Logo Search packages:      
Sourcecode: linux version File versions  Download package

vlsi_ir.c

/*********************************************************************
 *
 *    vlsi_ir.c:  VLSI82C147 PCI IrDA controller driver for Linux
 *
 *    Copyright (c) 2001-2003 Martin Diehl
 *
 *    This program is free software; you can redistribute it and/or 
 *    modify it under the terms of the GNU General Public License as 
 *    published by the Free Software Foundation; either version 2 of 
 *    the License, or (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License 
 *    along with this program; if not, write to the Free Software 
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, 
 *    MA 02111-1307 USA
 *
 ********************************************************************/

#include <linux/module.h>
 
#define DRIVER_NAME           "vlsi_ir"
#define DRIVER_VERSION        "v0.5"
#define DRIVER_DESCRIPTION    "IrDA SIR/MIR/FIR driver for VLSI 82C147"
#define DRIVER_AUTHOR         "Martin Diehl <info@mdiehl.de>"

MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");

/********************************************************/

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/time.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/mutex.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>

#include <net/irda/irda.h>
#include <net/irda/irda_device.h>
#include <net/irda/wrapper.h>
#include <net/irda/crc.h>

#include "vlsi_ir.h"

/********************************************************/

static /* const */ char drivername[] = DRIVER_NAME;

static struct pci_device_id vlsi_irda_table [] = {
      {
            .class =        PCI_CLASS_WIRELESS_IRDA << 8,
            .class_mask =     PCI_CLASS_SUBCLASS_MASK << 8, 
            .vendor =       PCI_VENDOR_ID_VLSI,
            .device =       PCI_DEVICE_ID_VLSI_82C147,
            .subvendor =      PCI_ANY_ID,
            .subdevice =      PCI_ANY_ID,
      },
      { /* all zeroes */ }
};

MODULE_DEVICE_TABLE(pci, vlsi_irda_table);

/********************************************************/

/*    clksrc: which clock source to be used
 *          0: auto - try PLL, fallback to 40MHz XCLK
 *          1: on-chip 48MHz PLL
 *          2: external 48MHz XCLK
 *          3: external 40MHz XCLK (HP OB-800)
 */

static int clksrc = 0;              /* default is 0(auto) */
module_param(clksrc, int, 0);
MODULE_PARM_DESC(clksrc, "clock input source selection");

/*    ringsize: size of the tx and rx descriptor rings
 *          independent for tx and rx
 *          specify as ringsize=tx[,rx]
 *          allowed values: 4, 8, 16, 32, 64
 *          Due to the IrDA 1.x max. allowed window size=7,
 *          there should be no gain when using rings larger than 8
 */

static int ringsize[] = {8,8};            /* default is tx=8 / rx=8 */
module_param_array(ringsize, int, NULL, 0);
MODULE_PARM_DESC(ringsize, "TX, RX ring descriptor size");

/*    sirpulse: tuning of the SIR pulse width within IrPHY 1.3 limits
 *          0: very short, 1.5us (exception: 6us at 2.4 kbaud)
 *          1: nominal 3/16 bittime width
 *    note: IrDA compliant peer devices should be happy regardless
 *          which one is used. Primary goal is to save some power
 *          on the sender's side - at 9.6kbaud for example the short
 *          pulse width saves more than 90% of the transmitted IR power.
 */

static int sirpulse = 1;            /* default is 3/16 bittime */
module_param(sirpulse, int, 0);
MODULE_PARM_DESC(sirpulse, "SIR pulse width tuning");

/*    qos_mtt_bits: encoded min-turn-time value we require the peer device
 *           to use before transmitting to us. "Type 1" (per-station)
 *           bitfield according to IrLAP definition (section 6.6.8)
 *           Don't know which transceiver is used by my OB800 - the
 *           pretty common HP HDLS-1100 requires 1 msec - so lets use this.
 */

static int qos_mtt_bits = 0x07;           /* default is 1 ms or more */
module_param(qos_mtt_bits, int, 0);
MODULE_PARM_DESC(qos_mtt_bits, "IrLAP bitfield representing min-turn-time");

/********************************************************/

static void vlsi_reg_debug(unsigned iobase, const char *s)
{
      int   i;

      printk(KERN_DEBUG "%s: ", s);
      for (i = 0; i < 0x20; i++)
            printk("%02x", (unsigned)inb((iobase+i)));
      printk("\n");
}

static void vlsi_ring_debug(struct vlsi_ring *r)
{
      struct ring_descr *rd;
      unsigned i;

      printk(KERN_DEBUG "%s - ring %p / size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
            __FUNCTION__, r, r->size, r->mask, r->len, r->dir, r->rd[0].hw);
      printk(KERN_DEBUG "%s - head = %d / tail = %d\n", __FUNCTION__,
            atomic_read(&r->head) & r->mask, atomic_read(&r->tail) & r->mask);
      for (i = 0; i < r->size; i++) {
            rd = &r->rd[i];
            printk(KERN_DEBUG "%s - ring descr %u: ", __FUNCTION__, i);
            printk("skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
            printk(KERN_DEBUG "%s - hw: status=%02x count=%u addr=0x%08x\n",
                  __FUNCTION__, (unsigned) rd_get_status(rd),
                  (unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
      }
}

/********************************************************/

/* needed regardless of CONFIG_PROC_FS */
static struct proc_dir_entry *vlsi_proc_root = NULL;

#ifdef CONFIG_PROC_FS

static void vlsi_proc_pdev(struct seq_file *seq, struct pci_dev *pdev)
{
      unsigned iobase = pci_resource_start(pdev, 0);
      unsigned i;

      seq_printf(seq, "\n%s (vid/did: %04x/%04x)\n",
               pci_name(pdev), (int)pdev->vendor, (int)pdev->device);
      seq_printf(seq, "pci-power-state: %u\n", (unsigned) pdev->current_state);
      seq_printf(seq, "resources: irq=%u / io=0x%04x / dma_mask=0x%016Lx\n",
               pdev->irq, (unsigned)pci_resource_start(pdev, 0), (unsigned long long)pdev->dma_mask);
      seq_printf(seq, "hw registers: ");
      for (i = 0; i < 0x20; i++)
            seq_printf(seq, "%02x", (unsigned)inb((iobase+i)));
      seq_printf(seq, "\n");
}
            
static void vlsi_proc_ndev(struct seq_file *seq, struct net_device *ndev)
{
      vlsi_irda_dev_t *idev = ndev->priv;
      u8 byte;
      u16 word;
      unsigned delta1, delta2;
      struct timeval now;
      unsigned iobase = ndev->base_addr;

      seq_printf(seq, "\n%s link state: %s / %s / %s / %s\n", ndev->name,
            netif_device_present(ndev) ? "attached" : "detached", 
            netif_running(ndev) ? "running" : "not running",
            netif_carrier_ok(ndev) ? "carrier ok" : "no carrier",
            netif_queue_stopped(ndev) ? "queue stopped" : "queue running");

      if (!netif_running(ndev))
            return;

      seq_printf(seq, "\nhw-state:\n");
      pci_read_config_byte(idev->pdev, VLSI_PCI_IRMISC, &byte);
      seq_printf(seq, "IRMISC:%s%s%s uart%s",
            (byte&IRMISC_IRRAIL) ? " irrail" : "",
            (byte&IRMISC_IRPD) ? " irpd" : "",
            (byte&IRMISC_UARTTST) ? " uarttest" : "",
            (byte&IRMISC_UARTEN) ? "@" : " disabled\n");
      if (byte&IRMISC_UARTEN) {
            seq_printf(seq, "0x%s\n",
                  (byte&2) ? ((byte&1) ? "3e8" : "2e8")
                         : ((byte&1) ? "3f8" : "2f8"));
      }
      pci_read_config_byte(idev->pdev, VLSI_PCI_CLKCTL, &byte);
      seq_printf(seq, "CLKCTL: PLL %s%s%s / clock %s / wakeup %s\n",
            (byte&CLKCTL_PD_INV) ? "powered" : "down",
            (byte&CLKCTL_LOCK) ? " locked" : "",
            (byte&CLKCTL_EXTCLK) ? ((byte&CLKCTL_XCKSEL)?" / 40 MHz XCLK":" / 48 MHz XCLK") : "",
            (byte&CLKCTL_CLKSTP) ? "stopped" : "running",
            (byte&CLKCTL_WAKE) ? "enabled" : "disabled");
      pci_read_config_byte(idev->pdev, VLSI_PCI_MSTRPAGE, &byte);
      seq_printf(seq, "MSTRPAGE: 0x%02x\n", (unsigned)byte);

