Logo Search packages:      
Sourcecode: linux version File versions  Download package

wavelan.c

/*
 *    WaveLAN ISA driver
 *
 *          Jean II - HPLB '96
 *
 * Reorganisation and extension of the driver.
 * Original copyright follows (also see the end of this file).
 * See wavelan.p.h for details.
 *
 *
 *
 * AT&T GIS (nee NCR) WaveLAN card:
 *    An Ethernet-like radio transceiver
 *    controlled by an Intel 82586 coprocessor.
 */

#include "wavelan.p.h"        /* Private header */

/************************* MISC SUBROUTINES **************************/
/*
 * Subroutines which won't fit in one of the following category
 * (WaveLAN modem or i82586)
 */

/*------------------------------------------------------------------*/
/*
 * Translate irq number to PSA irq parameter
 */
static u8 wv_irq_to_psa(int irq)
{
      if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
            return 0;

      return irqvals[irq];
}

/*------------------------------------------------------------------*/
/*
 * Translate PSA irq parameter to irq number 
 */
static int __init wv_psa_to_irq(u8 irqval)
{
      int irq;

      for (irq = 0; irq < ARRAY_SIZE(irqvals); irq++)
            if (irqvals[irq] == irqval)
                  return irq;

      return -1;
}

#ifdef STRUCT_CHECK
/*------------------------------------------------------------------*/
/*
 * Sanity routine to verify the sizes of the various WaveLAN interface
 * structures.
 */
static char *wv_struct_check(void)
{
#define     SC(t,s,n)   if (sizeof(t) != s) return(n);

      SC(psa_t, PSA_SIZE, "psa_t");
      SC(mmw_t, MMW_SIZE, "mmw_t");
      SC(mmr_t, MMR_SIZE, "mmr_t");
      SC(ha_t, HA_SIZE, "ha_t");

#undef      SC

      return ((char *) NULL);
}                       /* wv_struct_check */
#endif                        /* STRUCT_CHECK */

/********************* HOST ADAPTER SUBROUTINES *********************/
/*
 * Useful subroutines to manage the WaveLAN ISA interface
 *
 * One major difference with the PCMCIA hardware (except the port mapping)
 * is that we have to keep the state of the Host Control Register
 * because of the interrupt enable & bus size flags.
 */

/*------------------------------------------------------------------*/
/*
 * Read from card's Host Adaptor Status Register.
 */
static inline u16 hasr_read(unsigned long ioaddr)
{
      return (inw(HASR(ioaddr)));
}                       /* hasr_read */

/*------------------------------------------------------------------*/
/*
 * Write to card's Host Adapter Command Register.
 */
static inline void hacr_write(unsigned long ioaddr, u16 hacr)
{
      outw(hacr, HACR(ioaddr));
}                       /* hacr_write */

/*------------------------------------------------------------------*/
/*
 * Write to card's Host Adapter Command Register. Include a delay for
 * those times when it is needed.
 */
static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
{
      hacr_write(ioaddr, hacr);
      /* delay might only be needed sometimes */
      mdelay(1);
}                       /* hacr_write_slow */

/*------------------------------------------------------------------*/
/*
 * Set the channel attention bit.
 */
static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
{
      hacr_write(ioaddr, hacr | HACR_CA);
}                       /* set_chan_attn */

/*------------------------------------------------------------------*/
/*
 * Reset, and then set host adaptor into default mode.
 */
static inline void wv_hacr_reset(unsigned long ioaddr)
{
      hacr_write_slow(ioaddr, HACR_RESET);
      hacr_write(ioaddr, HACR_DEFAULT);
}                       /* wv_hacr_reset */

/*------------------------------------------------------------------*/
/*
 * Set the I/O transfer over the ISA bus to 8-bit mode
 */
static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
{
      hacr &= ~HACR_16BITS;
      hacr_write(ioaddr, hacr);
}                       /* wv_16_off */

/*------------------------------------------------------------------*/
/*
 * Set the I/O transfer over the ISA bus to 8-bit mode
 */
static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
{
      hacr |= HACR_16BITS;
      hacr_write(ioaddr, hacr);
}                       /* wv_16_on */

/*------------------------------------------------------------------*/
/*
 * Disable interrupts on the WaveLAN hardware.
 * (called by wv_82586_stop())
 */
static inline void wv_ints_off(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      
      lp->hacr &= ~HACR_INTRON;
      hacr_write(ioaddr, lp->hacr);
}                       /* wv_ints_off */

/*------------------------------------------------------------------*/
/*
 * Enable interrupts on the WaveLAN hardware.
 * (called by wv_hw_reset())
 */
static inline void wv_ints_on(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;

      lp->hacr |= HACR_INTRON;
      hacr_write(ioaddr, lp->hacr);
}                       /* wv_ints_on */

/******************* MODEM MANAGEMENT SUBROUTINES *******************/
/*
 * Useful subroutines to manage the modem of the WaveLAN
 */

