX hfs filesystem support added by
 * Martin K. Petersen <mkp@mkp.net>, August 1999
 *
 * UFS2 (of FreeBSD 5.x) support added by
 * Niraj Kumar <niraj17@iitbombay.org>, Jan 2004
 *
 * UFS2 write support added by
 * Evgeniy Dushistov <dushistov@mail.ru>, 2007
 */


#include <linux/module.h>
#include <linux/bitops.h>

#include <stdarg.h>

#include <asm/uaccess.h>
#include <asm/system.h>

#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/ufs_fs.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/blkdev.h>
#include <linux/init.h>
#include <linux/parser.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include <linux/log2.h>
#include <linux/mount.h>
#include <linux/seq_file.h>

#include "ufs.h"
#include "swab.h"
#include "util.h"

#ifdef CONFIG_UFS_DEBUG
/*
 * Print contents of ufs_super_block, useful for debugging
 */
static void ufs_print_super_stuff(struct super_block *sb,
                          struct ufs_super_block_first *usb1,
                          struct ufs_super_block_second *usb2,
                          struct ufs_super_block_third *usb3)
{
      u32 magic = fs32_to_cpu(sb, usb3->fs_magic);

      printk("ufs_print_super_stuff\n");
      printk("  magic:     0x%x\n", magic);
      if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) {
            printk("  fs_size:   %llu\n", (unsigned long long)
                   fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size));
            printk("  fs_dsize:  %llu\n", (unsigned long long)
                   fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize));
            printk("  bsize:         %u\n",
                   fs32_to_cpu(sb, usb1->fs_bsize));
            printk("  fsize:         %u\n",
                   fs32_to_cpu(sb, usb1->fs_fsize));
            printk("  fs_volname:  %s\n", usb2->fs_un.fs_u2.fs_volname);
            printk("  fs_sblockloc: %llu\n", (unsigned long long)
                   fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc));
            printk("  cs_ndir(No of dirs):  %llu\n", (unsigned long long)
                   fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir));
            printk("  cs_nbfree(No of free blocks):  %llu\n",
                   (unsigned long long)
                   fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree));
            printk(KERN_INFO"  cs_nifree(Num of free inodes): %llu\n",
                   (unsigned long long)
                   fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree));
            printk(KERN_INFO"  cs_nffree(Num of free frags): %llu\n",
                   (unsigned long long)
                   fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree));
      } else {
            printk(" sblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
            printk(" cblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
            printk(" iblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
            printk(" dblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
            printk(" cgoffset:    %u\n",
                   fs32_to_cpu(sb, usb1->fs_cgoffset));
            printk(" ~cgmask:     0x%x\n",
                   ~fs32_to_cpu(sb, usb1->fs_cgmask));
            printk(" size:        %u\n", fs32_to_cpu(sb, usb1->fs_size));
            printk(" dsize:       %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
            printk(" ncg:         %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
            printk(" bsize:       %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
            printk(" fsize:       %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
            printk(" frag:        %u\n", fs32_to_cpu(sb, usb1->fs_frag));
            printk(" fragshift:   %u\n",
                   fs32_to_cpu(sb, usb1->fs_fragshift));
            printk(" ~fmask:      %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
            printk(" fshift:      %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
            printk(" sbsize:      %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
            printk(" spc:         %u\n", fs32_to_cpu(sb, usb1->fs_spc));
            printk(" cpg:         %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
            printk(" ipg:         %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
            printk(" fpg:         %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
            printk(" csaddr:      %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
            printk(" cssize:      %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
            printk(" cgsize:      %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
            printk(" fstodb:      %u\n",
                   fs32_to_cpu(sb, usb1->fs_fsbtodb));
            printk(" nrpos:       %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
            printk(" ndir         %u\n",
                   fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
            printk(" nifree       %u\n",
                   fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
            printk(" nbfree       %u\n",
                   fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
            printk(" nffree       %u\n",
                   fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
      }
      printk("\n");
}

/*
 * Print contents of ufs_cylinder_group, useful for debugging
 */
static void ufs_print_cylinder_stuff(struct super_block *sb,
                             struct ufs_cylinder_group *cg)
{
      printk("\nufs_print_cylinder_stuff\n");
      printk("size of ucg: %zu\n", sizeof(struct ufs_cylinder_group));
      printk("  magic:        %x\n", fs32_to_cpu(sb, cg->cg_magic));
      printk("  time:         %u\n", fs32_to_cpu(sb, cg->cg_time));
      printk("  cgx:          %u\n", fs32_to_cpu(sb, cg->cg_cgx));
      printk("  ncyl:         %u\n", fs16_to_cpu(sb, cg->cg_ncyl));
      printk("  niblk:        %u\n", fs16_to_cpu(sb, cg->cg_niblk));
      printk("  ndblk:        %u\n", fs32_to_cpu(sb, cg->cg_ndblk));
      printk("  cs_ndir:      %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_ndir));
      printk("  cs_nbfree:    %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nbfree));
      printk("  cs_nifree:    %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nifree));
      printk("  cs_nffree:    %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nffree));
      printk("  rotor:        %u\n", fs32_to_cpu(sb, cg->cg_rotor));
      printk("  frotor:       %u\n", fs32_to_cpu(sb, cg->cg_frotor));
      printk("  irotor:       %u\n", fs32_to_cpu(sb, cg->cg_irotor));
      printk("  frsum:        %u, %u, %u, %u, %u, %u, %u, %u\n",
          fs32_to_cpu(sb, cg->cg_frsum[0]), fs32_to_cpu(sb, cg->cg_frsum[1]),
          fs32_to_cpu(sb, cg->cg_frsum[2]), fs32_to_cpu(sb, cg->cg_frsum[3]),
          fs32_to_cpu(sb, cg->cg_frsum[4]), fs32_to_cpu(sb, cg->cg_frsum[5]),
          fs32_to_cpu(sb, cg->cg_frsum[6]), fs32_to_cpu(sb, cg->cg_frsum[7]));
      printk("  btotoff:      %u\n", fs32_to_cpu(sb, cg->cg_btotoff));
      printk("  boff:         %u\n", fs32_to_cpu(sb, cg->cg_boff));
      printk("  iuseoff:      %u\n", fs32_to_cpu(sb, cg->cg_iusedoff));
      printk("  freeoff:      %u\n", fs32_to_cpu(sb, cg->cg_freeoff));
      printk("  nextfreeoff:  %u\n", fs32_to_cpu(sb, cg->cg_nextfreeoff));
      printk("  clustersumoff %u\n",
             fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clustersumoff));
      printk("  clusteroff    %u\n",
             fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clusteroff));
      printk("  nclusterblks  %u\n",
             fs32_to_cpu(sb, cg->cg_u.cg_44.cg_nclusterblks));
      printk("\n");
}
#else
#  define ufs_print_super_stuff(sb, usb1, usb2, usb3) /**/
#  define ufs_print_cylinder_stuff(sb, cg) /**/
#endif /* CONFIG_UFS_DEBUG */

