Logo Search packages:      
Sourcecode: linux version File versions  Download package

vt8231.c

/*
      vt8231.c - Part of lm_sensors, Linux kernel modules
                        for hardware monitoring

      Copyright (c) 2005 Roger Lucas <roger@planbit.co.uk>
      Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
                     Aaron M. Marsh <amarsh@sdf.lonestar.org>

      This program is free software; you can redistribute it and/or modify
      it under the terms of the GNU General Public License as published by
      the Free Software Foundation; either version 2 of the License, or
      (at your option) any later version.

      This program is distributed in the hope that it will be useful,
      but WITHOUT ANY WARRANTY; without even the implied warranty of
      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      GNU General Public License for more details.

      You should have received a copy of the GNU General Public License
      along with this program; if not, write to the Free Software
      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

/* Supports VIA VT8231 South Bridge embedded sensors
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/jiffies.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <asm/io.h>

static int force_addr;
module_param(force_addr, int, 0);
MODULE_PARM_DESC(force_addr, "Initialize the base address of the sensors");

static struct platform_device *pdev;

#define VT8231_EXTENT 0x80
#define VT8231_BASE_REG 0x70
#define VT8231_ENABLE_REG 0x74

/* The VT8231 registers

   The reset value for the input channel configuration is used (Reg 0x4A=0x07)
   which sets the selected inputs marked with '*' below if multiple options are
   possible:

                  Voltage Mode        Temperature Mode
      Sensor            Linux Id          Linux Id        VIA Id
      --------      --------        --------        ------
      CPU Diode   N/A         temp1       0
      UIC1        in0         temp2 *           1
      UIC2        in1 *       temp3       2
      UIC3        in2 *       temp4       3
      UIC4        in3 *       temp5       4
      UIC5        in4 *       temp6       5
      3.3V        in5         N/A

   Note that the BIOS may set the configuration register to a different value
   to match the motherboard configuration.
*/

/* fans numbered 0-1 */
#define VT8231_REG_FAN_MIN(nr)      (0x3b + (nr))
#define VT8231_REG_FAN(nr)    (0x29 + (nr))

/* Voltage inputs numbered 0-5 */

static const u8 regvolt[]    = { 0x21, 0x22, 0x23, 0x24, 0x25, 0x26 };
static const u8 regvoltmax[] = { 0x3d, 0x2b, 0x2d, 0x2f, 0x31, 0x33 };
static const u8 regvoltmin[] = { 0x3e, 0x2c, 0x2e, 0x30, 0x32, 0x34 };

/* Temperatures are numbered 1-6 according to the Linux kernel specification.
**
** In the VIA datasheet, however, the temperatures are numbered from zero.
** Since it is important that this driver can easily be compared to the VIA
** datasheet, we will use the VIA numbering within this driver and map the
** kernel sysfs device name to the VIA number in the sysfs callback.
*/

#define VT8231_REG_TEMP_LOW01 0x49
#define VT8231_REG_TEMP_LOW25 0x4d

static const u8 regtemp[]    = { 0x1f, 0x21, 0x22, 0x23, 0x24, 0x25 };
static const u8 regtempmax[] = { 0x39, 0x3d, 0x2b, 0x2d, 0x2f, 0x31 };
static const u8 regtempmin[] = { 0x3a, 0x3e, 0x2c, 0x2e, 0x30, 0x32 };

#define TEMP_FROM_REG(reg)          (((253 * 4 - (reg)) * 550 + 105) / 210)
#define TEMP_MAXMIN_FROM_REG(reg)   (((253 - (reg)) * 2200 + 105) / 210)
#define TEMP_MAXMIN_TO_REG(val)           (253 - ((val) * 210 + 1100) / 2200)

#define VT8231_REG_CONFIG 0x40
#define VT8231_REG_ALARM1 0x41
#define VT8231_REG_ALARM2 0x42
#define VT8231_REG_FANDIV 0x47
#define VT8231_REG_UCH_CONFIG 0x4a
#define VT8231_REG_TEMP1_CONFIG 0x4b
#define VT8231_REG_TEMP2_CONFIG 0x4c