/*------------------------------------------------------------------*/
/*
 * Read the Parameter Storage Area from the WaveLAN card's memory
 */
/*
 * Read bytes from the PSA.
 */
static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
                 u8 * b,      /* buffer to fill */
                 int n)
{                       /* size to read */
      wv_16_off(ioaddr, hacr);

      while (n-- > 0) {
            outw(o, PIOR2(ioaddr));
            o++;
            *b++ = inb(PIOP2(ioaddr));
      }

      wv_16_on(ioaddr, hacr);
}                       /* psa_read */

/*------------------------------------------------------------------*/
/*
 * Write the Parameter Storage Area to the WaveLAN card's memory.
 */
static void psa_write(unsigned long ioaddr, u16 hacr, int o,      /* Offset in PSA */
                  u8 * b,     /* Buffer in memory */
                  int n)
{                       /* Length of buffer */
      int count = 0;

      wv_16_off(ioaddr, hacr);

      while (n-- > 0) {
            outw(o, PIOR2(ioaddr));
            o++;

            outb(*b, PIOP2(ioaddr));
            b++;

            /* Wait for the memory to finish its write cycle */
            count = 0;
            while ((count++ < 100) &&
                   (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
      }

      wv_16_on(ioaddr, hacr);
}                       /* psa_write */

#ifdef SET_PSA_CRC
/*------------------------------------------------------------------*/
/*
 * Calculate the PSA CRC
 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
 * NOTE: By specifying a length including the CRC position the
 * returned value should be zero. (i.e. a correct checksum in the PSA)
 *
 * The Windows drivers don't use the CRC, but the AP and the PtP tool
 * depend on it.
 */
static u16 psa_crc(u8 * psa,  /* The PSA */
                        int size)
{                       /* Number of short for CRC */
      int byte_cnt;           /* Loop on the PSA */
      u16 crc_bytes = 0;      /* Data in the PSA */
      int bit_cnt;            /* Loop on the bits of the short */

      for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
            crc_bytes ^= psa[byte_cnt];   /* Its an xor */

            for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
                  if (crc_bytes & 0x0001)
                        crc_bytes = (crc_bytes >> 1) ^ 0xA001;
                  else
                        crc_bytes >>= 1;
            }
      }

      return crc_bytes;
}                       /* psa_crc */
#endif                        /* SET_PSA_CRC */

/*------------------------------------------------------------------*/
/*
 * update the checksum field in the Wavelan's PSA
 */
static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
{
#ifdef SET_PSA_CRC
      psa_t psa;
      u16 crc;

      /* read the parameter storage area */
      psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));

      /* update the checksum */
      crc = psa_crc((unsigned char *) &psa,
                  sizeof(psa) - sizeof(psa.psa_crc[0]) -
                  sizeof(psa.psa_crc[1])
                  - sizeof(psa.psa_crc_status));

      psa.psa_crc[0] = crc & 0xFF;
      psa.psa_crc[1] = (crc & 0xFF00) >> 8;

      /* Write it ! */
      psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
              (unsigned char *) &psa.psa_crc, 2);

#ifdef DEBUG_IOCTL_INFO
      printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
             dev->name, psa.psa_crc[0], psa.psa_crc[1]);

      /* Check again (luxury !) */
      crc = psa_crc((unsigned char *) &psa,
                  sizeof(psa) - sizeof(psa.psa_crc_status));

      if (crc != 0)
            printk(KERN_WARNING
                   "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
                   dev->name);
#endif                        /* DEBUG_IOCTL_INFO */
#endif                        /* SET_PSA_CRC */
}                       /* update_psa_checksum */

/*------------------------------------------------------------------*/
/*
 * Write 1 byte to the MMC.
 */
static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
{
      int count = 0;

      /* Wait for MMC to go idle */
      while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
            udelay(10);

      outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
}

/*------------------------------------------------------------------*/
/*
 * Routine to write bytes to the Modem Management Controller.
 * We start at the end because it is the way it should be!
 */
static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
{
      o += n;
      b += n;

      while (n-- > 0)
            mmc_out(ioaddr, --o, *(--b));
}                       /* mmc_write */

/*------------------------------------------------------------------*/
/*
 * Read a byte from the MMC.
 * Optimised version for 1 byte, avoid using memory.
 */
static u8 mmc_in(unsigned long ioaddr, u16 o)
{
      int count = 0;

      while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
            udelay(10);
      outw(o << 1, MMCR(ioaddr));

      while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
            udelay(10);
      return (u8) (inw(MMCR(ioaddr)) >> 8);
}

/*------------------------------------------------------------------*/
/*
 * Routine to read bytes from the Modem Management Controller.
 * The implementation is complicated by a lack of address lines,
 * which prevents decoding of the low-order bit.
 * (code has just been moved in the above function)
 * We start at the end because it is the way it should be!
 */
static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
{
      o += n;
      b += n;

      while (n-- > 0)
            *(--b) = mmc_in(ioaddr, --o);
}                       /* mmc_read */

/*------------------------------------------------------------------*/
/*
 * Get the type of encryption available.
 */
static inline int mmc_encr(unsigned long ioaddr)
{                       /* I/O port of the card */
      int temp;

      temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
      if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
            return 0;
      else
            return temp;
}