      byte = inb(iobase+VLSI_PIO_IRINTR);
      seq_printf(seq, "IRINTR:%s%s%s%s%s%s%s%s\n",
            (byte&IRINTR_ACTEN) ? " ACTEN" : "",
            (byte&IRINTR_RPKTEN) ? " RPKTEN" : "",
            (byte&IRINTR_TPKTEN) ? " TPKTEN" : "",
            (byte&IRINTR_OE_EN) ? " OE_EN" : "",
            (byte&IRINTR_ACTIVITY) ? " ACTIVITY" : "",
            (byte&IRINTR_RPKTINT) ? " RPKTINT" : "",
            (byte&IRINTR_TPKTINT) ? " TPKTINT" : "",
            (byte&IRINTR_OE_INT) ? " OE_INT" : "");
      word = inw(iobase+VLSI_PIO_RINGPTR);
      seq_printf(seq, "RINGPTR: rx=%u / tx=%u\n", RINGPTR_GET_RX(word), RINGPTR_GET_TX(word));
      word = inw(iobase+VLSI_PIO_RINGBASE);
      seq_printf(seq, "RINGBASE: busmap=0x%08x\n",
            ((unsigned)word << 10)|(MSTRPAGE_VALUE<<24));
      word = inw(iobase+VLSI_PIO_RINGSIZE);
      seq_printf(seq, "RINGSIZE: rx=%u / tx=%u\n", RINGSIZE_TO_RXSIZE(word),
            RINGSIZE_TO_TXSIZE(word));

      word = inw(iobase+VLSI_PIO_IRCFG);
      seq_printf(seq, "IRCFG:%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
            (word&IRCFG_LOOP) ? " LOOP" : "",
            (word&IRCFG_ENTX) ? " ENTX" : "",
            (word&IRCFG_ENRX) ? " ENRX" : "",
            (word&IRCFG_MSTR) ? " MSTR" : "",
            (word&IRCFG_RXANY) ? " RXANY" : "",
            (word&IRCFG_CRC16) ? " CRC16" : "",
            (word&IRCFG_FIR) ? " FIR" : "",
            (word&IRCFG_MIR) ? " MIR" : "",
            (word&IRCFG_SIR) ? " SIR" : "",
            (word&IRCFG_SIRFILT) ? " SIRFILT" : "",
            (word&IRCFG_SIRTEST) ? " SIRTEST" : "",
            (word&IRCFG_TXPOL) ? " TXPOL" : "",
            (word&IRCFG_RXPOL) ? " RXPOL" : "");
      word = inw(iobase+VLSI_PIO_IRENABLE);
      seq_printf(seq, "IRENABLE:%s%s%s%s%s%s%s%s\n",
            (word&IRENABLE_PHYANDCLOCK) ? " PHYANDCLOCK" : "",
            (word&IRENABLE_CFGER) ? " CFGERR" : "",
            (word&IRENABLE_FIR_ON) ? " FIR_ON" : "",
            (word&IRENABLE_MIR_ON) ? " MIR_ON" : "",
            (word&IRENABLE_SIR_ON) ? " SIR_ON" : "",
            (word&IRENABLE_ENTXST) ? " ENTXST" : "",
            (word&IRENABLE_ENRXST) ? " ENRXST" : "",
            (word&IRENABLE_CRC16_ON) ? " CRC16_ON" : "");
      word = inw(iobase+VLSI_PIO_PHYCTL);
      seq_printf(seq, "PHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
            (unsigned)PHYCTL_TO_BAUD(word),
            (unsigned)PHYCTL_TO_PLSWID(word),
            (unsigned)PHYCTL_TO_PREAMB(word));
      word = inw(iobase+VLSI_PIO_NPHYCTL);
      seq_printf(seq, "NPHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
            (unsigned)PHYCTL_TO_BAUD(word),
            (unsigned)PHYCTL_TO_PLSWID(word),
            (unsigned)PHYCTL_TO_PREAMB(word));
      word = inw(iobase+VLSI_PIO_MAXPKT);
      seq_printf(seq, "MAXPKT: max. rx packet size = %u\n", word);
      word = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
      seq_printf(seq, "RCVBCNT: rx-fifo filling level = %u\n", word);

      seq_printf(seq, "\nsw-state:\n");
      seq_printf(seq, "IrPHY setup: %d baud - %s encoding\n", idev->baud, 
            (idev->mode==IFF_SIR)?"SIR":((idev->mode==IFF_MIR)?"MIR":"FIR"));
      do_gettimeofday(&now);
      if (now.tv_usec >= idev->last_rx.tv_usec) {
            delta2 = now.tv_usec - idev->last_rx.tv_usec;
            delta1 = 0;
      }
      else {
            delta2 = 1000000 + now.tv_usec - idev->last_rx.tv_usec;
            delta1 = 1;
      }
      seq_printf(seq, "last rx: %lu.%06u sec\n",
            now.tv_sec - idev->last_rx.tv_sec - delta1, delta2);  

      seq_printf(seq, "RX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu",
            idev->stats.rx_packets, idev->stats.rx_bytes, idev->stats.rx_errors,
            idev->stats.rx_dropped);
      seq_printf(seq, " / overrun=%lu / length=%lu / frame=%lu / crc=%lu\n",
            idev->stats.rx_over_errors, idev->stats.rx_length_errors,
            idev->stats.rx_frame_errors, idev->stats.rx_crc_errors);
      seq_printf(seq, "TX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu / fifo=%lu\n",
            idev->stats.tx_packets, idev->stats.tx_bytes, idev->stats.tx_errors,
            idev->stats.tx_dropped, idev->stats.tx_fifo_errors);

}
            
static void vlsi_proc_ring(struct seq_file *seq, struct vlsi_ring *r)
{
      struct ring_descr *rd;
      unsigned i, j;
      int h, t;

      seq_printf(seq, "size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
            r->size, r->mask, r->len, r->dir, r->rd[0].hw);
      h = atomic_read(&r->head) & r->mask;
      t = atomic_read(&r->tail) & r->mask;
      seq_printf(seq, "head = %d / tail = %d ", h, t);
      if (h == t)
            seq_printf(seq, "(empty)\n");
      else {
            if (((t+1)&r->mask) == h)
                  seq_printf(seq, "(full)\n");
            else
                  seq_printf(seq, "(level = %d)\n", ((unsigned)(t-h) & r->mask)); 
            rd = &r->rd[h];
            j = (unsigned) rd_get_count(rd);
            seq_printf(seq, "current: rd = %d / status = %02x / len = %u\n",
                        h, (unsigned)rd_get_status(rd), j);
            if (j > 0) {
                  seq_printf(seq, "   data:");
                  if (j > 20)
                        j = 20;
                  for (i = 0; i < j; i++)
                        seq_printf(seq, " %02x", (unsigned)((unsigned char *)rd->buf)[i]);
                  seq_printf(seq, "\n");
            }
      }
      for (i = 0; i < r->size; i++) {
            rd = &r->rd[i];
            seq_printf(seq, "> ring descr %u: ", i);
            seq_printf(seq, "skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
            seq_printf(seq, "  hw: status=%02x count=%u busaddr=0x%08x\n",
                  (unsigned) rd_get_status(rd),
                  (unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
      }
}

static int vlsi_seq_show(struct seq_file *seq, void *v)
{
      struct net_device *ndev = seq->private;
      vlsi_irda_dev_t *idev = ndev->priv;
      unsigned long flags;

      seq_printf(seq, "\n%s %s\n\n", DRIVER_NAME, DRIVER_VERSION);
      seq_printf(seq, "clksrc: %s\n", 
            (clksrc>=2) ? ((clksrc==3)?"40MHz XCLK":"48MHz XCLK")
                      : ((clksrc==1)?"48MHz PLL":"autodetect"));
      seq_printf(seq, "ringsize: tx=%d / rx=%d\n",
            ringsize[0], ringsize[1]);
      seq_printf(seq, "sirpulse: %s\n", (sirpulse)?"3/16 bittime":"short");
      seq_printf(seq, "qos_mtt_bits: 0x%02x\n", (unsigned)qos_mtt_bits);

      spin_lock_irqsave(&idev->lock, flags);
      if (idev->pdev != NULL) {
            vlsi_proc_pdev(seq, idev->pdev);

            if (idev->pdev->current_state == 0)
                  vlsi_proc_ndev(seq, ndev);
            else
                  seq_printf(seq, "\nPCI controller down - resume_ok = %d\n",
                        idev->resume_ok);
            if (netif_running(ndev) && idev->rx_ring && idev->tx_ring) {
                  seq_printf(seq, "\n--------- RX ring -----------\n\n");
                  vlsi_proc_ring(seq, idev->rx_ring);
                  seq_printf(seq, "\n--------- TX ring -----------\n\n");
                  vlsi_proc_ring(seq, idev->tx_ring);
            }
      }
      seq_printf(seq, "\n");
      spin_unlock_irqrestore(&idev->lock, flags);

      return 0;
}

static int vlsi_seq_open(struct inode *inode, struct file *file)
{
      return single_open(file, vlsi_seq_show, PDE(inode)->data);
}

static const struct file_operations vlsi_proc_fops = {
      .owner       = THIS_MODULE,
      .open    = vlsi_seq_open,
      .read    = seq_read,
      .llseek  = seq_lseek,
      .release = single_release,
};