/* temps 0-5 as numbered in VIA datasheet - see later for mapping to Linux
** numbering
*/
#define ISTEMP(i, ch_config) ((i) == 0 ? 1 : \
                        ((ch_config) >> ((i)+1)) & 0x01)
/* voltages 0-5 */
#define ISVOLT(i, ch_config) ((i) == 5 ? 1 : \
                        !(((ch_config) >> ((i)+2)) & 0x01))

#define DIV_FROM_REG(val) (1 << (val))

/* NB  The values returned here are NOT temperatures.  The calibration curves
**     for the thermistor curves are board-specific and must go in the
**     sensors.conf file.  Temperature sensors are actually ten bits, but the
**     VIA datasheet only considers the 8 MSBs obtained from the regtemp[]
**     register.  The temperature value returned should have a magnitude of 3,
**     so we use the VIA scaling as the "true" scaling and use the remaining 2
**     LSBs as fractional precision.
**
**     All the on-chip hardware temperature comparisons for the alarms are only
**     8-bits wide, and compare against the 8 MSBs of the temperature.  The bits
**     in the registers VT8231_REG_TEMP_LOW01 and VT8231_REG_TEMP_LOW25 are
**     ignored.
*/

/******** FAN RPM CONVERSIONS ********
** This chip saturates back at 0, not at 255 like many the other chips.
** So, 0 means 0 RPM
*/
static inline u8 FAN_TO_REG(long rpm, int div)
{
      if (rpm == 0)
            return 0;
      return SENSORS_LIMIT(1310720 / (rpm * div), 1, 255);
}

#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : 1310720 / ((val) * (div)))

struct vt8231_data {
      unsigned short addr;
      const char *name;

      struct mutex update_lock;
      struct device *hwmon_dev;
      char valid;       /* !=0 if following fields are valid */
      unsigned long last_updated;   /* In jiffies */

      u8 in[6];         /* Register value */
      u8 in_max[6];           /* Register value */
      u8 in_min[6];           /* Register value */
      u16 temp[6];            /* Register value 10 bit, right aligned */
      u8 temp_max[6];         /* Register value */
      u8 temp_min[6];         /* Register value */
      u8 fan[2];        /* Register value */
      u8 fan_min[2];          /* Register value */
      u8 fan_div[2];          /* Register encoding, shifted right */
      u16 alarms;       /* Register encoding */
      u8 uch_config;
};

static struct pci_dev *s_bridge;
static int vt8231_probe(struct platform_device *pdev);
static int __devexit vt8231_remove(struct platform_device *pdev);
static struct vt8231_data *vt8231_update_device(struct device *dev);
static void vt8231_init_device(struct vt8231_data *data);

static inline int vt8231_read_value(struct vt8231_data *data, u8 reg)
{
      return inb_p(data->addr + reg);
}

static inline void vt8231_write_value(struct vt8231_data *data, u8 reg,
                              u8 value)
{
      outb_p(value, data->addr + reg);
}

/* following are the sysfs callback functions */
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = vt8231_update_device(dev);

      return sprintf(buf, "%d\n", ((data->in[nr] - 3) * 10000) / 958);
}

static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = vt8231_update_device(dev);

      return sprintf(buf, "%d\n", ((data->in_min[nr] - 3) * 10000) / 958);
}

static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = vt8231_update_device(dev);

      return sprintf(buf, "%d\n", (((data->in_max[nr] - 3) * 10000) / 958));
}

static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = dev_get_drvdata(dev);
      unsigned long val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_min[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255);
      vt8231_write_value(data, regvoltmin[nr], data->in_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = dev_get_drvdata(dev);
      unsigned long val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_max[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255);
      vt8231_write_value(data, regvoltmax[nr], data->in_max[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