static const struct super_operations ufs_super_ops;

static char error_buf[1024];

void ufs_error (struct super_block * sb, const char * function,
      const char * fmt, ...)
{
      struct ufs_sb_private_info * uspi;
      struct ufs_super_block_first * usb1;
      va_list args;

      uspi = UFS_SB(sb)->s_uspi;
      usb1 = ubh_get_usb_first(uspi);
      
      if (!(sb->s_flags & MS_RDONLY)) {
            usb1->fs_clean = UFS_FSBAD;
            ubh_mark_buffer_dirty(USPI_UBH(uspi));
            sb->s_dirt = 1;
            sb->s_flags |= MS_RDONLY;
      }
      va_start (args, fmt);
      vsnprintf (error_buf, sizeof(error_buf), fmt, args);
      va_end (args);
      switch (UFS_SB(sb)->s_mount_opt & UFS_MOUNT_ONERROR) {
      case UFS_MOUNT_ONERROR_PANIC:
            panic ("UFS-fs panic (device %s): %s: %s\n", 
                  sb->s_id, function, error_buf);

      case UFS_MOUNT_ONERROR_LOCK:
      case UFS_MOUNT_ONERROR_UMOUNT:
      case UFS_MOUNT_ONERROR_REPAIR:
            printk (KERN_CRIT "UFS-fs error (device %s): %s: %s\n",
                  sb->s_id, function, error_buf);
      }           
}

void ufs_panic (struct super_block * sb, const char * function,
      const char * fmt, ...)
{
      struct ufs_sb_private_info * uspi;
      struct ufs_super_block_first * usb1;
      va_list args;
      
      uspi = UFS_SB(sb)->s_uspi;
      usb1 = ubh_get_usb_first(uspi);
      
      if (!(sb->s_flags & MS_RDONLY)) {
            usb1->fs_clean = UFS_FSBAD;
            ubh_mark_buffer_dirty(USPI_UBH(uspi));
            sb->s_dirt = 1;
      }
      va_start (args, fmt);
      vsnprintf (error_buf, sizeof(error_buf), fmt, args);
      va_end (args);
      sb->s_flags |= MS_RDONLY;
      printk (KERN_CRIT "UFS-fs panic (device %s): %s: %s\n",
            sb->s_id, function, error_buf);
}

void ufs_warning (struct super_block * sb, const char * function,
      const char * fmt, ...)
{
      va_list args;

      va_start (args, fmt);
      vsnprintf (error_buf, sizeof(error_buf), fmt, args);
      va_end (args);
      printk (KERN_WARNING "UFS-fs warning (device %s): %s: %s\n",
            sb->s_id, function, error_buf);
}

enum {
       Opt_type_old = UFS_MOUNT_UFSTYPE_OLD,
       Opt_type_sunx86 = UFS_MOUNT_UFSTYPE_SUNx86,
       Opt_type_sun = UFS_MOUNT_UFSTYPE_SUN,
       Opt_type_sunos = UFS_MOUNT_UFSTYPE_SUNOS,
       Opt_type_44bsd = UFS_MOUNT_UFSTYPE_44BSD,
       Opt_type_ufs2 = UFS_MOUNT_UFSTYPE_UFS2,
       Opt_type_hp = UFS_MOUNT_UFSTYPE_HP,
       Opt_type_nextstepcd = UFS_MOUNT_UFSTYPE_NEXTSTEP_CD,
       Opt_type_nextstep = UFS_MOUNT_UFSTYPE_NEXTSTEP,
       Opt_type_openstep = UFS_MOUNT_UFSTYPE_OPENSTEP,
       Opt_onerror_panic = UFS_MOUNT_ONERROR_PANIC,
       Opt_onerror_lock = UFS_MOUNT_ONERROR_LOCK,
       Opt_onerror_umount = UFS_MOUNT_ONERROR_UMOUNT,
       Opt_onerror_repair = UFS_MOUNT_ONERROR_REPAIR,
       Opt_err
};

static match_table_t tokens = {
      {Opt_type_old, "ufstype=old"},
      {Opt_type_sunx86, "ufstype=sunx86"},
      {Opt_type_sun, "ufstype=sun"},
      {Opt_type_sunos, "ufstype=sunos"},
      {Opt_type_44bsd, "ufstype=44bsd"},
      {Opt_type_ufs2, "ufstype=ufs2"},
      {Opt_type_ufs2, "ufstype=5xbsd"},
      {Opt_type_hp, "ufstype=hp"},
      {Opt_type_nextstepcd, "ufstype=nextstep-cd"},
      {Opt_type_nextstep, "ufstype=nextstep"},
      {Opt_type_openstep, "ufstype=openstep"},
/*end of possible ufs types */
      {Opt_onerror_panic, "onerror=panic"},
      {Opt_onerror_lock, "onerror=lock"},
      {Opt_onerror_umount, "onerror=umount"},
      {Opt_onerror_repair, "onerror=repair"},
      {Opt_err, NULL}
};

static int ufs_parse_options (char * options, unsigned * mount_options)
{
      char * p;
      