#define VLSI_PROC_FOPS        (&vlsi_proc_fops)

#else /* CONFIG_PROC_FS */
#define VLSI_PROC_FOPS        NULL
#endif

/********************************************************/

static struct vlsi_ring *vlsi_alloc_ring(struct pci_dev *pdev, struct ring_descr_hw *hwmap,
                                    unsigned size, unsigned len, int dir)
{
      struct vlsi_ring *r;
      struct ring_descr *rd;
      unsigned    i, j;
      dma_addr_t  busaddr;

      if (!size  ||  ((size-1)&size)!=0)  /* must be >0 and power of 2 */
            return NULL;

      r = kmalloc(sizeof(*r) + size * sizeof(struct ring_descr), GFP_KERNEL);
      if (!r)
            return NULL;
      memset(r, 0, sizeof(*r));

      r->pdev = pdev;
      r->dir = dir;
      r->len = len;
      r->rd = (struct ring_descr *)(r+1);
      r->mask = size - 1;
      r->size = size;
      atomic_set(&r->head, 0);
      atomic_set(&r->tail, 0);

      for (i = 0; i < size; i++) {
            rd = r->rd + i;
            memset(rd, 0, sizeof(*rd));
            rd->hw = hwmap + i;
            rd->buf = kmalloc(len, GFP_KERNEL|GFP_DMA);
            if (rd->buf == NULL
                ||  !(busaddr = pci_map_single(pdev, rd->buf, len, dir))) {
                  if (rd->buf) {
                        IRDA_ERROR("%s: failed to create PCI-MAP for %p",
                                 __FUNCTION__, rd->buf);
                        kfree(rd->buf);
                        rd->buf = NULL;
                  }
                  for (j = 0; j < i; j++) {
                        rd = r->rd + j;
                        busaddr = rd_get_addr(rd);
                        rd_set_addr_status(rd, 0, 0);
                        if (busaddr)
                              pci_unmap_single(pdev, busaddr, len, dir);
                        kfree(rd->buf);
                        rd->buf = NULL;
                  }
                  kfree(r);
                  return NULL;
            }
            rd_set_addr_status(rd, busaddr, 0);
            /* initially, the dma buffer is owned by the CPU */
            rd->skb = NULL;
      }
      return r;
}

static int vlsi_free_ring(struct vlsi_ring *r)
{
      struct ring_descr *rd;
      unsigned    i;
      dma_addr_t  busaddr;

      for (i = 0; i < r->size; i++) {
            rd = r->rd + i;
            if (rd->skb)
                  dev_kfree_skb_any(rd->skb);
            busaddr = rd_get_addr(rd);
            rd_set_addr_status(rd, 0, 0);
            if (busaddr)
                  pci_unmap_single(r->pdev, busaddr, r->len, r->dir);
            kfree(rd->buf);
      }
      kfree(r);
      return 0;
}

static int vlsi_create_hwif(vlsi_irda_dev_t *idev)
{
      char              *ringarea;
      struct ring_descr_hw    *hwmap;

      idev->virtaddr = NULL;
      idev->busaddr = 0;

      ringarea = pci_alloc_consistent(idev->pdev, HW_RING_AREA_SIZE, &idev->busaddr);
      if (!ringarea) {
            IRDA_ERROR("%s: insufficient memory for descriptor rings\n",
                     __FUNCTION__);
            goto out;
      }
      memset(ringarea, 0, HW_RING_AREA_SIZE);

      hwmap = (struct ring_descr_hw *)ringarea;
      idev->rx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[1],
                              XFER_BUF_SIZE, PCI_DMA_FROMDEVICE);
      if (idev->rx_ring == NULL)
            goto out_unmap;

      hwmap += MAX_RING_DESCR;
      idev->tx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[0],
                              XFER_BUF_SIZE, PCI_DMA_TODEVICE);
      if (idev->tx_ring == NULL)
            goto out_free_rx;

      idev->virtaddr = ringarea;
      return 0;

out_free_rx:
      vlsi_free_ring(idev->rx_ring);
out_unmap:
      idev->rx_ring = idev->tx_ring = NULL;
      pci_free_consistent(idev->pdev, HW_RING_AREA_SIZE, ringarea, idev->busaddr);
      idev->busaddr = 0;
out:
      return -ENOMEM;
}

static int vlsi_destroy_hwif(vlsi_irda_dev_t *idev)
{
      vlsi_free_ring(idev->rx_ring);
      vlsi_free_ring(idev->tx_ring);
      idev->rx_ring = idev->tx_ring = NULL;

      if (idev->busaddr)
            pci_free_consistent(idev->pdev,HW_RING_AREA_SIZE,idev->virtaddr,idev->busaddr);

      idev->virtaddr = NULL;
      idev->busaddr = 0;

      return 0;
}

/********************************************************/

static int vlsi_process_rx(struct vlsi_ring *r, struct ring_descr *rd)
{
      u16         status;
      int         crclen, len = 0;
      struct sk_buff    *skb;
      int         ret = 0;
      struct net_device *ndev = (struct net_device *)pci_get_drvdata(r->pdev);
      vlsi_irda_dev_t *idev = ndev->priv;

      pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
      /* dma buffer now owned by the CPU */
      status = rd_get_status(rd);
      if (status & RD_RX_ERROR) {
            if (status & RD_RX_OVER)  
                  ret |= VLSI_RX_OVER;
            if (status & RD_RX_LENGTH)  
                  ret |= VLSI_RX_LENGTH;
            if (status & RD_RX_PHYERR)  
                  ret |= VLSI_RX_FRAME;
            if (status & RD_RX_CRCERR)  
                  ret |= VLSI_RX_CRC;
            goto done;
      }

      len = rd_get_count(rd);
      crclen = (idev->mode==IFF_FIR) ? sizeof(u32) : sizeof(u16);
      len -= crclen;          /* remove trailing CRC */
      if (len <= 0) {
            IRDA_DEBUG(0, "%s: strange frame (len=%d)\n", __FUNCTION__, len);
            ret |= VLSI_RX_DROP;
            goto done;
      }

      if (idev->mode == IFF_SIR) {  /* hw checks CRC in MIR, FIR mode */

            /* rd->buf is a streaming PCI_DMA_FROMDEVICE map. Doing the
             * endian-adjustment there just in place will dirty a cache line
             * which belongs to the map and thus we must be sure it will
             * get flushed before giving the buffer back to hardware.
             * vlsi_fill_rx() will do this anyway - but here we rely on.
             */
            le16_to_cpus(rd->buf+len);
            if (irda_calc_crc16(INIT_FCS,rd->buf,len+crclen) != GOOD_FCS) {
                  IRDA_DEBUG(0, "%s: crc error\n", __FUNCTION__);
                  ret |= VLSI_RX_CRC;
                  goto done;
            }
      }

      if (!rd->skb) {
            IRDA_WARNING("%s: rx packet lost\n", __FUNCTION__);
            ret |= VLSI_RX_DROP;
            goto done;
      }

      skb = rd->skb;
      rd->skb = NULL;
      skb->dev = ndev;
      memcpy(skb_put(skb,len), rd->buf, len);
      skb_reset_mac_header(skb);
      if (in_interrupt())
            netif_rx(skb);
      else
            netif_rx_ni(skb);
      ndev->last_rx = jiffies;