/*------------------------------------------------------------------*/
/*
 * Wait for the frequency EEPROM to complete a command.
 * I hope this one will be optimally inlined.
 */
static inline void fee_wait(unsigned long ioaddr,     /* I/O port of the card */
                      int delay,    /* Base delay to wait for */
                      int number)
{                       /* Number of time to wait */
      int count = 0;          /* Wait only a limited time */

      while ((count++ < number) &&
             (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
            MMR_FEE_STATUS_BUSY)) udelay(delay);
}

/*------------------------------------------------------------------*/
/*
 * Read bytes from the Frequency EEPROM (frequency select cards).
 */
static void fee_read(unsigned long ioaddr,      /* I/O port of the card */
                 u16 o, /* destination offset */
                 u16 * b,     /* data buffer */
                 int n)
{                       /* number of registers */
      b += n;                 /* Position at the end of the area */

      /* Write the address */
      mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);

      /* Loop on all buffer */
      while (n-- > 0) {
            /* Write the read command */
            mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
                  MMW_FEE_CTRL_READ);

            /* Wait until EEPROM is ready (should be quick). */
            fee_wait(ioaddr, 10, 100);

            /* Read the value. */
            *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
                  mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
      }
}


/*------------------------------------------------------------------*/
/*
 * Write bytes from the Frequency EEPROM (frequency select cards).
 * This is a bit complicated, because the frequency EEPROM has to
 * be unprotected and the write enabled.
 * Jean II
 */
static void fee_write(unsigned long ioaddr,     /* I/O port of the card */
                  u16 o,      /* destination offset */
                  u16 * b,    /* data buffer */
                  int n)
{                       /* number of registers */
      b += n;                 /* Position at the end of the area. */

#ifdef EEPROM_IS_PROTECTED    /* disabled */
#ifdef DOESNT_SEEM_TO_WORK    /* disabled */
      /* Ask to read the protected register */
      mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);

      fee_wait(ioaddr, 10, 100);

      /* Read the protected register. */
      printk("Protected 2:  %02X-%02X\n",
             mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
             mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
#endif                        /* DOESNT_SEEM_TO_WORK */

      /* Enable protected register. */
      mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
      mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);

      fee_wait(ioaddr, 10, 100);

      /* Unprotect area. */
      mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
      mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
#ifdef DOESNT_SEEM_TO_WORK    /* disabled */
      /* or use: */
      mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
#endif                        /* DOESNT_SEEM_TO_WORK */

      fee_wait(ioaddr, 10, 100);
#endif                        /* EEPROM_IS_PROTECTED */

      /* Write enable. */
      mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
      mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);

      fee_wait(ioaddr, 10, 100);

      /* Write the EEPROM address. */
      mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);

      /* Loop on all buffer */
      while (n-- > 0) {
            /* Write the value. */
            mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
            mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);

            /* Write the write command. */
            mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
                  MMW_FEE_CTRL_WRITE);

            /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
            mdelay(10);
            fee_wait(ioaddr, 10, 100);
      }

      /* Write disable. */
      mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
      mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);

      fee_wait(ioaddr, 10, 100);

#ifdef EEPROM_IS_PROTECTED    /* disabled */
      /* Reprotect EEPROM. */
      mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
      mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);

      fee_wait(ioaddr, 10, 100);
#endif                        /* EEPROM_IS_PROTECTED */
}

/************************ I82586 SUBROUTINES *************************/
/*
 * Useful subroutines to manage the Ethernet controller
 */

/*------------------------------------------------------------------*/
/*
 * Read bytes from the on-board RAM.
 * Why does inlining this function make it fail?
 */
static /*inline */ void obram_read(unsigned long ioaddr,
                           u16 o, u8 * b, int n)
{
      outw(o, PIOR1(ioaddr));
      insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}

/*------------------------------------------------------------------*/
/*
 * Write bytes to the on-board RAM.
 */
static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
{
      outw(o, PIOR1(ioaddr));
      outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}

/*------------------------------------------------------------------*/
/*
 * Acknowledge the reading of the status issued by the i82586.
 */
static void wv_ack(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      u16 scb_cs;
      int i;

      obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
               (unsigned char *) &scb_cs, sizeof(scb_cs));
      scb_cs &= SCB_ST_INT;

      if (scb_cs == 0)
            return;

      obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
                (unsigned char *) &scb_cs, sizeof(scb_cs));

      set_chan_attn(ioaddr, lp->hacr);

      for (i = 1000; i > 0; i--) {
            obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
                     (unsigned char *) &scb_cs, sizeof(scb_cs));
            if (scb_cs == 0)
                  break;

            udelay(10);
      }
      udelay(100);