/* Special case for input 5 as this has 3.3V scaling built into the chip */
static ssize_t show_in5(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct vt8231_data *data = vt8231_update_device(dev);

      return sprintf(buf, "%d\n",
            (((data->in[5] - 3) * 10000 * 54) / (958 * 34)));
}

static ssize_t show_in5_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct vt8231_data *data = vt8231_update_device(dev);

      return sprintf(buf, "%d\n",
            (((data->in_min[5] - 3) * 10000 * 54) / (958 * 34)));
}

static ssize_t show_in5_max(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct vt8231_data *data = vt8231_update_device(dev);

      return sprintf(buf, "%d\n",
            (((data->in_max[5] - 3) * 10000 * 54) / (958 * 34)));
}

static ssize_t set_in5_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct vt8231_data *data = dev_get_drvdata(dev);
      unsigned long val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_min[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3,
                              0, 255);
      vt8231_write_value(data, regvoltmin[5], data->in_min[5]);
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t set_in5_max(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct vt8231_data *data = dev_get_drvdata(dev);
      unsigned long val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_max[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3,
                              0, 255);
      vt8231_write_value(data, regvoltmax[5], data->in_max[5]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define define_voltage_sysfs(offset)                        \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,            \
            show_in, NULL, offset);                   \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,    \
            show_in_min, set_in_min, offset);         \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,    \
            show_in_max, set_in_max, offset)

define_voltage_sysfs(0);
define_voltage_sysfs(1);
define_voltage_sysfs(2);
define_voltage_sysfs(3);
define_voltage_sysfs(4);

static DEVICE_ATTR(in5_input, S_IRUGO, show_in5, NULL);
static DEVICE_ATTR(in5_min, S_IRUGO | S_IWUSR, show_in5_min, set_in5_min);
static DEVICE_ATTR(in5_max, S_IRUGO | S_IWUSR, show_in5_max, set_in5_max);

/* Temperatures */
static ssize_t show_temp0(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", data->temp[0] * 250);
}

static ssize_t show_temp0_max(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", data->temp_max[0] * 1000);
}

static ssize_t show_temp0_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", data->temp_min[0] * 1000);
}

static ssize_t set_temp0_max(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct vt8231_data *data = dev_get_drvdata(dev);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_max[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255);
      vt8231_write_value(data, regtempmax[0], data->temp_max[0]);
      mutex_unlock(&data->update_lock);
      return count;
}
static ssize_t set_temp0_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct vt8231_data *data = dev_get_drvdata(dev);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_min[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255);
      vt8231_write_value(data, regtempmin[0], data->temp_min[0]);
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr]));
}

static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_max[nr]));
}

static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_min[nr]));
}

static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = dev_get_drvdata(dev);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_max[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255);
      vt8231_write_value(data, regtempmax[nr], data->temp_max[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = dev_get_drvdata(dev);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_min[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255);
      vt8231_write_value(data, regtempmin[nr], data->temp_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

/* Note that these map the Linux temperature sensor numbering (1-6) to the VIA
** temperature sensor numbering (0-5)
*/
#define define_temperature_sysfs(offset)                    \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,          \
            show_temp, NULL, offset - 1);                   \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,  \
            show_temp_max, set_temp_max, offset - 1);       \
static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR,   \
            show_temp_min, set_temp_min, offset - 1)

static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp0, NULL);
static DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp0_max, set_temp0_max);
static DEVICE_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp0_min, set_temp0_min);

define_temperature_sysfs(2);
define_temperature_sysfs(3);
define_temperature_sysfs(4);
define_temperature_sysfs(5);
define_temperature_sysfs(6);