done:
      rd_set_status(rd, 0);
      rd_set_count(rd, 0);
      /* buffer still owned by CPU */

      return (ret) ? -ret : len;
}

static void vlsi_fill_rx(struct vlsi_ring *r)
{
      struct ring_descr *rd;

      for (rd = ring_last(r); rd != NULL; rd = ring_put(r)) {
            if (rd_is_active(rd)) {
                  IRDA_WARNING("%s: driver bug: rx descr race with hw\n",
                             __FUNCTION__);
                  vlsi_ring_debug(r);
                  break;
            }
            if (!rd->skb) {
                  rd->skb = dev_alloc_skb(IRLAP_SKB_ALLOCSIZE);
                  if (rd->skb) {
                        skb_reserve(rd->skb,1);
                        rd->skb->protocol = htons(ETH_P_IRDA);
                  }
                  else
                        break;      /* probably not worth logging? */
            }
            /* give dma buffer back to busmaster */
            pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
            rd_activate(rd);
      }
}

static void vlsi_rx_interrupt(struct net_device *ndev)
{
      vlsi_irda_dev_t *idev = ndev->priv;
      struct vlsi_ring *r = idev->rx_ring;
      struct ring_descr *rd;
      int ret;

      for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {

            if (rd_is_active(rd))
                  break;

            ret = vlsi_process_rx(r, rd);

            if (ret < 0) {
                  ret = -ret;
                  idev->stats.rx_errors++;
                  if (ret & VLSI_RX_DROP)  
                        idev->stats.rx_dropped++;
                  if (ret & VLSI_RX_OVER)  
                        idev->stats.rx_over_errors++;
                  if (ret & VLSI_RX_LENGTH)  
                        idev->stats.rx_length_errors++;
                  if (ret & VLSI_RX_FRAME)  
                        idev->stats.rx_frame_errors++;
                  if (ret & VLSI_RX_CRC)  
                        idev->stats.rx_crc_errors++;
            }
            else if (ret > 0) {
                  idev->stats.rx_packets++;
                  idev->stats.rx_bytes += ret;
            }
      }

      do_gettimeofday(&idev->last_rx); /* remember "now" for later mtt delay */

      vlsi_fill_rx(r);

      if (ring_first(r) == NULL) {
            /* we are in big trouble, if this should ever happen */
            IRDA_ERROR("%s: rx ring exhausted!\n", __FUNCTION__);
            vlsi_ring_debug(r);
      }
      else
            outw(0, ndev->base_addr+VLSI_PIO_PROMPT);
}

/* caller must have stopped the controller from busmastering */

static void vlsi_unarm_rx(vlsi_irda_dev_t *idev)
{
      struct vlsi_ring *r = idev->rx_ring;
      struct ring_descr *rd;
      int ret;

      for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {

            ret = 0;
            if (rd_is_active(rd)) {
                  rd_set_status(rd, 0);
                  if (rd_get_count(rd)) {
                        IRDA_DEBUG(0, "%s - dropping rx packet\n", __FUNCTION__);
                        ret = -VLSI_RX_DROP;
                  }
                  rd_set_count(rd, 0);
                  pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
                  if (rd->skb) {
                        dev_kfree_skb_any(rd->skb);
                        rd->skb = NULL;
                  }
            }
            else
                  ret = vlsi_process_rx(r, rd);

            if (ret < 0) {
                  ret = -ret;
                  idev->stats.rx_errors++;
                  if (ret & VLSI_RX_DROP)  
                        idev->stats.rx_dropped++;
                  if (ret & VLSI_RX_OVER)  
                        idev->stats.rx_over_errors++;
                  if (ret & VLSI_RX_LENGTH)  
                        idev->stats.rx_length_errors++;
                  if (ret & VLSI_RX_FRAME)  
                        idev->stats.rx_frame_errors++;
                  if (ret & VLSI_RX_CRC)  
                        idev->stats.rx_crc_errors++;
            }
            else if (ret > 0) {
                  idev->stats.rx_packets++;
                  idev->stats.rx_bytes += ret;
            }
      }
}

/********************************************************/

static int vlsi_process_tx(struct vlsi_ring *r, struct ring_descr *rd)
{
      u16         status;
      int         len;
      int         ret;

      pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
      /* dma buffer now owned by the CPU */
      status = rd_get_status(rd);
      if (status & RD_TX_UNDRN)
            ret = VLSI_TX_FIFO;
      else
            ret = 0;
      rd_set_status(rd, 0);

      if (rd->skb) {
            len = rd->skb->len;
            dev_kfree_skb_any(rd->skb);
            rd->skb = NULL;
      }
      else  /* tx-skb already freed? - should never happen */
            len = rd_get_count(rd);       /* incorrect for SIR! (due to wrapping) */

      rd_set_count(rd, 0);
      /* dma buffer still owned by the CPU */

      return (ret) ? -ret : len;
}

static int vlsi_set_baud(vlsi_irda_dev_t *idev, unsigned iobase)
{
      u16 nphyctl;
      u16 config;
      unsigned mode;
      int   ret;
      int   baudrate;
      int   fifocnt;

      baudrate = idev->new_baud;
      IRDA_DEBUG(2, "%s: %d -> %d\n", __FUNCTION__, idev->baud, idev->new_baud);
      if (baudrate == 4000000) {
            mode = IFF_FIR;
            config = IRCFG_FIR;
            nphyctl = PHYCTL_FIR;
      }
      else if (baudrate == 1152000) {
            mode = IFF_MIR;
            config = IRCFG_MIR | IRCFG_CRC16;
            nphyctl = PHYCTL_MIR(clksrc==3);
      }
      else {
            mode = IFF_SIR;
            config = IRCFG_SIR | IRCFG_SIRFILT  | IRCFG_RXANY;
            switch(baudrate) {
                  default:
                        IRDA_WARNING("%s: undefined baudrate %d - fallback to 9600!\n",
                                   __FUNCTION__, baudrate);
                        baudrate = 9600;
                        /* fallthru */
                  case 2400:
                  case 9600:
                  case 19200:
                  case 38400:
                  case 57600:
                  case 115200:
                        nphyctl = PHYCTL_SIR(baudrate,sirpulse,clksrc==3);
                        break;
            }
      }
      config |= IRCFG_MSTR | IRCFG_ENRX;

      fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
      if (fifocnt != 0) {
            IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __FUNCTION__, fifocnt);
      }

      outw(0, iobase+VLSI_PIO_IRENABLE);
      outw(config, iobase+VLSI_PIO_IRCFG);
      outw(nphyctl, iobase+VLSI_PIO_NPHYCTL);
      wmb();
      outw(IRENABLE_PHYANDCLOCK, iobase+VLSI_PIO_IRENABLE);
      mb();

      udelay(1);  /* chip applies IRCFG on next rising edge of its 8MHz clock */

      /* read back settings for validation */

      config = inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_MASK;

      if (mode == IFF_FIR)
            config ^= IRENABLE_FIR_ON;
      else if (mode == IFF_MIR)
            config ^= (IRENABLE_MIR_ON|IRENABLE_CRC16_ON);
      else
            config ^= IRENABLE_SIR_ON;

      if (config != (IRENABLE_PHYANDCLOCK|IRENABLE_ENRXST)) {
            IRDA_WARNING("%s: failed to set %s mode!\n", __FUNCTION__,
                  (mode==IFF_SIR)?"SIR":((mode==IFF_MIR)?"MIR":"FIR"));
            ret = -1;
      }
      else {
            if (inw(iobase+VLSI_PIO_PHYCTL) != nphyctl) {
                  IRDA_WARNING("%s: failed to apply baudrate %d\n",
                             __FUNCTION__, baudrate);
                  ret = -1;
            }
            else {
                  idev->mode = mode;
                  idev->baud = baudrate;
                  idev->new_baud = 0;
                  ret = 0;
            }
      }

      if (ret)
            vlsi_reg_debug(iobase,__FUNCTION__);

      return ret;
}

static int vlsi_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
      vlsi_irda_dev_t *idev = ndev->priv;
      struct vlsi_ring  *r = idev->tx_ring;
      struct ring_descr *rd;
      unsigned long flags;
      unsigned iobase = ndev->base_addr;
      u8 status;
      u16 config;
      int mtt;
      int len, speed;
      struct timeval  now, ready;
      char *msg = NULL;

      speed = irda_get_next_speed(skb);
      spin_lock_irqsave(&idev->lock, flags);
      if (speed != -1  &&  speed != idev->baud) {
            netif_stop_queue(ndev);
            idev->new_baud = speed;
            status = RD_TX_CLRENTX;  /* stop tx-ring after this frame */
      }
      else
            status = 0;

      if (skb->len == 0) {
            /* handle zero packets - should be speed change */
            if (status == 0) {
                  msg = "bogus zero-length packet";
                  goto drop_unlock;
            }