      UFSD("ENTER\n");
      
      if (!options)
            return 1;

      while ((p = strsep(&options, ",")) != NULL) {
            substring_t args[MAX_OPT_ARGS];
            int token;
            if (!*p)
                  continue;

            token = match_token(p, tokens, args);
            switch (token) {
            case Opt_type_old:
                  ufs_clear_opt (*mount_options, UFSTYPE);
                  ufs_set_opt (*mount_options, UFSTYPE_OLD);
                  break;
            case Opt_type_sunx86:
                  ufs_clear_opt (*mount_options, UFSTYPE);
                  ufs_set_opt (*mount_options, UFSTYPE_SUNx86);
                  break;
            case Opt_type_sun:
                  ufs_clear_opt (*mount_options, UFSTYPE);
                  ufs_set_opt (*mount_options, UFSTYPE_SUN);
                  break;
            case Opt_type_sunos:
                  ufs_clear_opt(*mount_options, UFSTYPE);
                  ufs_set_opt(*mount_options, UFSTYPE_SUNOS);
                  break;
            case Opt_type_44bsd:
                  ufs_clear_opt (*mount_options, UFSTYPE);
                  ufs_set_opt (*mount_options, UFSTYPE_44BSD);
                  break;
            case Opt_type_ufs2:
                  ufs_clear_opt(*mount_options, UFSTYPE);
                  ufs_set_opt(*mount_options, UFSTYPE_UFS2);
                  break;
            case Opt_type_hp:
                  ufs_clear_opt (*mount_options, UFSTYPE);
                  ufs_set_opt (*mount_options, UFSTYPE_HP);
                  break;
            case Opt_type_nextstepcd:
                  ufs_clear_opt (*mount_options, UFSTYPE);
                  ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP_CD);
                  break;
            case Opt_type_nextstep:
                  ufs_clear_opt (*mount_options, UFSTYPE);
                  ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP);
                  break;
            case Opt_type_openstep:
                  ufs_clear_opt (*mount_options, UFSTYPE);
                  ufs_set_opt (*mount_options, UFSTYPE_OPENSTEP);
                  break;
            case Opt_onerror_panic:
                  ufs_clear_opt (*mount_options, ONERROR);
                  ufs_set_opt (*mount_options, ONERROR_PANIC);
                  break;
            case Opt_onerror_lock:
                  ufs_clear_opt (*mount_options, ONERROR);
                  ufs_set_opt (*mount_options, ONERROR_LOCK);
                  break;
            case Opt_onerror_umount:
                  ufs_clear_opt (*mount_options, ONERROR);
                  ufs_set_opt (*mount_options, ONERROR_UMOUNT);
                  break;
            case Opt_onerror_repair:
                  printk("UFS-fs: Unable to do repair on error, "
                        "will lock lock instead\n");
                  ufs_clear_opt (*mount_options, ONERROR);
                  ufs_set_opt (*mount_options, ONERROR_REPAIR);
                  break;
            default:
                  printk("UFS-fs: Invalid option: \"%s\" "
                              "or missing value\n", p);
                  return 0;
            }
      }
      return 1;
}

/*
 * Diffrent types of UFS hold fs_cstotal in different
 * places, and use diffrent data structure for it.
 * To make things simplier we just copy fs_cstotal to ufs_sb_private_info
 */
static void ufs_setup_cstotal(struct super_block *sb)
{
      struct ufs_sb_info *sbi = UFS_SB(sb);
      struct ufs_sb_private_info *uspi = sbi->s_uspi;
      struct ufs_super_block_first *usb1;
      struct ufs_super_block_second *usb2;
      struct ufs_super_block_third *usb3;
      unsigned mtype = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;

      UFSD("ENTER, mtype=%u\n", mtype);
      usb1 = ubh_get_usb_first(uspi);
      usb2 = ubh_get_usb_second(uspi);
      usb3 = ubh_get_usb_third(uspi);

      if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
           (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
          mtype == UFS_MOUNT_UFSTYPE_UFS2) {
            /*we have statistic in different place, then usual*/
            uspi->cs_total.cs_ndir = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir);
            uspi->cs_total.cs_nbfree = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree);
            uspi->cs_total.cs_nifree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree);
            uspi->cs_total.cs_nffree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree);
      } else {
            uspi->cs_total.cs_ndir = fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir);
            uspi->cs_total.cs_nbfree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree);
            uspi->cs_total.cs_nifree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree);
            uspi->cs_total.cs_nffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree);
      }
      UFSD("EXIT\n");
}

/*
 * Read on-disk structures associated with cylinder groups
 */
static int ufs_read_cylinder_structures(struct super_block *sb)
{
      struct ufs_sb_info *sbi = UFS_SB(sb);
      struct ufs_sb_private_info *uspi = sbi->s_uspi;
      struct ufs_buffer_head * ubh;
      unsigned char * base, * space;
      unsigned size, blks, i;
      struct ufs_super_block_third *usb3;

      UFSD("ENTER\n");

      usb3 = ubh_get_usb_third(uspi);
      /*
       * Read cs structures from (usually) first data block
       * on the device. 
       */
      size = uspi->s_cssize;
      blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
      base = space = kmalloc(size, GFP_KERNEL);
      if (!base)
            goto failed; 
      sbi->s_csp = (struct ufs_csum *)space;
      for (i = 0; i < blks; i += uspi->s_fpb) {
            size = uspi->s_bsize;
            if (i + uspi->s_fpb > blks)
                  size = (blks - i) * uspi->s_fsize;

            ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
            
            if (!ubh)
                  goto failed;

            ubh_ubhcpymem (space, ubh, size);

            space += size;
            ubh_brelse (ubh);
            ubh = NULL;
      }

      /*
       * Read cylinder group (we read only first fragment from block
       * at this time) and prepare internal data structures for cg caching.
       */
      if (!(sbi->s_ucg = kmalloc (sizeof(struct buffer_head *) * uspi->s_ncg, GFP_KERNEL)))
            goto failed;
      for (i = 0; i < uspi->s_ncg; i++) 
            sbi->s_ucg[i] = NULL;
      for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
            sbi->s_ucpi[i] = NULL;
            sbi->s_cgno[i] = UFS_CGNO_EMPTY;
      }
      for (i = 0; i < uspi->s_ncg; i++) {
            UFSD("read cg %u\n", i);
            if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i))))
                  goto failed;
            if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data))
                  goto failed;

            ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data);
      }
      for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
            if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_KERNEL)))
                  goto failed;
            sbi->s_cgno[i] = UFS_CGNO_EMPTY;
      }
      sbi->s_cg_loaded = 0;
      UFSD("EXIT\n");
      return 1;

failed:
      kfree (base);
      if (sbi->s_ucg) {
            for (i = 0; i < uspi->s_ncg; i++)
                  if (sbi->s_ucg[i])
                        brelse (sbi->s_ucg[i]);
            kfree (sbi->s_ucg);
            for (i = 0; i < UFS_MAX_GROUP_LOADED; i++)
                  kfree (sbi->s_ucpi[i]);
      }
      UFSD("EXIT (FAILED)\n");
      return 0;
}

/*
 * Sync our internal copy of fs_cstotal with disk
 */
static void ufs_put_cstotal(struct super_block *sb)
{
      unsigned mtype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
      struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
      struct ufs_super_block_first *usb1;
      struct ufs_super_block_second *usb2;
      struct ufs_super_block_third *usb3;

      UFSD("ENTER\n");
      usb1 = ubh_get_usb_first(uspi);
      usb2 = ubh_get_usb_second(uspi);
      usb3 = ubh_get_usb_third(uspi);

      if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
           (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
          mtype == UFS_MOUNT_UFSTYPE_UFS2) {
            /*we have statistic in different place, then usual*/
            usb2->fs_un.fs_u2.cs_ndir =
                  cpu_to_fs64(sb, uspi->cs_total.cs_ndir);
            usb2->fs_un.fs_u2.cs_nbfree =
                  cpu_to_fs64(sb, uspi->cs_total.cs_nbfree);
            usb3->fs_un1.fs_u2.cs_nifree =
                  cpu_to_fs64(sb, uspi->cs_total.cs_nifree);
            usb3->fs_un1.fs_u2.cs_nffree =
                  cpu_to_fs64(sb, uspi->cs_total.cs_nffree);
      } else {
            usb1->fs_cstotal.cs_ndir =
                  cpu_to_fs32(sb, uspi->cs_total.cs_ndir);
            usb1->fs_cstotal.cs_nbfree =
                  cpu_to_fs32(sb, uspi->cs_total.cs_nbfree);
            usb1->fs_cstotal.cs_nifree =
                  cpu_to_fs32(sb, uspi->cs_total.cs_nifree);
            usb1->fs_cstotal.cs_nffree =
                  cpu_to_fs32(sb, uspi->cs_total.cs_nffree);
      }
      ubh_mark_buffer_dirty(USPI_UBH(uspi));
      ufs_print_super_stuff(sb, usb1, usb2, usb3);
      UFSD("EXIT\n");
}

/**
 * ufs_put_super_internal() - put on-disk intrenal structures
 * @sb: pointer to super_block structure
 * Put on-disk structures associated with cylinder groups
 * and write them back to disk, also update cs_total on disk
 */
static void ufs_put_super_internal(struct super_block *sb)
{
      struct ufs_sb_info *sbi = UFS_SB(sb);
      struct ufs_sb_private_info *uspi = sbi->s_uspi;
      struct ufs_buffer_head * ubh;
      unsigned char * base, * space;
      unsigned blks, size, i;

      
      UFSD("ENTER\n");
      ufs_put_cstotal(sb);
      size = uspi->s_cssize;
      blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
      base = space = (char*) sbi->s_csp;
      for (i = 0; i < blks; i += uspi->s_fpb) {
            size = uspi->s_bsize;
            if (i + uspi->s_fpb > blks)
                  size = (blks - i) * uspi->s_fsize;

            ubh = ubh_bread(sb, uspi->s_csaddr + i, size);

            ubh_memcpyubh (ubh, space, size);
            space += size;
            ubh_mark_buffer_uptodate (ubh, 1);
            ubh_mark_buffer_dirty (ubh);
            ubh_brelse (ubh);
      }
      for (i = 0; i < sbi->s_cg_loaded; i++) {
            ufs_put_cylinder (sb, i);
            kfree (sbi->s_ucpi[i]);
      }
      for (; i < UFS_MAX_GROUP_LOADED; i++) 
            kfree (sbi->s_ucpi[i]);
      for (i = 0; i < uspi->s_ncg; i++) 
            brelse (sbi->s_ucg[i]);
      kfree (sbi->s_ucg);
      kfree (base);
      UFSD("EXIT\n");
}

static int ufs_fill_super(struct super_block *sb, void *data, int silent)
{
      struct ufs_sb_info * sbi;
      struct ufs_sb_private_info * uspi;
      struct ufs_super_block_first * usb1;
      struct ufs_super_block_second * usb2;
      struct ufs_super_block_third * usb3;
      struct ufs_buffer_head * ubh; 
      struct inode *inode;
      unsigned block_size, super_block_size;
      unsigned flags;
      unsigned super_block_offset;

      uspi = NULL;
      ubh = NULL;
      flags = 0;
      
      UFSD("ENTER\n");
            
      sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
      if (!sbi)
            goto failed_nomem;
      sb->s_fs_info = sbi;

      UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY));
      
#ifndef CONFIG_UFS_FS_WRITE
      if (!(sb->s_flags & MS_RDONLY)) {
            printk("ufs was compiled with read-only support, "
            "can't be mounted as read-write\n");
            goto failed;
      }
#endif
      /*
       * Set default mount options
       * Parse mount options
       */
      sbi->s_mount_opt = 0;
      ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK);
      if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) {
            printk("wrong mount options\n");
            goto failed;
      }
      if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) {
            if (!silent)
                  printk("You didn't specify the type of your ufs filesystem\n\n"
                  "mount -t ufs -o ufstype="
                  "sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n"
                  ">>>WARNING<<< Wrong ufstype may corrupt your filesystem, "
                  "default is ufstype=old\n");
            ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD);
      }

      uspi = kzalloc(sizeof(struct ufs_sb_private_info), GFP_KERNEL);
      sbi->s_uspi = uspi;
      if (!uspi)
            goto failed;
      uspi->s_dirblksize = UFS_SECTOR_SIZE;
      super_block_offset=UFS_SBLOCK;