/* Fans */
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
                        DIV_FROM_REG(data->fan_div[nr])));
}

static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
                  DIV_FROM_REG(data->fan_div[nr])));
}

static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
}

static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct vt8231_data *data = dev_get_drvdata(dev);
      int val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
      vt8231_write_value(data, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct vt8231_data *data = dev_get_drvdata(dev);
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      unsigned long val = simple_strtoul(buf, NULL, 10);
      int nr = sensor_attr->index;
      int old = vt8231_read_value(data, VT8231_REG_FANDIV);
      long min = FAN_FROM_REG(data->fan_min[nr],
                         DIV_FROM_REG(data->fan_div[nr]));

      mutex_lock(&data->update_lock);
      switch (val) {
      case 1: data->fan_div[nr] = 0; break;
      case 2: data->fan_div[nr] = 1; break;
      case 4: data->fan_div[nr] = 2; break;
      case 8: data->fan_div[nr] = 3; break;
      default:
            dev_err(dev, "fan_div value %ld not supported."
                    "Choose one of 1, 2, 4 or 8!\n", val);
            mutex_unlock(&data->update_lock);
            return -EINVAL;
      }

      /* Correct the fan minimum speed */
      data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
      vt8231_write_value(data, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]);

      old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
      vt8231_write_value(data, VT8231_REG_FANDIV, old);
      mutex_unlock(&data->update_lock);
      return count;
}


#define define_fan_sysfs(offset)                            \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,                 \
            show_fan, NULL, offset - 1);                    \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,         \
            show_fan_div, set_fan_div, offset - 1);               \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,         \
            show_fan_min, set_fan_min, offset - 1)

define_fan_sysfs(1);
define_fan_sysfs(2);

/* Alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
                     char *buf)
{
      struct vt8231_data *data = vt8231_update_device(dev);
      return sprintf(buf, "%d\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);

static ssize_t show_name(struct device *dev, struct device_attribute
                   *devattr, char *buf)
{
      struct vt8231_data *data = dev_get_drvdata(dev);
      return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);

static struct attribute *vt8231_attributes_temps[6][4] = {
      {
            &dev_attr_temp1_input.attr,
            &dev_attr_temp1_max_hyst.attr,
            &dev_attr_temp1_max.attr,
            NULL
      }, {
            &sensor_dev_attr_temp2_input.dev_attr.attr,
            &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
            &sensor_dev_attr_temp2_max.dev_attr.attr,
            NULL
      }, {
            &sensor_dev_attr_temp3_input.dev_attr.attr,
            &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
            &sensor_dev_attr_temp3_max.dev_attr.attr,
            NULL
      }, {
            &sensor_dev_attr_temp4_input.dev_attr.attr,
            &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
            &sensor_dev_attr_temp4_max.dev_attr.attr,
            NULL
      }, {
            &sensor_dev_attr_temp5_input.dev_attr.attr,
            &sensor_dev_attr_temp5_max_hyst.dev_attr.attr,
            &sensor_dev_attr_temp5_max.dev_attr.attr,
            NULL
      }, {
            &sensor_dev_attr_temp6_input.dev_attr.attr,
            &sensor_dev_attr_temp6_max_hyst.dev_attr.attr,
            &sensor_dev_attr_temp6_max.dev_attr.attr,
            NULL
      }
};

static const struct attribute_group vt8231_group_temps[6] = {
      { .attrs = vt8231_attributes_temps[0] },
      { .attrs = vt8231_attributes_temps[1] },
      { .attrs = vt8231_attributes_temps[2] },
      { .attrs = vt8231_attributes_temps[3] },
      { .attrs = vt8231_attributes_temps[4] },
      { .attrs = vt8231_attributes_temps[5] },
};