#ifdef DEBUG_CONFIG_ERROR
      if (i <= 0)
            printk(KERN_INFO
                   "%s: wv_ack(): board not accepting command.\n",
                   dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * Set channel attention bit and busy wait until command has
 * completed, then acknowledge completion of the command.
 */
static int wv_synchronous_cmd(struct net_device * dev, const char *str)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      u16 scb_cmd;
      ach_t cb;
      int i;

      scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
      obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
                (unsigned char *) &scb_cmd, sizeof(scb_cmd));

      set_chan_attn(ioaddr, lp->hacr);

      for (i = 1000; i > 0; i--) {
            obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
                     sizeof(cb));
            if (cb.ac_status & AC_SFLD_C)
                  break;

            udelay(10);
      }
      udelay(100);

      if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
                   dev->name, str, cb.ac_status);
#endif
#ifdef DEBUG_I82586_SHOW
            wv_scb_show(ioaddr);
#endif
            return -1;
      }

      /* Ack the status */
      wv_ack(dev);

      return 0;
}

/*------------------------------------------------------------------*/
/*
 * Configuration commands completion interrupt.
 * Check if done, and if OK.
 */
static int
wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
{
      unsigned short mcs_addr;
      unsigned short status;
      int ret;

#ifdef DEBUG_INTERRUPT_TRACE
      printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
#endif

      mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
          + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);

      /* Read the status of the last command (set mc list). */
      obram_read(ioaddr, acoff(mcs_addr, ac_status),
               (unsigned char *) &status, sizeof(status));

      /* If not completed -> exit */
      if ((status & AC_SFLD_C) == 0)
            ret = 0;    /* Not ready to be scrapped */
      else {
#ifdef DEBUG_CONFIG_ERROR
            unsigned short cfg_addr;
            unsigned short ias_addr;

            /* Check mc_config command */
            if ((status & AC_SFLD_OK) != AC_SFLD_OK)
                  printk(KERN_INFO
                         "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
                         dev->name, status);

            /* check ia-config command */
            ias_addr = mcs_addr - sizeof(ac_ias_t);
            obram_read(ioaddr, acoff(ias_addr, ac_status),
                     (unsigned char *) &status, sizeof(status));
            if ((status & AC_SFLD_OK) != AC_SFLD_OK)
                  printk(KERN_INFO
                         "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
                         dev->name, status);

            /* Check config command. */
            cfg_addr = ias_addr - sizeof(ac_cfg_t);
            obram_read(ioaddr, acoff(cfg_addr, ac_status),
                     (unsigned char *) &status, sizeof(status));
            if ((status & AC_SFLD_OK) != AC_SFLD_OK)
                  printk(KERN_INFO
                         "%s: wv_config_complete(): configure failed; status = 0x%x\n",
                         dev->name, status);
#endif      /* DEBUG_CONFIG_ERROR */

            ret = 1;    /* Ready to be scrapped */
      }

#ifdef DEBUG_INTERRUPT_TRACE
      printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
             ret);
#endif
      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Command completion interrupt.
 * Reclaim as many freed tx buffers as we can.
 * (called in wavelan_interrupt()).
 * Note : the spinlock is already grabbed for us.
 */
static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
{
      int nreaped = 0;

#ifdef DEBUG_INTERRUPT_TRACE
      printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
#endif

      /* Loop on all the transmit buffers */
      while (lp->tx_first_in_use != I82586NULL) {
            unsigned short tx_status;

            /* Read the first transmit buffer */
            obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
                     (unsigned char *) &tx_status,
                     sizeof(tx_status));

            /* If not completed -> exit */
            if ((tx_status & AC_SFLD_C) == 0)
                  break;

            /* Hack for reconfiguration */
            if (tx_status == 0xFFFF)
                  if (!wv_config_complete(dev, ioaddr, lp))
                        break;      /* Not completed */

            /* We now remove this buffer */
            nreaped++;
            --lp->tx_n_in_use;

/*
if (lp->tx_n_in_use > 0)
      printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
*/

            /* Was it the last one? */
            if (lp->tx_n_in_use <= 0)
                  lp->tx_first_in_use = I82586NULL;
            else {
                  /* Next one in the chain */
                  lp->tx_first_in_use += TXBLOCKZ;
                  if (lp->tx_first_in_use >=
                      OFFSET_CU +
                      NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
                            NTXBLOCKS * TXBLOCKZ;
            }

            /* Hack for reconfiguration */
            if (tx_status == 0xFFFF)
                  continue;

            /* Now, check status of the finished command */
            if (tx_status & AC_SFLD_OK) {
                  int ncollisions;

                  lp->stats.tx_packets++;
                  ncollisions = tx_status & AC_SFLD_MAXCOL;
                  lp->stats.collisions += ncollisions;
#ifdef DEBUG_TX_INFO
                  if (ncollisions > 0)
                        printk(KERN_DEBUG
                               "%s: wv_complete(): tx completed after %d collisions.\n",
                               dev->name, ncollisions);
#endif
            } else {
                  lp->stats.tx_errors++;
                  if (tx_status & AC_SFLD_S10) {
                        lp->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_complete(): tx error: no CS.\n",
                               dev->name);
#endif
                  }
                  if (tx_status & AC_SFLD_S9) {
                        lp->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_complete(): tx error: lost CTS.\n",
                               dev->name);
#endif
                  }
                  if (tx_status & AC_SFLD_S8) {
                        lp->stats.tx_fifo_errors++;
#ifdef DEBUG_TX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_complete(): tx error: slow DMA.\n",
                               dev->name);
#endif
                  }
                  if (tx_status & AC_SFLD_S6) {
                        lp->stats.tx_heartbeat_errors++;
#ifdef DEBUG_TX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_complete(): tx error: heart beat.\n",
                               dev->name);
#endif
                  }
                  if (tx_status & AC_SFLD_S5) {
                        lp->stats.tx_aborted_errors++;
#ifdef DEBUG_TX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_complete(): tx error: too many collisions.\n",
                               dev->name);
#endif
                  }
            }