            /* due to the completely asynch tx operation we might have
             * IrLAP racing with the hardware here, f.e. if the controller
             * is just sending the last packet with current speed while
             * the LAP is already switching the speed using synchronous
             * len=0 packet. Immediate execution would lead to hw lockup
             * requiring a powercycle to reset. Good candidate to trigger
             * this is the final UA:RSP packet after receiving a DISC:CMD
             * when getting the LAP down.
             * Note that we are not protected by the queue_stop approach
             * because the final UA:RSP arrives _without_ request to apply
             * new-speed-after-this-packet - hence the driver doesn't know
             * this was the last packet and doesn't stop the queue. So the
             * forced switch to default speed from LAP gets through as fast
             * as only some 10 usec later while the UA:RSP is still processed
             * by the hardware and we would get screwed.
             */

            if (ring_first(idev->tx_ring) == NULL) {
                  /* no race - tx-ring already empty */
                  vlsi_set_baud(idev, iobase);
                  netif_wake_queue(ndev);
            }
            else
                  ;
                  /* keep the speed change pending like it would
                   * for any len>0 packet. tx completion interrupt
                   * will apply it when the tx ring becomes empty.
                   */
            spin_unlock_irqrestore(&idev->lock, flags);
            dev_kfree_skb_any(skb);
            return 0;
      }

      /* sanity checks - simply drop the packet */

      rd = ring_last(r);
      if (!rd) {
            msg = "ring full, but queue wasn't stopped";
            goto drop_unlock;
      }

      if (rd_is_active(rd)) {
            msg = "entry still owned by hw";
            goto drop_unlock;
      }

      if (!rd->buf) {
            msg = "tx ring entry without pci buffer";
            goto drop_unlock;
      }

      if (rd->skb) {
            msg = "ring entry with old skb still attached";
            goto drop_unlock;
      }

      /* no need for serialization or interrupt disable during mtt */
      spin_unlock_irqrestore(&idev->lock, flags);

      if ((mtt = irda_get_mtt(skb)) > 0) {
      
            ready.tv_usec = idev->last_rx.tv_usec + mtt;
            ready.tv_sec = idev->last_rx.tv_sec;
            if (ready.tv_usec >= 1000000) {
                  ready.tv_usec -= 1000000;
                  ready.tv_sec++;         /* IrLAP 1.1: mtt always < 1 sec */
            }
            for(;;) {
                  do_gettimeofday(&now);
                  if (now.tv_sec > ready.tv_sec
                      ||  (now.tv_sec==ready.tv_sec && now.tv_usec>=ready.tv_usec))
                        break;
                  udelay(100);
                  /* must not sleep here - called under netif_tx_lock! */
            }
      }

      /* tx buffer already owned by CPU due to pci_dma_sync_single_for_cpu()
       * after subsequent tx-completion
       */

      if (idev->mode == IFF_SIR) {
            status |= RD_TX_DISCRC;       /* no hw-crc creation */
            len = async_wrap_skb(skb, rd->buf, r->len);

            /* Some rare worst case situation in SIR mode might lead to
             * potential buffer overflow. The wrapper detects this, returns
             * with a shortened frame (without FCS/EOF) but doesn't provide
             * any error indication about the invalid packet which we are
             * going to transmit.
             * Therefore we log if the buffer got filled to the point, where the
             * wrapper would abort, i.e. when there are less than 5 bytes left to
             * allow appending the FCS/EOF.
             */

            if (len >= r->len-5)
                   IRDA_WARNING("%s: possible buffer overflow with SIR wrapping!\n",
                              __FUNCTION__);
      }
      else {
            /* hw deals with MIR/FIR mode wrapping */
            status |= RD_TX_PULSE;        /* send 2 us highspeed indication pulse */
            len = skb->len;
            if (len > r->len) {
                  msg = "frame exceeds tx buffer length";
                  goto drop;
            }
            else
                  skb_copy_from_linear_data(skb, rd->buf, len);
      }

      rd->skb = skb;                /* remember skb for tx-complete stats */

      rd_set_count(rd, len);
      rd_set_status(rd, status);    /* not yet active! */

      /* give dma buffer back to busmaster-hw (flush caches to make
       * CPU-driven changes visible from the pci bus).
       */

      pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);

/*    Switching to TX mode here races with the controller
 *    which may stop TX at any time when fetching an inactive descriptor
 *    or one with CLR_ENTX set. So we switch on TX only, if TX was not running
 *    _after_ the new descriptor was activated on the ring. This ensures
 *    we will either find TX already stopped or we can be sure, there
 *    will be a TX-complete interrupt even if the chip stopped doing
 *    TX just after we found it still running. The ISR will then find
 *    the non-empty ring and restart TX processing. The enclosing
 *    spinlock provides the correct serialization to prevent race with isr.
 */

      spin_lock_irqsave(&idev->lock,flags);

      rd_activate(rd);

      if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
            int fifocnt;

            fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
            if (fifocnt != 0) {
                  IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __FUNCTION__, fifocnt);
            }

            config = inw(iobase+VLSI_PIO_IRCFG);
            mb();
            outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
            wmb();
            outw(0, iobase+VLSI_PIO_PROMPT);
      }
      ndev->trans_start = jiffies;

      if (ring_put(r) == NULL) {
            netif_stop_queue(ndev);
            IRDA_DEBUG(3, "%s: tx ring full - queue stopped\n", __FUNCTION__);
      }
      spin_unlock_irqrestore(&idev->lock, flags);

      return 0;

drop_unlock:
      spin_unlock_irqrestore(&idev->lock, flags);
drop:
      IRDA_WARNING("%s: dropping packet - %s\n", __FUNCTION__, msg);
      dev_kfree_skb_any(skb);
      idev->stats.tx_errors++;
      idev->stats.tx_dropped++;
      /* Don't even think about returning NET_XMIT_DROP (=1) here!
       * In fact any retval!=0 causes the packet scheduler to requeue the
       * packet for later retry of transmission - which isn't exactly
       * what we want after we've just called dev_kfree_skb_any ;-)
       */
      return 0;
}

static void vlsi_tx_interrupt(struct net_device *ndev)
{
      vlsi_irda_dev_t *idev = ndev->priv;
      struct vlsi_ring  *r = idev->tx_ring;
      struct ring_descr *rd;
      unsigned    iobase;
      int   ret;
      u16   config;

      for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {

            if (rd_is_active(rd))
                  break;

            ret = vlsi_process_tx(r, rd);

            if (ret < 0) {
                  ret = -ret;
                  idev->stats.tx_errors++;
                  if (ret & VLSI_TX_DROP)
                        idev->stats.tx_dropped++;
                  if (ret & VLSI_TX_FIFO)
                        idev->stats.tx_fifo_errors++;
            }
            else if (ret > 0){
                  idev->stats.tx_packets++;
                  idev->stats.tx_bytes += ret;
            }
      }

      iobase = ndev->base_addr;

      if (idev->new_baud  &&  rd == NULL) /* tx ring empty and speed change pending */
            vlsi_set_baud(idev, iobase);

      config = inw(iobase+VLSI_PIO_IRCFG);
      if (rd == NULL)               /* tx ring empty: re-enable rx */
            outw((config & ~IRCFG_ENTX) | IRCFG_ENRX, iobase+VLSI_PIO_IRCFG);

      else if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
            int fifocnt;

            fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
            if (fifocnt != 0) {
                  IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n",
                        __FUNCTION__, fifocnt);
            }
            outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
      }

      outw(0, iobase+VLSI_PIO_PROMPT);

      if (netif_queue_stopped(ndev)  &&  !idev->new_baud) {
            netif_wake_queue(ndev);
            IRDA_DEBUG(3, "%s: queue awoken\n", __FUNCTION__);
      }
}