static struct attribute *vt8231_attributes_volts[6][4] = {
      {
            &sensor_dev_attr_in0_input.dev_attr.attr,
            &sensor_dev_attr_in0_min.dev_attr.attr,
            &sensor_dev_attr_in0_max.dev_attr.attr,
            NULL
      }, {
            &sensor_dev_attr_in1_input.dev_attr.attr,
            &sensor_dev_attr_in1_min.dev_attr.attr,
            &sensor_dev_attr_in1_max.dev_attr.attr,
            NULL
      }, {
            &sensor_dev_attr_in2_input.dev_attr.attr,
            &sensor_dev_attr_in2_min.dev_attr.attr,
            &sensor_dev_attr_in2_max.dev_attr.attr,
            NULL
      }, {
            &sensor_dev_attr_in3_input.dev_attr.attr,
            &sensor_dev_attr_in3_min.dev_attr.attr,
            &sensor_dev_attr_in3_max.dev_attr.attr,
            NULL
      }, {
            &sensor_dev_attr_in4_input.dev_attr.attr,
            &sensor_dev_attr_in4_min.dev_attr.attr,
            &sensor_dev_attr_in4_max.dev_attr.attr,
            NULL
      }, {
            &dev_attr_in5_input.attr,
            &dev_attr_in5_min.attr,
            &dev_attr_in5_max.attr,
            NULL
      }
};

static const struct attribute_group vt8231_group_volts[6] = {
      { .attrs = vt8231_attributes_volts[0] },
      { .attrs = vt8231_attributes_volts[1] },
      { .attrs = vt8231_attributes_volts[2] },
      { .attrs = vt8231_attributes_volts[3] },
      { .attrs = vt8231_attributes_volts[4] },
      { .attrs = vt8231_attributes_volts[5] },
};

static struct attribute *vt8231_attributes[] = {
      &sensor_dev_attr_fan1_input.dev_attr.attr,
      &sensor_dev_attr_fan2_input.dev_attr.attr,
      &sensor_dev_attr_fan1_min.dev_attr.attr,
      &sensor_dev_attr_fan2_min.dev_attr.attr,
      &sensor_dev_attr_fan1_div.dev_attr.attr,
      &sensor_dev_attr_fan2_div.dev_attr.attr,
      &dev_attr_alarms.attr,
      &dev_attr_name.attr,
      NULL
};

static const struct attribute_group vt8231_group = {
      .attrs = vt8231_attributes,
};

static struct platform_driver vt8231_driver = {
      .driver = {
            .owner      = THIS_MODULE,
            .name = "vt8231",
      },
      .probe      = vt8231_probe,
      .remove     = __devexit_p(vt8231_remove),
};

static struct pci_device_id vt8231_pci_ids[] = {
      { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8231_4) },
      { 0, }
};

MODULE_DEVICE_TABLE(pci, vt8231_pci_ids);

static int __devinit vt8231_pci_probe(struct pci_dev *dev,
                              const struct pci_device_id *id);

static struct pci_driver vt8231_pci_driver = {
      .name       = "vt8231",
      .id_table   = vt8231_pci_ids,
      .probe            = vt8231_pci_probe,
};

static int vt8231_probe(struct platform_device *pdev)
{
      struct resource *res;
      struct vt8231_data *data;
      int err = 0, i;

      /* Reserve the ISA region */
      res = platform_get_resource(pdev, IORESOURCE_IO, 0);
      if (!request_region(res->start, VT8231_EXTENT,
                      vt8231_driver.driver.name)) {
            dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
                  (unsigned long)res->start, (unsigned long)res->end);
            return -ENODEV;
      }

      if (!(data = kzalloc(sizeof(struct vt8231_data), GFP_KERNEL))) {
            err = -ENOMEM;
            goto exit_release;
      }

      platform_set_drvdata(pdev, data);
      data->addr = res->start;
      data->name = "vt8231";

      mutex_init(&data->update_lock);
      vt8231_init_device(data);

      /* Register sysfs hooks */
      if ((err = sysfs_create_group(&pdev->dev.kobj, &vt8231_group)))
            goto exit_free;