#ifdef DEBUG_TX_INFO
            printk(KERN_DEBUG
                   "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
                   dev->name, tx_status);
#endif
      }

#ifdef DEBUG_INTERRUPT_INFO
      if (nreaped > 1)
            printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
                   dev->name, nreaped);
#endif

      /*
       * Inform upper layers.
       */
      if (lp->tx_n_in_use < NTXBLOCKS - 1) {
            netif_wake_queue(dev);
      }
#ifdef DEBUG_INTERRUPT_TRACE
      printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
#endif
      return nreaped;
}

/*------------------------------------------------------------------*/
/*
 * Reconfigure the i82586, or at least ask for it.
 * Because wv_82586_config uses a transmission buffer, we must do it
 * when we are sure that there is one left, so we do it now
 * or in wavelan_packet_xmit() (I can't find any better place,
 * wavelan_interrupt is not an option), so you may experience
 * delays sometimes.
 */
static void wv_82586_reconfig(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long flags;

      /* Arm the flag, will be cleard in wv_82586_config() */
      lp->reconfig_82586 = 1;

      /* Check if we can do it now ! */
      if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
            spin_lock_irqsave(&lp->spinlock, flags);
            /* May fail */
            wv_82586_config(dev);
            spin_unlock_irqrestore(&lp->spinlock, flags);
      }
      else {
#ifdef DEBUG_CONFIG_INFO
            printk(KERN_DEBUG
                   "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
                         dev->name, dev->state);
#endif
      }
}

/********************* DEBUG & INFO SUBROUTINES *********************/
/*
 * This routine is used in the code to show information for debugging.
 * Most of the time, it dumps the contents of hardware structures.
 */

#ifdef DEBUG_PSA_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the formatted contents of the Parameter Storage Area.
 */
static void wv_psa_show(psa_t * p)
{
      DECLARE_MAC_BUF(mac);

      printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
      printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
             p->psa_io_base_addr_1,
             p->psa_io_base_addr_2,
             p->psa_io_base_addr_3, p->psa_io_base_addr_4);
      printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
             p->psa_rem_boot_addr_1,
             p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
      printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
      printk("psa_int_req_no: %d\n", p->psa_int_req_no);
#ifdef DEBUG_SHOW_UNUSED
      printk(KERN_DEBUG "psa_unused0[]: %s\n",
             print_mac(mac, p->psa_unused0));
#endif                        /* DEBUG_SHOW_UNUSED */
      printk(KERN_DEBUG "psa_univ_mac_addr[]: %s\n",
             print_mac(mac, p->psa_univ_mac_addr));
      printk(KERN_DEBUG "psa_local_mac_addr[]: %s\n",
             print_mac(mac, p->psa_local_mac_addr));
      printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
             p->psa_univ_local_sel);
      printk("psa_comp_number: %d, ", p->psa_comp_number);
      printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
      printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
             p->psa_feature_select);
      printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
      printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
      printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
      printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
             p->psa_nwid[1]);
      printk("psa_nwid_select: %d\n", p->psa_nwid_select);
      printk(KERN_DEBUG "psa_encryption_select: %d, ",
             p->psa_encryption_select);
      printk
          ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
           p->psa_encryption_key[0], p->psa_encryption_key[1],
           p->psa_encryption_key[2], p->psa_encryption_key[3],
           p->psa_encryption_key[4], p->psa_encryption_key[5],
           p->psa_encryption_key[6], p->psa_encryption_key[7]);
      printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
      printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
             p->psa_call_code[0]);
      printk
          ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
           p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
           p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
           p->psa_call_code[6], p->psa_call_code[7]);
#ifdef DEBUG_SHOW_UNUSED
      printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
             p->psa_reserved[0],
             p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
#endif                        /* DEBUG_SHOW_UNUSED */
      printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
      printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
      printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
}                       /* wv_psa_show */
#endif                        /* DEBUG_PSA_SHOW */

#ifdef DEBUG_MMC_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the Modem Management Controller.
 * This function needs to be completed.
 */
static void wv_mmc_show(struct net_device * dev)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;
      mmr_t m;

      /* Basic check */
      if (hasr_read(ioaddr) & HASR_NO_CLK) {
            printk(KERN_WARNING
                   "%s: wv_mmc_show: modem not connected\n",
                   dev->name);
            return;
      }

      /* Read the mmc */
      mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
      mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
      mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);