/* caller must have stopped the controller from busmastering */

static void vlsi_unarm_tx(vlsi_irda_dev_t *idev)
{
      struct vlsi_ring *r = idev->tx_ring;
      struct ring_descr *rd;
      int ret;

      for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {

            ret = 0;
            if (rd_is_active(rd)) {
                  rd_set_status(rd, 0);
                  rd_set_count(rd, 0);
                  pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
                  if (rd->skb) {
                        dev_kfree_skb_any(rd->skb);
                        rd->skb = NULL;
                  }
                  IRDA_DEBUG(0, "%s - dropping tx packet\n", __FUNCTION__);
                  ret = -VLSI_TX_DROP;
            }
            else
                  ret = vlsi_process_tx(r, rd);

            if (ret < 0) {
                  ret = -ret;
                  idev->stats.tx_errors++;
                  if (ret & VLSI_TX_DROP)
                        idev->stats.tx_dropped++;
                  if (ret & VLSI_TX_FIFO)
                        idev->stats.tx_fifo_errors++;
            }
            else if (ret > 0){
                  idev->stats.tx_packets++;
                  idev->stats.tx_bytes += ret;
            }
      }

}

/********************************************************/

static int vlsi_start_clock(struct pci_dev *pdev)
{
      u8    clkctl, lock;
      int   i, count;

      if (clksrc < 2) { /* auto or PLL: try PLL */
            clkctl = CLKCTL_PD_INV | CLKCTL_CLKSTP;
            pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);

            /* procedure to detect PLL lock synchronisation:
             * after 0.5 msec initial delay we expect to find 3 PLL lock
             * indications within 10 msec for successful PLL detection.
             */
            udelay(500);
            count = 0;
            for (i = 500; i <= 10000; i += 50) { /* max 10 msec */
                  pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &lock);
                  if (lock&CLKCTL_LOCK) {
                        if (++count >= 3)
                              break;
                  }
                  udelay(50);
            }
            if (count < 3) {
                  if (clksrc == 1) { /* explicitly asked for PLL hence bail out */
                        IRDA_ERROR("%s: no PLL or failed to lock!\n",
                                 __FUNCTION__);
                        clkctl = CLKCTL_CLKSTP;
                        pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
                        return -1;
                  }
                  else              /* was: clksrc=0(auto) */
                        clksrc = 3; /* fallback to 40MHz XCLK (OB800) */

                  IRDA_DEBUG(0, "%s: PLL not locked, fallback to clksrc=%d\n",
                        __FUNCTION__, clksrc);
            }
            else
                  clksrc = 1; /* got successful PLL lock */
      }

      if (clksrc != 1) {
            /* we get here if either no PLL detected in auto-mode or
               an external clock source was explicitly specified */

            clkctl = CLKCTL_EXTCLK | CLKCTL_CLKSTP;
            if (clksrc == 3)
                  clkctl |= CLKCTL_XCKSEL;      
            pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);

            /* no way to test for working XCLK */
      }
      else
            pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);

      /* ok, now going to connect the chip with the clock source */

      clkctl &= ~CLKCTL_CLKSTP;
      pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);

      return 0;
}

static void vlsi_stop_clock(struct pci_dev *pdev)
{
      u8    clkctl;

      /* disconnect chip from clock source */
      pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
      clkctl |= CLKCTL_CLKSTP;
      pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);

      /* disable all clock sources */
      clkctl &= ~(CLKCTL_EXTCLK | CLKCTL_PD_INV);
      pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
}

/********************************************************/

/* writing all-zero to the VLSI PCI IO register area seems to prevent
 * some occasional situations where the hardware fails (symptoms are 
 * what appears as stalled tx/rx state machines, i.e. everything ok for
 * receive or transmit but hw makes no progress or is unable to access
 * the bus memory locations).
 * Best place to call this is immediately after/before the internal clock
 * gets started/stopped.
 */

static inline void vlsi_clear_regs(unsigned iobase)
{
      unsigned    i;
      const unsigned    chip_io_extent = 32;

      for (i = 0; i < chip_io_extent; i += sizeof(u16))
            outw(0, iobase + i);
}

static int vlsi_init_chip(struct pci_dev *pdev)
{
      struct net_device *ndev = pci_get_drvdata(pdev);
      vlsi_irda_dev_t *idev = ndev->priv;
      unsigned    iobase;
      u16 ptr;

      /* start the clock and clean the registers */

      if (vlsi_start_clock(pdev)) {
            IRDA_ERROR("%s: no valid clock source\n", __FUNCTION__);
            return -1;
      }
      iobase = ndev->base_addr;
      vlsi_clear_regs(iobase);

      outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* w/c pending IRQ, disable all INT */

      outw(0, iobase+VLSI_PIO_IRENABLE);  /* disable IrPHY-interface */

      /* disable everything, particularly IRCFG_MSTR - (also resetting the RING_PTR) */

      outw(0, iobase+VLSI_PIO_IRCFG);
      wmb();

      outw(MAX_PACKET_LENGTH, iobase+VLSI_PIO_MAXPKT);  /* max possible value=0x0fff */

      outw(BUS_TO_RINGBASE(idev->busaddr), iobase+VLSI_PIO_RINGBASE);

      outw(TX_RX_TO_RINGSIZE(idev->tx_ring->size, idev->rx_ring->size),
            iobase+VLSI_PIO_RINGSIZE);    

      ptr = inw(iobase+VLSI_PIO_RINGPTR);
      atomic_set(&idev->rx_ring->head, RINGPTR_GET_RX(ptr));
      atomic_set(&idev->rx_ring->tail, RINGPTR_GET_RX(ptr));
      atomic_set(&idev->tx_ring->head, RINGPTR_GET_TX(ptr));
      atomic_set(&idev->tx_ring->tail, RINGPTR_GET_TX(ptr));

      vlsi_set_baud(idev, iobase);  /* idev->new_baud used as provided by caller */

      outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR);  /* just in case - w/c pending IRQ's */
      wmb();

      /* DO NOT BLINDLY ENABLE IRINTR_ACTEN!
       * basically every received pulse fires an ACTIVITY-INT
       * leading to >>1000 INT's per second instead of few 10
       */

      outb(IRINTR_RPKTEN|IRINTR_TPKTEN, iobase+VLSI_PIO_IRINTR);

      return 0;
}

static int vlsi_start_hw(vlsi_irda_dev_t *idev)
{
      struct pci_dev *pdev = idev->pdev;
      struct net_device *ndev = pci_get_drvdata(pdev);
      unsigned iobase = ndev->base_addr;
      u8 byte;

      /* we don't use the legacy UART, disable its address decoding */

      pci_read_config_byte(pdev, VLSI_PCI_IRMISC, &byte);
      byte &= ~(IRMISC_UARTEN | IRMISC_UARTTST);
      pci_write_config_byte(pdev, VLSI_PCI_IRMISC, byte);

      /* enable PCI busmaster access to our 16MB page */

      pci_write_config_byte(pdev, VLSI_PCI_MSTRPAGE, MSTRPAGE_VALUE);
      pci_set_master(pdev);

      if (vlsi_init_chip(pdev) < 0) {
            pci_disable_device(pdev);
            return -1;
      }

      vlsi_fill_rx(idev->rx_ring);

      do_gettimeofday(&idev->last_rx);    /* first mtt may start from now on */

      outw(0, iobase+VLSI_PIO_PROMPT);    /* kick hw state machine */

      return 0;
}

static int vlsi_stop_hw(vlsi_irda_dev_t *idev)
{
      struct pci_dev *pdev = idev->pdev;
      struct net_device *ndev = pci_get_drvdata(pdev);
      unsigned iobase = ndev->base_addr;
      unsigned long flags;

      spin_lock_irqsave(&idev->lock,flags);
      outw(0, iobase+VLSI_PIO_IRENABLE);
      outw(0, iobase+VLSI_PIO_IRCFG);                 /* disable everything */

      /* disable and w/c irqs */
      outb(0, iobase+VLSI_PIO_IRINTR);
      wmb();
      outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR);
      spin_unlock_irqrestore(&idev->lock,flags);

      vlsi_unarm_tx(idev);
      vlsi_unarm_rx(idev);

      vlsi_clear_regs(iobase);
      vlsi_stop_clock(pdev);

      pci_disable_device(pdev);

      return 0;
}

/**************************************************************/

static struct net_device_stats * vlsi_get_stats(struct net_device *ndev)
{
      vlsi_irda_dev_t *idev = ndev->priv;

      return &idev->stats;
}

static void vlsi_tx_timeout(struct net_device *ndev)
{
      vlsi_irda_dev_t *idev = ndev->priv;


      vlsi_reg_debug(ndev->base_addr, __FUNCTION__);
      vlsi_ring_debug(idev->tx_ring);

      if (netif_running(ndev))
            netif_stop_queue(ndev);

      vlsi_stop_hw(idev);