      /* Keep 2Gig file limit. Some UFS variants need to override 
         this but as I don't know which I'll let those in the know loosen
         the rules */
      switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) {
      case UFS_MOUNT_UFSTYPE_44BSD:
            UFSD("ufstype=44bsd\n");
            uspi->s_fsize = block_size = 512;
            uspi->s_fmask = ~(512 - 1);
            uspi->s_fshift = 9;
            uspi->s_sbsize = super_block_size = 1536;
            uspi->s_sbbase = 0;
            flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
            break;
      case UFS_MOUNT_UFSTYPE_UFS2:
            UFSD("ufstype=ufs2\n");
            super_block_offset=SBLOCK_UFS2;
            uspi->s_fsize = block_size = 512;
            uspi->s_fmask = ~(512 - 1);
            uspi->s_fshift = 9;
            uspi->s_sbsize = super_block_size = 1536;
            uspi->s_sbbase =  0;
            flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
            break;
            
      case UFS_MOUNT_UFSTYPE_SUN:
            UFSD("ufstype=sun\n");
            uspi->s_fsize = block_size = 1024;
            uspi->s_fmask = ~(1024 - 1);
            uspi->s_fshift = 10;
            uspi->s_sbsize = super_block_size = 2048;
            uspi->s_sbbase = 0;
            uspi->s_maxsymlinklen = 0; /* Not supported on disk */
            flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN;
            break;

      case UFS_MOUNT_UFSTYPE_SUNOS:
            UFSD(("ufstype=sunos\n"))
            uspi->s_fsize = block_size = 1024;
            uspi->s_fmask = ~(1024 - 1);
            uspi->s_fshift = 10;
            uspi->s_sbsize = 2048;
            super_block_size = 2048;
            uspi->s_sbbase = 0;
            uspi->s_maxsymlinklen = 0; /* Not supported on disk */
            flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_SUNOS | UFS_CG_SUN;
            break;

      case UFS_MOUNT_UFSTYPE_SUNx86:
            UFSD("ufstype=sunx86\n");
            uspi->s_fsize = block_size = 1024;
            uspi->s_fmask = ~(1024 - 1);
            uspi->s_fshift = 10;
            uspi->s_sbsize = super_block_size = 2048;
            uspi->s_sbbase = 0;
            uspi->s_maxsymlinklen = 0; /* Not supported on disk */
            flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN;
            break;

      case UFS_MOUNT_UFSTYPE_OLD:
            UFSD("ufstype=old\n");
            uspi->s_fsize = block_size = 1024;
            uspi->s_fmask = ~(1024 - 1);
            uspi->s_fshift = 10;
            uspi->s_sbsize = super_block_size = 2048;
            uspi->s_sbbase = 0;
            flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
            if (!(sb->s_flags & MS_RDONLY)) {
                  if (!silent)
                        printk(KERN_INFO "ufstype=old is supported read-only\n");
                  sb->s_flags |= MS_RDONLY;
            }
            break;
      
      case UFS_MOUNT_UFSTYPE_NEXTSTEP:
            UFSD("ufstype=nextstep\n");
            uspi->s_fsize = block_size = 1024;
            uspi->s_fmask = ~(1024 - 1);
            uspi->s_fshift = 10;
            uspi->s_sbsize = super_block_size = 2048;
            uspi->s_sbbase = 0;
            uspi->s_dirblksize = 1024;
            flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
            if (!(sb->s_flags & MS_RDONLY)) {
                  if (!silent)
                        printk(KERN_INFO "ufstype=nextstep is supported read-only\n");
                  sb->s_flags |= MS_RDONLY;
            }
            break;
      
      case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD:
            UFSD("ufstype=nextstep-cd\n");
            uspi->s_fsize = block_size = 2048;
            uspi->s_fmask = ~(2048 - 1);
            uspi->s_fshift = 11;
            uspi->s_sbsize = super_block_size = 2048;
            uspi->s_sbbase = 0;
            uspi->s_dirblksize = 1024;
            flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
            if (!(sb->s_flags & MS_RDONLY)) {
                  if (!silent)
                        printk(KERN_INFO "ufstype=nextstep-cd is supported read-only\n");
                  sb->s_flags |= MS_RDONLY;
            }
            break;
      
      case UFS_MOUNT_UFSTYPE_OPENSTEP:
            UFSD("ufstype=openstep\n");
            uspi->s_fsize = block_size = 1024;
            uspi->s_fmask = ~(1024 - 1);
            uspi->s_fshift = 10;
            uspi->s_sbsize = super_block_size = 2048;
            uspi->s_sbbase = 0;
            uspi->s_dirblksize = 1024;
            flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
            if (!(sb->s_flags & MS_RDONLY)) {
                  if (!silent)
                        printk(KERN_INFO "ufstype=openstep is supported read-only\n");
                  sb->s_flags |= MS_RDONLY;
            }
            break;
      
      case UFS_MOUNT_UFSTYPE_HP:
            UFSD("ufstype=hp\n");
            uspi->s_fsize = block_size = 1024;
            uspi->s_fmask = ~(1024 - 1);
            uspi->s_fshift = 10;
            uspi->s_sbsize = super_block_size = 2048;
            uspi->s_sbbase = 0;
            flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
            if (!(sb->s_flags & MS_RDONLY)) {
                  if (!silent)
                        printk(KERN_INFO "ufstype=hp is supported read-only\n");
                  sb->s_flags |= MS_RDONLY;
            }
            break;
      default:
            if (!silent)
                  printk("unknown ufstype\n");
            goto failed;
      }
      
again:      
      if (!sb_set_blocksize(sb, block_size)) {
            printk(KERN_ERR "UFS: failed to set blocksize\n");
            goto failed;
      }

      /*
       * read ufs super block from device
       */

      ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size);
      
      if (!ubh) 
            goto failed;

      usb1 = ubh_get_usb_first(uspi);
      usb2 = ubh_get_usb_second(uspi);
      usb3 = ubh_get_usb_third(uspi);

      /* Sort out mod used on SunOS 4.1.3 for fs_state */
      uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat);
      if (((flags & UFS_ST_MASK) == UFS_ST_SUNOS) &&
          (uspi->s_postblformat != UFS_42POSTBLFMT)) {
            flags &= ~UFS_ST_MASK;
            flags |=  UFS_ST_SUN;
      }