      /* Don't forget to update statistics */
      lp->wstats.discard.nwid +=
          (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;

      printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
#ifdef DEBUG_SHOW_UNUSED
      printk(KERN_DEBUG
             "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
             m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
             m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
             m.mmr_unused0[6], m.mmr_unused0[7]);
#endif                        /* DEBUG_SHOW_UNUSED */
      printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
             m.mmr_des_avail, m.mmr_des_status);
#ifdef DEBUG_SHOW_UNUSED
      printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
             m.mmr_unused1[0],
             m.mmr_unused1[1],
             m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
#endif                        /* DEBUG_SHOW_UNUSED */
      printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
             m.mmr_dce_status,
             (m.
            mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
             "energy detected," : "",
             (m.
            mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
             "loop test indicated," : "",
             (m.
            mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
             "transmitter on," : "",
             (m.
            mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
             "jabber timer expired," : "");
      printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
#ifdef DEBUG_SHOW_UNUSED
      printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
             m.mmr_unused2[0], m.mmr_unused2[1]);
#endif                        /* DEBUG_SHOW_UNUSED */
      printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
             (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
             (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
      printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
             m.mmr_thr_pre_set & MMR_THR_PRE_SET,
             (m.
            mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
             "below");
      printk(KERN_DEBUG "signal_lvl: %d [%s], ",
             m.mmr_signal_lvl & MMR_SIGNAL_LVL,
             (m.
            mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
             "no new msg");
      printk("silence_lvl: %d [%s], ",
             m.mmr_silence_lvl & MMR_SILENCE_LVL,
             (m.
            mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
             "no new update");
      printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
             (m.
            mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
             "Antenna 0");
#ifdef DEBUG_SHOW_UNUSED
      printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
#endif                        /* DEBUG_SHOW_UNUSED */
}                       /* wv_mmc_show */
#endif                        /* DEBUG_MMC_SHOW */

#ifdef DEBUG_I82586_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the last block of the i82586 memory.
 */
static void wv_scb_show(unsigned long ioaddr)
{
      scb_t scb;

      obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
               sizeof(scb));

      printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");

      printk(KERN_DEBUG "status: ");
      printk("stat 0x%x[%s%s%s%s] ",
             (scb.
            scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
                        SCB_ST_RNR)) >> 12,
             (scb.
            scb_status & SCB_ST_CX) ? "command completion interrupt," :
             "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
             (scb.
            scb_status & SCB_ST_CNA) ? "command unit not active," : "",
             (scb.
            scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
             "");
      printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
             ((scb.scb_status & SCB_ST_CUS) ==
            SCB_ST_CUS_IDLE) ? "idle" : "",
             ((scb.scb_status & SCB_ST_CUS) ==
            SCB_ST_CUS_SUSP) ? "suspended" : "",
             ((scb.scb_status & SCB_ST_CUS) ==
            SCB_ST_CUS_ACTV) ? "active" : "");
      printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
             ((scb.scb_status & SCB_ST_RUS) ==
            SCB_ST_RUS_IDLE) ? "idle" : "",
             ((scb.scb_status & SCB_ST_RUS) ==
            SCB_ST_RUS_SUSP) ? "suspended" : "",
             ((scb.scb_status & SCB_ST_RUS) ==
            SCB_ST_RUS_NRES) ? "no resources" : "",
             ((scb.scb_status & SCB_ST_RUS) ==
            SCB_ST_RUS_RDY) ? "ready" : "");

      printk(KERN_DEBUG "command: ");
      printk("ack 0x%x[%s%s%s%s] ",
             (scb.
            scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
                         SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
             (scb.
            scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
             (scb.
            scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
             (scb.
            scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
             (scb.
            scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
      printk("cuc 0x%x[%s%s%s%s%s] ",
             (scb.scb_command & SCB_CMD_CUC) >> 8,
             ((scb.scb_command & SCB_CMD_CUC) ==
            SCB_CMD_CUC_NOP) ? "nop" : "",
             ((scb.scb_command & SCB_CMD_CUC) ==
            SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
             ((scb.scb_command & SCB_CMD_CUC) ==
            SCB_CMD_CUC_RES) ? "resume execution" : "",
             ((scb.scb_command & SCB_CMD_CUC) ==
            SCB_CMD_CUC_SUS) ? "suspend execution" : "",
             ((scb.scb_command & SCB_CMD_CUC) ==
            SCB_CMD_CUC_ABT) ? "abort execution" : "");
      printk("ruc 0x%x[%s%s%s%s%s]\n",
             (scb.scb_command & SCB_CMD_RUC) >> 4,
             ((scb.scb_command & SCB_CMD_RUC) ==
            SCB_CMD_RUC_NOP) ? "nop" : "",
             ((scb.scb_command & SCB_CMD_RUC) ==
            SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
             ((scb.scb_command & SCB_CMD_RUC) ==
            SCB_CMD_RUC_RES) ? "resume reception" : "",
             ((scb.scb_command & SCB_CMD_RUC) ==
            SCB_CMD_RUC_SUS) ? "suspend reception" : "",
             ((scb.scb_command & SCB_CMD_RUC) ==
            SCB_CMD_RUC_ABT) ? "abort reception" : "");

      printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
      printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);

      printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
      printk("alnerrs %d ", scb.scb_alnerrs);
      printk("rscerrs %d ", scb.scb_rscerrs);
      printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
}