      /* now simply restart the whole thing */

      if (!idev->new_baud)
            idev->new_baud = idev->baud;        /* keep current baudrate */

      if (vlsi_start_hw(idev))
            IRDA_ERROR("%s: failed to restart hw - %s(%s) unusable!\n",
                     __FUNCTION__, pci_name(idev->pdev), ndev->name);
      else
            netif_start_queue(ndev);
}

static int vlsi_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
{
      vlsi_irda_dev_t *idev = ndev->priv;
      struct if_irda_req *irq = (struct if_irda_req *) rq;
      unsigned long flags;
      u16 fifocnt;
      int ret = 0;

      switch (cmd) {
            case SIOCSBANDWIDTH:
                  if (!capable(CAP_NET_ADMIN)) {
                        ret = -EPERM;
                        break;
                  }
                  spin_lock_irqsave(&idev->lock, flags);
                  idev->new_baud = irq->ifr_baudrate;
                  /* when called from userland there might be a minor race window here
                   * if the stack tries to change speed concurrently - which would be
                   * pretty strange anyway with the userland having full control...
                   */
                  vlsi_set_baud(idev, ndev->base_addr);
                  spin_unlock_irqrestore(&idev->lock, flags);
                  break;
            case SIOCSMEDIABUSY:
                  if (!capable(CAP_NET_ADMIN)) {
                        ret = -EPERM;
                        break;
                  }
                  irda_device_set_media_busy(ndev, TRUE);
                  break;
            case SIOCGRECEIVING:
                  /* the best we can do: check whether there are any bytes in rx fifo.
                   * The trustable window (in case some data arrives just afterwards)
                   * may be as short as 1usec or so at 4Mbps.
                   */
                  fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
                  irq->ifr_receiving = (fifocnt!=0) ? 1 : 0;
                  break;
            default:
                  IRDA_WARNING("%s: notsupp - cmd=%04x\n",
                             __FUNCTION__, cmd);
                  ret = -EOPNOTSUPP;
      }     
      
      return ret;
}

/********************************************************/

static irqreturn_t vlsi_interrupt(int irq, void *dev_instance)
{
      struct net_device *ndev = dev_instance;
      vlsi_irda_dev_t *idev = ndev->priv;
      unsigned    iobase;
      u8          irintr;
      int         boguscount = 5;
      unsigned long     flags;
      int         handled = 0;

      iobase = ndev->base_addr;
      spin_lock_irqsave(&idev->lock,flags);
      do {
            irintr = inb(iobase+VLSI_PIO_IRINTR);
            mb();
            outb(irintr, iobase+VLSI_PIO_IRINTR);     /* acknowledge asap */

            if (!(irintr&=IRINTR_INT_MASK))           /* not our INT - probably shared */
                  break;

            handled = 1;

            if (unlikely(!(irintr & ~IRINTR_ACTIVITY)))
                  break;                        /* nothing todo if only activity */

            if (irintr&IRINTR_RPKTINT)
                  vlsi_rx_interrupt(ndev);

            if (irintr&IRINTR_TPKTINT)
                  vlsi_tx_interrupt(ndev);

      } while (--boguscount > 0);
      spin_unlock_irqrestore(&idev->lock,flags);

      if (boguscount <= 0)
            IRDA_MESSAGE("%s: too much work in interrupt!\n",
                       __FUNCTION__);
      return IRQ_RETVAL(handled);
}

/********************************************************/

static int vlsi_open(struct net_device *ndev)
{
      vlsi_irda_dev_t *idev = ndev->priv;
      int   err = -EAGAIN;
      char  hwname[32];

      if (pci_request_regions(idev->pdev, drivername)) {
            IRDA_WARNING("%s: io resource busy\n", __FUNCTION__);
            goto errout;
      }
      ndev->base_addr = pci_resource_start(idev->pdev,0);
      ndev->irq = idev->pdev->irq;

      /* under some rare occasions the chip apparently comes up with
       * IRQ's pending. We better w/c pending IRQ and disable them all
       */

      outb(IRINTR_INT_MASK, ndev->base_addr+VLSI_PIO_IRINTR);

      if (request_irq(ndev->irq, vlsi_interrupt, IRQF_SHARED,
                  drivername, ndev)) {
            IRDA_WARNING("%s: couldn't get IRQ: %d\n",
                       __FUNCTION__, ndev->irq);
            goto errout_io;
      }

      if ((err = vlsi_create_hwif(idev)) != 0)
            goto errout_irq;

      sprintf(hwname, "VLSI-FIR @ 0x%04x", (unsigned)ndev->base_addr);
      idev->irlap = irlap_open(ndev,&idev->qos,hwname);
      if (!idev->irlap)
            goto errout_free_ring;

      do_gettimeofday(&idev->last_rx);  /* first mtt may start from now on */

      idev->new_baud = 9600;        /* start with IrPHY using 9600(SIR) mode */

      if ((err = vlsi_start_hw(idev)) != 0)
            goto errout_close_irlap;

      netif_start_queue(ndev);

      IRDA_MESSAGE("%s: device %s operational\n", __FUNCTION__, ndev->name);

      return 0;

errout_close_irlap:
      irlap_close(idev->irlap);
errout_free_ring:
      vlsi_destroy_hwif(idev);
errout_irq:
      free_irq(ndev->irq,ndev);
errout_io:
      pci_release_regions(idev->pdev);
errout:
      return err;
}

static int vlsi_close(struct net_device *ndev)
{
      vlsi_irda_dev_t *idev = ndev->priv;

      netif_stop_queue(ndev);

      if (idev->irlap)
            irlap_close(idev->irlap);
      idev->irlap = NULL;

      vlsi_stop_hw(idev);

      vlsi_destroy_hwif(idev);

      free_irq(ndev->irq,ndev);

      pci_release_regions(idev->pdev);

      IRDA_MESSAGE("%s: device %s stopped\n", __FUNCTION__, ndev->name);

      return 0;
}

static int vlsi_irda_init(struct net_device *ndev)
{
      vlsi_irda_dev_t *idev = ndev->priv;
      struct pci_dev *pdev = idev->pdev;

      ndev->irq = pdev->irq;
      ndev->base_addr = pci_resource_start(pdev,0);

      /* PCI busmastering
       * see include file for details why we need these 2 masks, in this order!
       */

      if (pci_set_dma_mask(pdev,DMA_MASK_USED_BY_HW)
          || pci_set_dma_mask(pdev,DMA_MASK_MSTRPAGE)) {
            IRDA_ERROR("%s: aborting due to PCI BM-DMA address limitations\n", __FUNCTION__);
            return -1;
      }

      irda_init_max_qos_capabilies(&idev->qos);

      /* the VLSI82C147 does not support 576000! */

      idev->qos.baud_rate.bits = IR_2400 | IR_9600
            | IR_19200 | IR_38400 | IR_57600 | IR_115200
            | IR_1152000 | (IR_4000000 << 8);

      idev->qos.min_turn_time.bits = qos_mtt_bits;

      irda_qos_bits_to_value(&idev->qos);

      /* currently no public media definitions for IrDA */

      ndev->flags |= IFF_PORTSEL | IFF_AUTOMEDIA;
      ndev->if_port = IF_PORT_UNKNOWN;
 
      ndev->open        = vlsi_open;
      ndev->stop        = vlsi_close;
      ndev->get_stats         = vlsi_get_stats;
      ndev->hard_start_xmit = vlsi_hard_start_xmit;
      ndev->do_ioctl          = vlsi_ioctl;
      ndev->tx_timeout      = vlsi_tx_timeout;
      ndev->watchdog_timeo  = 500*HZ/1000;      /* max. allowed turn time for IrLAP */

      SET_NETDEV_DEV(ndev, &pdev->dev);

      return 0;
}     

/**************************************************************/

static int __devinit
vlsi_irda_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
      struct net_device *ndev;
      vlsi_irda_dev_t         *idev;

      if (pci_enable_device(pdev))
            goto out;
      else
            pdev->current_state = 0; /* hw must be running now */