      /* Must update device information to find out the config field */
      data->uch_config = vt8231_read_value(data, VT8231_REG_UCH_CONFIG);

      for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++) {
            if (ISTEMP(i, data->uch_config)) {
                  if ((err = sysfs_create_group(&pdev->dev.kobj,
                              &vt8231_group_temps[i])))
                        goto exit_remove_files;
            }
      }

      for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++) {
            if (ISVOLT(i, data->uch_config)) {
                  if ((err = sysfs_create_group(&pdev->dev.kobj,
                              &vt8231_group_volts[i])))
                        goto exit_remove_files;
            }
      }

      data->hwmon_dev = hwmon_device_register(&pdev->dev);
      if (IS_ERR(data->hwmon_dev)) {
            err = PTR_ERR(data->hwmon_dev);
            goto exit_remove_files;
      }
      return 0;

exit_remove_files:
      for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++)
            sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_volts[i]);

      for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++)
            sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_temps[i]);

      sysfs_remove_group(&pdev->dev.kobj, &vt8231_group);

exit_free:
      platform_set_drvdata(pdev, NULL);
      kfree(data);

exit_release:
      release_region(res->start, VT8231_EXTENT);
      return err;
}

static int __devexit vt8231_remove(struct platform_device *pdev)
{
      struct vt8231_data *data = platform_get_drvdata(pdev);
      int i;

      hwmon_device_unregister(data->hwmon_dev);

      for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++)
            sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_volts[i]);

      for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++)
            sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_temps[i]);

      sysfs_remove_group(&pdev->dev.kobj, &vt8231_group);

      release_region(data->addr, VT8231_EXTENT);
      platform_set_drvdata(pdev, NULL);
      kfree(data);
      return 0;
}

static void vt8231_init_device(struct vt8231_data *data)
{
      vt8231_write_value(data, VT8231_REG_TEMP1_CONFIG, 0);
      vt8231_write_value(data, VT8231_REG_TEMP2_CONFIG, 0);
}

static struct vt8231_data *vt8231_update_device(struct device *dev)
{
      struct vt8231_data *data = dev_get_drvdata(dev);
      int i;
      u16 low;

      mutex_lock(&data->update_lock);

      if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
          || !data->valid) {
            for (i = 0; i < 6; i++) {
                  if (ISVOLT(i, data->uch_config)) {
                        data->in[i] = vt8231_read_value(data,
                                    regvolt[i]);
                        data->in_min[i] = vt8231_read_value(data,
                                    regvoltmin[i]);
                        data->in_max[i] = vt8231_read_value(data,
                                    regvoltmax[i]);
                  }
            }
            for (i = 0; i < 2; i++) {
                  data->fan[i] = vt8231_read_value(data,
                                    VT8231_REG_FAN(i));
                  data->fan_min[i] = vt8231_read_value(data,
                                    VT8231_REG_FAN_MIN(i));
            }

            low = vt8231_read_value(data, VT8231_REG_TEMP_LOW01);
            low = (low >> 6) | ((low & 0x30) >> 2)
                | (vt8231_read_value(data, VT8231_REG_TEMP_LOW25) << 4);
            for (i = 0; i < 6; i++) {
                  if (ISTEMP(i, data->uch_config)) {
                        data->temp[i] = (vt8231_read_value(data,
                                           regtemp[i]) << 2)
                                    | ((low >> (2 * i)) & 0x03);
                        data->temp_max[i] = vt8231_read_value(data,
                                          regtempmax[i]);
                        data->temp_min[i] = vt8231_read_value(data,
                                          regtempmin[i]);
                  }
            }

            i = vt8231_read_value(data, VT8231_REG_FANDIV);
            data->fan_div[0] = (i >> 4) & 0x03;
            data->fan_div[1] = i >> 6;
            data->alarms = vt8231_read_value(data, VT8231_REG_ALARM1) |
                  (vt8231_read_value(data, VT8231_REG_ALARM2) << 8);