/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the i82586's receive unit.
 */
static void wv_ru_show(struct net_device * dev)
{
      /* net_local *lp = (net_local *) dev->priv; */

      printk(KERN_DEBUG
             "##### WaveLAN i82586 receiver unit status: #####\n");
      printk(KERN_DEBUG "ru:");
      /*
       * Not implemented yet
       */
      printk("\n");
}                       /* wv_ru_show */

/*------------------------------------------------------------------*/
/*
 * Display info about one control block of the i82586 memory.
 */
static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
{
      unsigned long ioaddr;
      ac_tx_t actx;

      ioaddr = dev->base_addr;

      printk("%d: 0x%x:", i, p);

      obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
      printk(" status=0x%x,", actx.tx_h.ac_status);
      printk(" command=0x%x,", actx.tx_h.ac_command);

      /*
         {
         tbd_t      tbd;

         obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
         printk(" tbd_status=0x%x,", tbd.tbd_status);
         }
       */

      printk("|");
}

/*------------------------------------------------------------------*/
/*
 * Print status of the command unit of the i82586.
 */
static void wv_cu_show(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned int i;
      u16 p;

      printk(KERN_DEBUG
             "##### WaveLAN i82586 command unit status: #####\n");

      printk(KERN_DEBUG);
      for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
            wv_cu_show_one(dev, lp, i, p);

            p += TXBLOCKZ;
            if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
                  p -= NTXBLOCKS * TXBLOCKZ;
      }
      printk("\n");
}
#endif                        /* DEBUG_I82586_SHOW */

#ifdef DEBUG_DEVICE_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the WaveLAN PCMCIA device driver.
 */
static void wv_dev_show(struct net_device * dev)
{
      printk(KERN_DEBUG "dev:");
      printk(" state=%lX,", dev->state);
      printk(" trans_start=%ld,", dev->trans_start);
      printk(" flags=0x%x,", dev->flags);
      printk("\n");
}                       /* wv_dev_show */

/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the WaveLAN PCMCIA device driver's
 * private information.
 */
static void wv_local_show(struct net_device * dev)
{
      net_local *lp;

      lp = (net_local *) dev->priv;

      printk(KERN_DEBUG "local:");
      printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
      printk(" hacr=0x%x,", lp->hacr);
      printk(" rx_head=0x%x,", lp->rx_head);
      printk(" rx_last=0x%x,", lp->rx_last);
      printk(" tx_first_free=0x%x,", lp->tx_first_free);
      printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
      printk("\n");
}                       /* wv_local_show */
#endif                        /* DEBUG_DEVICE_SHOW */

#if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
/*------------------------------------------------------------------*/
/*
 * Dump packet header (and content if necessary) on the screen
 */
static inline void wv_packet_info(u8 * p, /* Packet to dump */
                          int length,     /* Length of the packet */
                          char *msg1,     /* Name of the device */
                          char *msg2)
{                       /* Name of the function */
      int i;
      int maxi;
      DECLARE_MAC_BUF(mac);

      printk(KERN_DEBUG
             "%s: %s(): dest %s, length %d\n",
             msg1, msg2, print_mac(mac, p), length);
      printk(KERN_DEBUG
             "%s: %s(): src %s, type 0x%02X%02X\n",
             msg1, msg2, print_mac(mac, &p[6]), p[12], p[13]);

#ifdef DEBUG_PACKET_DUMP

      printk(KERN_DEBUG "data=\"");

      if ((maxi = length) > DEBUG_PACKET_DUMP)
            maxi = DEBUG_PACKET_DUMP;
      for (i = 14; i < maxi; i++)
            if (p[i] >= ' ' && p[i] <= '~')
                  printk(" %c", p[i]);
            else
                  printk("%02X", p[i]);
      if (maxi < length)
            printk("..");
      printk("\"\n");
      printk(KERN_DEBUG "\n");
#endif                        /* DEBUG_PACKET_DUMP */
}
#endif                        /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */

/*------------------------------------------------------------------*/
/*
 * This is the information which is displayed by the driver at startup.
 * There are lots of flags for configuring it to your liking.
 */
static void wv_init_info(struct net_device * dev)
{
      short ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;
      psa_t psa;
#ifdef DEBUG_BASIC_SHOW
      DECLARE_MAC_BUF(mac);
#endif

      /* Read the parameter storage area */
      psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));

#ifdef DEBUG_PSA_SHOW
      wv_psa_show(&psa);
#endif
#ifdef DEBUG_MMC_SHOW
      wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
      wv_cu_show(dev);
#endif

#ifdef DEBUG_BASIC_SHOW
      /* Now, let's go for the basic stuff. */
      printk(KERN_NOTICE "%s: WaveLAN at %#x, %s, IRQ %d",
             dev->name, ioaddr, print_mac(mac, dev->dev_addr), dev->irq);