      /*
       * Check ufs magic number
       */
      sbi->s_bytesex = BYTESEX_LE;
      switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
            case UFS_MAGIC:
            case UFS2_MAGIC:
            case UFS_MAGIC_LFN:
              case UFS_MAGIC_FEA:
              case UFS_MAGIC_4GB:
                  goto magic_found;
      }
      sbi->s_bytesex = BYTESEX_BE;
      switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
            case UFS_MAGIC:
            case UFS2_MAGIC:
            case UFS_MAGIC_LFN:
              case UFS_MAGIC_FEA:
              case UFS_MAGIC_4GB:
                  goto magic_found;
      }

      if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP) 
        || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD) 
        || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP)) 
        && uspi->s_sbbase < 256) {
            ubh_brelse_uspi(uspi);
            ubh = NULL;
            uspi->s_sbbase += 8;
            goto again;
      }
      if (!silent)
            printk("ufs_read_super: bad magic number\n");
      goto failed;

magic_found:
      /*
       * Check block and fragment sizes
       */
      uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize);
      uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize);
      uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize);
      uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
      uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);

      if (!is_power_of_2(uspi->s_fsize)) {
            printk(KERN_ERR "ufs_read_super: fragment size %u is not a power of 2\n",
                  uspi->s_fsize);
                  goto failed;
      }
      if (uspi->s_fsize < 512) {
            printk(KERN_ERR "ufs_read_super: fragment size %u is too small\n",
                  uspi->s_fsize);
            goto failed;
      }
      if (uspi->s_fsize > 4096) {
            printk(KERN_ERR "ufs_read_super: fragment size %u is too large\n",
                  uspi->s_fsize);
            goto failed;
      }
      if (!is_power_of_2(uspi->s_bsize)) {
            printk(KERN_ERR "ufs_read_super: block size %u is not a power of 2\n",
                  uspi->s_bsize);
            goto failed;
      }
      if (uspi->s_bsize < 4096) {
            printk(KERN_ERR "ufs_read_super: block size %u is too small\n",
                  uspi->s_bsize);
            goto failed;
      }
      if (uspi->s_bsize / uspi->s_fsize > 8) {
            printk(KERN_ERR "ufs_read_super: too many fragments per block (%u)\n",
                  uspi->s_bsize / uspi->s_fsize);
            goto failed;
      }
      if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) {
            ubh_brelse_uspi(uspi);
            ubh = NULL;
            block_size = uspi->s_fsize;
            super_block_size = uspi->s_sbsize;
            UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size);
            goto again;
      }

      sbi->s_flags = flags;/*after that line some functions use s_flags*/
      ufs_print_super_stuff(sb, usb1, usb2, usb3);

      /*
       * Check, if file system was correctly unmounted.
       * If not, make it read only.
       */
      if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) ||
        ((flags & UFS_ST_MASK) == UFS_ST_OLD) ||
        (((flags & UFS_ST_MASK) == UFS_ST_SUN ||
          (flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
        (flags & UFS_ST_MASK) == UFS_ST_SUNx86) &&
        (ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) {
            switch(usb1->fs_clean) {
            case UFS_FSCLEAN:
                  UFSD("fs is clean\n");
                  break;
            case UFS_FSSTABLE:
                  UFSD("fs is stable\n");
                  break;
            case UFS_FSOSF1:
                  UFSD("fs is DEC OSF/1\n");
                  break;
            case UFS_FSACTIVE:
                  printk("ufs_read_super: fs is active\n");
                  sb->s_flags |= MS_RDONLY;
                  break;
            case UFS_FSBAD:
                  printk("ufs_read_super: fs is bad\n");
                  sb->s_flags |= MS_RDONLY;
                  break;
            default:
                  printk("ufs_read_super: can't grok fs_clean 0x%x\n", usb1->fs_clean);
                  sb->s_flags |= MS_RDONLY;
                  break;
            }
      } else {
            printk("ufs_read_super: fs needs fsck\n");
            sb->s_flags |= MS_RDONLY;
      }

      /*
       * Read ufs_super_block into internal data structures
       */
      sb->s_op = &ufs_super_ops;
      sb->dq_op = NULL; /***/
      sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic);

      uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno);
      uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno);
      uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno);
      uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno);
      uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset);
      uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask);

      if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
            uspi->s_u2_size  = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size);
            uspi->s_u2_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
      } else {
            uspi->s_size  =  fs32_to_cpu(sb, usb1->fs_size);
            uspi->s_dsize =  fs32_to_cpu(sb, usb1->fs_dsize);
      }

      uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg);
      /* s_bsize already set */
      /* s_fsize already set */
      uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag);
      uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree);
      uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask);
      uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
      uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift);
      uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
      UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift,
            uspi->s_fshift);
      uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift);
      uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb);
      /* s_sbsize already set */
      uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask);
      uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift);
      uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir);
      uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb);
      uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf);
      uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3);
      uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave);
      uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew);

      if (uspi->fs_magic == UFS2_MAGIC)
            uspi->s_csaddr = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr);
      else
            uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr);

      uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize);
      uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize);
      uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak);
      uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect);
      uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc);
      uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg);
      uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg);
      uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc);
      uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize);
      uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3);
      uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3);
      uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos);
      uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff);
      uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff);

      /*
       * Compute another frequently used values
       */
      uspi->s_fpbmask = uspi->s_fpb - 1;
      if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
            uspi->s_apbshift = uspi->s_bshift - 3;
      else
            uspi->s_apbshift = uspi->s_bshift - 2;

      uspi->s_2apbshift = uspi->s_apbshift * 2;
      uspi->s_3apbshift = uspi->s_apbshift * 3;
      uspi->s_apb = 1 << uspi->s_apbshift;
      uspi->s_2apb = 1 << uspi->s_2apbshift;
      uspi->s_3apb = 1 << uspi->s_3apbshift;
      uspi->s_apbmask = uspi->s_apb - 1;
      uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS;
      uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift;
      uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift;
      uspi->s_bpf = uspi->s_fsize << 3;
      uspi->s_bpfshift = uspi->s_fshift + 3;
      uspi->s_bpfmask = uspi->s_bpf - 1;
      if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) ==
          UFS_MOUNT_UFSTYPE_44BSD)
            uspi->s_maxsymlinklen =
                fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen);

      inode = iget(sb, UFS_ROOTINO);
      if (!inode || is_bad_inode(inode))
            goto failed;
      sb->s_root = d_alloc_root(inode);
      if (!sb->s_root)
            goto dalloc_failed;

      ufs_setup_cstotal(sb);
      /*
       * Read cylinder group structures
       */
      if (!(sb->s_flags & MS_RDONLY))
            if (!ufs_read_cylinder_structures(sb))
                  goto failed;