            /* Set alarm flags correctly */
            if (!data->fan[0] && data->fan_min[0]) {
                  data->alarms |= 0x40;
            } else if (data->fan[0] && !data->fan_min[0]) {
                  data->alarms &= ~0x40;
            }

            if (!data->fan[1] && data->fan_min[1]) {
                  data->alarms |= 0x80;
            } else if (data->fan[1] && !data->fan_min[1]) {
                  data->alarms &= ~0x80;
            }

            data->last_updated = jiffies;
            data->valid = 1;
      }

      mutex_unlock(&data->update_lock);

      return data;
}

static int __devinit vt8231_device_add(unsigned short address)
{
      struct resource res = {
            .start      = address,
            .end  = address + VT8231_EXTENT - 1,
            .name = "vt8231",
            .flags      = IORESOURCE_IO,
      };
      int err;

      pdev = platform_device_alloc("vt8231", address);
      if (!pdev) {
            err = -ENOMEM;
            printk(KERN_ERR "vt8231: Device allocation failed\n");
            goto exit;
      }

      err = platform_device_add_resources(pdev, &res, 1);
      if (err) {
            printk(KERN_ERR "vt8231: Device resource addition failed "
                   "(%d)\n", err);
            goto exit_device_put;
      }

      err = platform_device_add(pdev);
      if (err) {
            printk(KERN_ERR "vt8231: Device addition failed (%d)\n",
                   err);
            goto exit_device_put;
      }

      return 0;

exit_device_put:
      platform_device_put(pdev);
exit:
      return err;
}

static int __devinit vt8231_pci_probe(struct pci_dev *dev,
                        const struct pci_device_id *id)
{
      u16 address, val;
      if (force_addr) {
            address = force_addr & 0xff00;
            dev_warn(&dev->dev, "Forcing ISA address 0x%x\n",
                   address);

            if (PCIBIOS_SUCCESSFUL !=
                pci_write_config_word(dev, VT8231_BASE_REG, address | 1))
                  return -ENODEV;
      }

      if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_BASE_REG,
                                          &val))
            return -ENODEV;

      address = val & ~(VT8231_EXTENT - 1);
      if (address == 0) {
            dev_err(&dev->dev, "base address not set -\
                         upgrade BIOS or use force_addr=0xaddr\n");
            return -ENODEV;
      }

      if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_ENABLE_REG,
                                          &val))
            return -ENODEV;

      if (!(val & 0x0001)) {
            dev_warn(&dev->dev, "enabling sensors\n");
            if (PCIBIOS_SUCCESSFUL !=
                  pci_write_config_word(dev, VT8231_ENABLE_REG,
                                          val | 0x0001))
                  return -ENODEV;
      }

      if (platform_driver_register(&vt8231_driver))
            goto exit;

      /* Sets global pdev as a side effect */
      if (vt8231_device_add(address))
            goto exit_unregister;

      /* Always return failure here.  This is to allow other drivers to bind
       * to this pci device.  We don't really want to have control over the
       * pci device, we only wanted to read as few register values from it.
       */

      /* We do, however, mark ourselves as using the PCI device to stop it
         getting unloaded. */
      s_bridge = pci_dev_get(dev);
      return -ENODEV;

exit_unregister:
      platform_driver_unregister(&vt8231_driver);
exit:
      return -ENODEV;
}

static int __init sm_vt8231_init(void)
{
      return pci_register_driver(&vt8231_pci_driver);
}

static void __exit sm_vt8231_exit(void)
{
      pci_unregister_driver(&vt8231_pci_driver);
      if (s_bridge != NULL) {
            platform_device_unregister(pdev);
            platform_driver_unregister(&vt8231_driver);
            pci_dev_put(s_bridge);
            s_bridge = NULL;
      }
}

MODULE_AUTHOR("Roger Lucas <roger@planbit.co.uk>");
MODULE_DESCRIPTION("VT8231 sensors");
MODULE_LICENSE("GPL");

module_init(sm_vt8231_init);
module_exit(sm_vt8231_exit);

Generated by  Doxygen 1.6.0   Back to index