      IRDA_MESSAGE("%s: IrDA PCI controller %s detected\n",
                 drivername, pci_name(pdev));

      if ( !pci_resource_start(pdev,0)
           || !(pci_resource_flags(pdev,0) & IORESOURCE_IO) ) {
            IRDA_ERROR("%s: bar 0 invalid", __FUNCTION__);
            goto out_disable;
      }

      ndev = alloc_irdadev(sizeof(*idev));
      if (ndev==NULL) {
            IRDA_ERROR("%s: Unable to allocate device memory.\n",
                     __FUNCTION__);
            goto out_disable;
      }

      idev = ndev->priv;

      spin_lock_init(&idev->lock);
      mutex_init(&idev->mtx);
      mutex_lock(&idev->mtx);
      idev->pdev = pdev;

      if (vlsi_irda_init(ndev) < 0)
            goto out_freedev;

      if (register_netdev(ndev) < 0) {
            IRDA_ERROR("%s: register_netdev failed\n", __FUNCTION__);
            goto out_freedev;
      }

      if (vlsi_proc_root != NULL) {
            struct proc_dir_entry *ent;

            ent = create_proc_entry(ndev->name, S_IFREG|S_IRUGO, vlsi_proc_root);
            if (!ent) {
                  IRDA_WARNING("%s: failed to create proc entry\n",
                             __FUNCTION__);
            } else {
                  ent->data = ndev;
                  ent->proc_fops = VLSI_PROC_FOPS;
                  ent->size = 0;
            }
            idev->proc_entry = ent;
      }
      IRDA_MESSAGE("%s: registered device %s\n", drivername, ndev->name);

      pci_set_drvdata(pdev, ndev);
      mutex_unlock(&idev->mtx);

      return 0;

out_freedev:
      mutex_unlock(&idev->mtx);
      free_netdev(ndev);
out_disable:
      pci_disable_device(pdev);
out:
      pci_set_drvdata(pdev, NULL);
      return -ENODEV;
}

static void __devexit vlsi_irda_remove(struct pci_dev *pdev)
{
      struct net_device *ndev = pci_get_drvdata(pdev);
      vlsi_irda_dev_t *idev;

      if (!ndev) {
            IRDA_ERROR("%s: lost netdevice?\n", drivername);
            return;
      }

      unregister_netdev(ndev);

      idev = ndev->priv;
      mutex_lock(&idev->mtx);
      if (idev->proc_entry) {
            remove_proc_entry(ndev->name, vlsi_proc_root);
            idev->proc_entry = NULL;
      }
      mutex_unlock(&idev->mtx);

      free_netdev(ndev);

      pci_set_drvdata(pdev, NULL);

      IRDA_MESSAGE("%s: %s removed\n", drivername, pci_name(pdev));
}

#ifdef CONFIG_PM

/* The Controller doesn't provide PCI PM capabilities as defined by PCI specs.
 * Some of the Linux PCI-PM code however depends on this, for example in
 * pci_set_power_state(). So we have to take care to perform the required
 * operations on our own (particularly reflecting the pdev->current_state)
 * otherwise we might get cheated by pci-pm.
 */


static int vlsi_irda_suspend(struct pci_dev *pdev, pm_message_t state)
{
      struct net_device *ndev = pci_get_drvdata(pdev);
      vlsi_irda_dev_t *idev;

      if (!ndev) {
            IRDA_ERROR("%s - %s: no netdevice \n",
                     __FUNCTION__, pci_name(pdev));
            return 0;
      }
      idev = ndev->priv;      
      mutex_lock(&idev->mtx);
      if (pdev->current_state != 0) {                 /* already suspended */
            if (state.event > pdev->current_state) {  /* simply go deeper */
                  pci_set_power_state(pdev, pci_choose_state(pdev, state));
                  pdev->current_state = state.event;
            }
            else
                  IRDA_ERROR("%s - %s: invalid suspend request %u -> %u\n", __FUNCTION__, pci_name(pdev), pdev->current_state, state.event);
            mutex_unlock(&idev->mtx);
            return 0;
      }

      if (netif_running(ndev)) {
            netif_device_detach(ndev);
            vlsi_stop_hw(idev);
            pci_save_state(pdev);
            if (!idev->new_baud)
                  /* remember speed settings to restore on resume */
                  idev->new_baud = idev->baud;
      }

      pci_set_power_state(pdev, pci_choose_state(pdev, state));
      pdev->current_state = state.event;
      idev->resume_ok = 1;
      mutex_unlock(&idev->mtx);
      return 0;
}

static int vlsi_irda_resume(struct pci_dev *pdev)
{
      struct net_device *ndev = pci_get_drvdata(pdev);
      vlsi_irda_dev_t   *idev;

      if (!ndev) {
            IRDA_ERROR("%s - %s: no netdevice \n",
                     __FUNCTION__, pci_name(pdev));
            return 0;
      }
      idev = ndev->priv;      
      mutex_lock(&idev->mtx);
      if (pdev->current_state == 0) {
            mutex_unlock(&idev->mtx);
            IRDA_WARNING("%s - %s: already resumed\n",
                       __FUNCTION__, pci_name(pdev));
            return 0;
      }
      
      pci_set_power_state(pdev, PCI_D0);
      pdev->current_state = PM_EVENT_ON;

      if (!idev->resume_ok) {
            /* should be obsolete now - but used to happen due to:
             * - pci layer initially setting pdev->current_state = 4 (unknown)
             * - pci layer did not walk the save_state-tree (might be APM problem)
             *   so we could not refuse to suspend from undefined state
             * - vlsi_irda_suspend detected invalid state and refused to save
             *   configuration for resume - but was too late to stop suspending
             * - vlsi_irda_resume got screwed when trying to resume from garbage
             *
             * now we explicitly set pdev->current_state = 0 after enabling the
             * device and independently resume_ok should catch any garbage config.
             */
            IRDA_WARNING("%s - hm, nothing to resume?\n", __FUNCTION__);
            mutex_unlock(&idev->mtx);
            return 0;
      }

      if (netif_running(ndev)) {
            pci_restore_state(pdev);
            vlsi_start_hw(idev);
            netif_device_attach(ndev);
      }
      idev->resume_ok = 0;
      mutex_unlock(&idev->mtx);
      return 0;
}

#endif /* CONFIG_PM */

/*********************************************************/

static struct pci_driver vlsi_irda_driver = {
      .name       = drivername,
      .id_table   = vlsi_irda_table,
      .probe            = vlsi_irda_probe,
      .remove           = __devexit_p(vlsi_irda_remove),
#ifdef CONFIG_PM
      .suspend    = vlsi_irda_suspend,
      .resume           = vlsi_irda_resume,
#endif
};

#define PROC_DIR ("driver/" DRIVER_NAME)

static int __init vlsi_mod_init(void)
{
      int   i, ret;

      if (clksrc < 0  ||  clksrc > 3) {
            IRDA_ERROR("%s: invalid clksrc=%d\n", drivername, clksrc);
            return -1;
      }

      for (i = 0; i < 2; i++) {
            switch(ringsize[i]) {
                  case 4:
                  case 8:
                  case 16:
                  case 32:
                  case 64:
                        break;
                  default:
                        IRDA_WARNING("%s: invalid %s ringsize %d, using default=8", drivername, (i)?"rx":"tx", ringsize[i]);
                        ringsize[i] = 8;
                        break;
            }
      } 

      sirpulse = !!sirpulse;

      /* proc_mkdir returns NULL if !CONFIG_PROC_FS.
       * Failure to create the procfs entry is handled like running
       * without procfs - it's not required for the driver to work.
       */
      vlsi_proc_root = proc_mkdir(PROC_DIR, NULL);
      if (vlsi_proc_root) {
            /* protect registered procdir against module removal.
             * Because we are in the module init path there's no race
             * window after create_proc_entry (and no barrier needed).
             */
            vlsi_proc_root->owner = THIS_MODULE;
      }

      ret = pci_register_driver(&vlsi_irda_driver);

      if (ret && vlsi_proc_root)
            remove_proc_entry(PROC_DIR, NULL);
      return ret;

}

static void __exit vlsi_mod_exit(void)
{
      pci_unregister_driver(&vlsi_irda_driver);
      if (vlsi_proc_root)
            remove_proc_entry(PROC_DIR, NULL);
}

module_init(vlsi_mod_init);
module_exit(vlsi_mod_exit);

Generated by  Doxygen 1.6.0   Back to index