      UFSD("EXIT\n");
      return 0;

dalloc_failed:
      iput(inode);
failed:
      if (ubh)
            ubh_brelse_uspi (uspi);
      kfree (uspi);
      kfree(sbi);
      sb->s_fs_info = NULL;
      UFSD("EXIT (FAILED)\n");
      return -EINVAL;

failed_nomem:
      UFSD("EXIT (NOMEM)\n");
      return -ENOMEM;
}

static void ufs_write_super(struct super_block *sb)
{
      struct ufs_sb_private_info * uspi;
      struct ufs_super_block_first * usb1;
      struct ufs_super_block_third * usb3;
      unsigned flags;

      lock_kernel();
      UFSD("ENTER\n");
      flags = UFS_SB(sb)->s_flags;
      uspi = UFS_SB(sb)->s_uspi;
      usb1 = ubh_get_usb_first(uspi);
      usb3 = ubh_get_usb_third(uspi);

      if (!(sb->s_flags & MS_RDONLY)) {
            usb1->fs_time = cpu_to_fs32(sb, get_seconds());
            if ((flags & UFS_ST_MASK) == UFS_ST_SUN 
              || (flags & UFS_ST_MASK) == UFS_ST_SUNOS
              || (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
                  ufs_set_fs_state(sb, usb1, usb3,
                              UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
            ufs_put_cstotal(sb);
      }
      sb->s_dirt = 0;
      UFSD("EXIT\n");
      unlock_kernel();
}

static void ufs_put_super(struct super_block *sb)
{
      struct ufs_sb_info * sbi = UFS_SB(sb);
            
      UFSD("ENTER\n");

      if (!(sb->s_flags & MS_RDONLY))
            ufs_put_super_internal(sb);
      
      ubh_brelse_uspi (sbi->s_uspi);
      kfree (sbi->s_uspi);
      kfree (sbi);
      sb->s_fs_info = NULL;
      UFSD("EXIT\n");
      return;
}


static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
{
      struct ufs_sb_private_info * uspi;
      struct ufs_super_block_first * usb1;
      struct ufs_super_block_third * usb3;
      unsigned new_mount_opt, ufstype;
      unsigned flags;
      
      uspi = UFS_SB(sb)->s_uspi;
      flags = UFS_SB(sb)->s_flags;
      usb1 = ubh_get_usb_first(uspi);
      usb3 = ubh_get_usb_third(uspi);
      
      /*
       * Allow the "check" option to be passed as a remount option.
       * It is not possible to change ufstype option during remount
       */
      ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
      new_mount_opt = 0;
      ufs_set_opt (new_mount_opt, ONERROR_LOCK);
      if (!ufs_parse_options (data, &new_mount_opt))
            return -EINVAL;
      if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) {
            new_mount_opt |= ufstype;
      } else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) {
            printk("ufstype can't be changed during remount\n");
            return -EINVAL;
      }

      if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
            UFS_SB(sb)->s_mount_opt = new_mount_opt;
            return 0;
      }
      
      /*
       * fs was mouted as rw, remounting ro
       */
      if (*mount_flags & MS_RDONLY) {
            ufs_put_super_internal(sb);
            usb1->fs_time = cpu_to_fs32(sb, get_seconds());
            if ((flags & UFS_ST_MASK) == UFS_ST_SUN
              || (flags & UFS_ST_MASK) == UFS_ST_SUNOS
              || (flags & UFS_ST_MASK) == UFS_ST_SUNx86) 
                  ufs_set_fs_state(sb, usb1, usb3,
                        UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
            ubh_mark_buffer_dirty (USPI_UBH(uspi));
            sb->s_dirt = 0;
            sb->s_flags |= MS_RDONLY;
      } else {
      /*
       * fs was mounted as ro, remounting rw
       */
#ifndef CONFIG_UFS_FS_WRITE
            printk("ufs was compiled with read-only support, "
            "can't be mounted as read-write\n");
            return -EINVAL;
#else
            if (ufstype != UFS_MOUNT_UFSTYPE_SUN && 
                ufstype != UFS_MOUNT_UFSTYPE_SUNOS &&
                ufstype != UFS_MOUNT_UFSTYPE_44BSD &&
                ufstype != UFS_MOUNT_UFSTYPE_SUNx86 &&
                ufstype != UFS_MOUNT_UFSTYPE_UFS2) {
                  printk("this ufstype is read-only supported\n");
                  return -EINVAL;
            }
            if (!ufs_read_cylinder_structures(sb)) {
                  printk("failed during remounting\n");
                  return -EPERM;
            }
            sb->s_flags &= ~MS_RDONLY;
#endif
      }
      UFS_SB(sb)->s_mount_opt = new_mount_opt;
      return 0;
}

static int ufs_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
      struct ufs_sb_info *sbi = UFS_SB(vfs->mnt_sb);
      unsigned mval = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
      struct match_token *tp = tokens;

      while (tp->token != Opt_onerror_panic && tp->token != mval)
            ++tp;
      BUG_ON(tp->token == Opt_onerror_panic);
      seq_printf(seq, ",%s", tp->pattern);

      mval = sbi->s_mount_opt & UFS_MOUNT_ONERROR;
      while (tp->token != Opt_err && tp->token != mval)
            ++tp;
      BUG_ON(tp->token == Opt_err);
      seq_printf(seq, ",%s", tp->pattern);

      return 0;
}

static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
      struct super_block *sb = dentry->d_sb;
      struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi;
      unsigned  flags = UFS_SB(sb)->s_flags;
      struct ufs_super_block_first *usb1;
      struct ufs_super_block_second *usb2;
      struct ufs_super_block_third *usb3;

      lock_kernel();

      usb1 = ubh_get_usb_first(uspi);
      usb2 = ubh_get_usb_second(uspi);
      usb3 = ubh_get_usb_third(uspi);
      
      if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
            buf->f_type = UFS2_MAGIC;
            buf->f_blocks = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
      } else {
            buf->f_type = UFS_MAGIC;
            buf->f_blocks = uspi->s_dsize;
      }
      buf->f_bfree = ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
            uspi->cs_total.cs_nffree;
      buf->f_ffree = uspi->cs_total.cs_nifree;
      buf->f_bsize = sb->s_blocksize;
      buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree))
            ? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0;
      buf->f_files = uspi->s_ncg * uspi->s_ipg;
      buf->f_namelen = UFS_MAXNAMLEN;

      unlock_kernel();

      return 0;
}

static struct kmem_cache * ufs_inode_cachep;

static struct inode *ufs_alloc_inode(struct super_block *sb)
{
      struct ufs_inode_info *ei;
      ei = (struct ufs_inode_info *)kmem_cache_alloc(ufs_inode_cachep, GFP_KERNEL);
      if (!ei)
            return NULL;
      ei->vfs_inode.i_version = 1;
      return &ei->vfs_inode;
}

static void ufs_destroy_inode(struct inode *inode)
{
      kmem_cache_free(ufs_inode_cachep, UFS_I(inode));
}

static void init_once(struct kmem_cache * cachep, void *foo)
{
      struct ufs_inode_info *ei = (struct ufs_inode_info *) foo;

      inode_init_once(&ei->vfs_inode);
}

static int init_inodecache(void)
{
      ufs_inode_cachep = kmem_cache_create("ufs_inode_cache",
                                   sizeof(struct ufs_inode_info),
                                   0, (SLAB_RECLAIM_ACCOUNT|
                                    SLAB_MEM_SPREAD),
                                   init_once);
      if (ufs_inode_cachep == NULL)
            return -ENOMEM;
      return 0;
}

static void destroy_inodecache(void)
{
      kmem_cache_destroy(ufs_inode_cachep);
}

#ifdef CONFIG_QUOTA
static ssize_t ufs_quota_read(struct super_block *, int, char *,size_t, loff_t);
static ssize_t ufs_quota_write(struct super_block *, int, const char *, size_t, loff_t);
#endif

static const struct super_operations ufs_super_ops = {
      .alloc_inode      = ufs_alloc_inode,
      .destroy_inode    = ufs_destroy_inode,
      .read_inode = ufs_read_inode,
      .write_inode      = ufs_write_inode,
      .delete_inode     = ufs_delete_inode,
      .put_super  = ufs_put_super,
      .write_super      = ufs_write_super,
      .statfs           = ufs_statfs,
      .remount_fs = ufs_remount,
      .show_options   = ufs_show_options,
#ifdef CONFIG_QUOTA
      .quota_read = ufs_quota_read,
      .quota_write      = ufs_quota_write,
#endif
};

#ifdef CONFIG_QUOTA

/* Read data from quotafile - avoid pagecache and such because we cannot afford
 * acquiring the locks... As quota files are never truncated and quota code
 * itself serializes the operations (and noone else should touch the files)
 * we don't have to be afraid of races */
static ssize_t ufs_quota_read(struct super_block *sb, int type, char *data,
                         size_t len, loff_t off)
{
      struct inode *inode = sb_dqopt(sb)->files[type];
      sector_t blk = off >> sb->s_blocksize_bits;
      int err = 0;
      int offset = off & (sb->s_blocksize - 1);
      int tocopy;
      size_t toread;
      struct buffer_head *bh;
      loff_t i_size = i_size_read(inode);

      if (off > i_size)
            return 0;
      if (off+len > i_size)
            len = i_size-off;
      toread = len;
      while (toread > 0) {
            tocopy = sb->s_blocksize - offset < toread ?
                        sb->s_blocksize - offset : toread;

            bh = ufs_bread(inode, blk, 0, &err);
            if (err)
                  return err;
            if (!bh)    /* A hole? */
                  memset(data, 0, tocopy);
            else {
                  memcpy(data, bh->b_data+offset, tocopy);
                  brelse(bh);
            }
            offset = 0;
            toread -= tocopy;
            data += tocopy;
            blk++;
      }
      return len;
}

/* Write to quotafile */
static ssize_t ufs_quota_write(struct super_block *sb, int type,
                        const char *data, size_t len, loff_t off)
{
      struct inode *inode = sb_dqopt(sb)->files[type];
      sector_t blk = off >> sb->s_blocksize_bits;
      int err = 0;
      int offset = off & (sb->s_blocksize - 1);
      int tocopy;
      size_t towrite = len;
      struct buffer_head *bh;

      mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
      while (towrite > 0) {
            tocopy = sb->s_blocksize - offset < towrite ?
                        sb->s_blocksize - offset : towrite;

            bh = ufs_bread(inode, blk, 1, &err);
            if (!bh)
                  goto out;
            lock_buffer(bh);
            memcpy(bh->b_data+offset, data, tocopy);
            flush_dcache_page(bh->b_page);
            set_buffer_uptodate(bh);
            mark_buffer_dirty(bh);
            unlock_buffer(bh);
            brelse(bh);
            offset = 0;
            towrite -= tocopy;
            data += tocopy;
            blk++;
      }
out:
      if (len == towrite) {
            mutex_unlock(&inode->i_mutex);
            return err;
      }
      if (inode->i_size < off+len-towrite)
            i_size_write(inode, off+len-towrite);
      inode->i_version++;
      inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
      mark_inode_dirty(inode);
      mutex_unlock(&inode->i_mutex);
      return len - towrite;
}

#endif

static int ufs_get_sb(struct file_system_type *fs_type,
      int flags, const char *dev_name, void *data, struct vfsmount *mnt)
{
      return get_sb_bdev(fs_type, flags, dev_name, data, ufs_fill_super, mnt);
}

static struct file_system_type ufs_fs_type = {
      .owner            = THIS_MODULE,
      .name       = "ufs",
      .get_sb           = ufs_get_sb,
      .kill_sb    = kill_block_super,
      .fs_flags   = FS_REQUIRES_DEV,
};

static int __init init_ufs_fs(void)
{
      int err = init_inodecache();
      if (err)
            goto out1;
      err = register_filesystem(&ufs_fs_type);
      if (err)
            goto out;
      return 0;
out:
      destroy_inodecache();
out1:
      return err;
}

static void __exit exit_ufs_fs(void)
{
      unregister_filesystem(&ufs_fs_type);
      destroy_inodecache();
}

module_init(init_ufs_fs)
module_exit(exit_ufs_fs)
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index