      /* Print current network ID. */
      if (psa.psa_nwid_select)
            printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
                   psa.psa_nwid[1]);
      else
            printk(", nwid off");

      /* If 2.00 card */
      if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
            (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
            unsigned short freq;

            /* Ask the EEPROM to read the frequency from the first area. */
            fee_read(ioaddr, 0x00, &freq, 1);

            /* Print frequency */
            printk(", 2.00, %ld", (freq >> 6) + 2400L);

            /* Hack! */
            if (freq & 0x20)
                  printk(".5");
      } else {
            printk(", PC");
            switch (psa.psa_comp_number) {
            case PSA_COMP_PC_AT_915:
            case PSA_COMP_PC_AT_2400:
                  printk("-AT");
                  break;
            case PSA_COMP_PC_MC_915:
            case PSA_COMP_PC_MC_2400:
                  printk("-MC");
                  break;
            case PSA_COMP_PCMCIA_915:
                  printk("MCIA");
                  break;
            default:
                  printk("?");
            }
            printk(", ");
            switch (psa.psa_subband) {
            case PSA_SUBBAND_915:
                  printk("915");
                  break;
            case PSA_SUBBAND_2425:
                  printk("2425");
                  break;
            case PSA_SUBBAND_2460:
                  printk("2460");
                  break;
            case PSA_SUBBAND_2484:
                  printk("2484");
                  break;
            case PSA_SUBBAND_2430_5:
                  printk("2430.5");
                  break;
            default:
                  printk("?");
            }
      }

      printk(" MHz\n");
#endif                        /* DEBUG_BASIC_SHOW */

#ifdef DEBUG_VERSION_SHOW
      /* Print version information */
      printk(KERN_NOTICE "%s", version);
#endif
}                       /* wv_init_info */

/********************* IOCTL, STATS & RECONFIG *********************/
/*
 * We found here routines that are called by Linux on different
 * occasions after the configuration and not for transmitting data
 * These may be called when the user use ifconfig, /proc/net/dev
 * or wireless extensions
 */

/*------------------------------------------------------------------*/
/*
 * Get the current Ethernet statistics. This may be called with the
 * card open or closed.
 * Used when the user read /proc/net/dev
 */
static en_stats *wavelan_get_stats(struct net_device * dev)
{
#ifdef DEBUG_IOCTL_TRACE
      printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
#endif

      return (&((net_local *) dev->priv)->stats);
}

/*------------------------------------------------------------------*/
/*
 * Set or clear the multicast filter for this adaptor.
 * num_addrs == -1      Promiscuous mode, receive all packets
 * num_addrs == 0 Normal mode, clear multicast list
 * num_addrs > 0  Multicast mode, receive normal and MC packets,
 *                and do best-effort filtering.
 */
static void wavelan_set_multicast_list(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;

#ifdef DEBUG_IOCTL_TRACE
      printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
             dev->name);
#endif

#ifdef DEBUG_IOCTL_INFO
      printk(KERN_DEBUG
             "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
             dev->name, dev->flags, dev->mc_count);
#endif

      /* Are we asking for promiscuous mode,
       * or all multicast addresses (we don't have that!)
       * or too many multicast addresses for the hardware filter? */
      if ((dev->flags & IFF_PROMISC) ||
          (dev->flags & IFF_ALLMULTI) ||
          (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
            /*
             * Enable promiscuous mode: receive all packets.
             */
            if (!lp->promiscuous) {
                  lp->promiscuous = 1;
                  lp->mc_count = 0;

                  wv_82586_reconfig(dev);

                  /* Tell the kernel that we are doing a really bad job. */
                  dev->flags |= IFF_PROMISC;
            }
      } else
            /* Are there multicast addresses to send? */
      if (dev->mc_list != (struct dev_mc_list *) NULL) {
            /*
             * Disable promiscuous mode, but receive all packets
             * in multicast list
             */
#ifdef MULTICAST_AVOID
            if (lp->promiscuous || (dev->mc_count != lp->mc_count))
#endif
            {
                  lp->promiscuous = 0;
                  lp->mc_count = dev->mc_count;

                  wv_82586_reconfig(dev);
            }
      } else {
            /*
             * Switch to normal mode: disable promiscuous mode and 
             * clear the multicast list.
             */
            if (lp->promiscuous || lp->mc_count == 0) {
                  lp->promiscuous = 0;
                  lp->mc_count = 0;

                  wv_82586_reconfig(dev);
            }
      }
#ifdef DEBUG_IOCTL_TRACE
      printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
             dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * This function doesn't exist.
 * (Note : it was a nice way to test the reconfigure stuff...)
 */
#ifdef SET_MAC_ADDRESS
static int wavelan_set_mac_address(struct net_device * dev, void *addr)
{
      struct sockaddr *mac = addr;

      /* Copy the address. */
      memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);

      /* Reconfigure the beast. */
      wv_82586_reconfig(dev);

      return 0;
}
#endif                        /* SET_MAC_ADDRESS */


/*------------------------------------------------------------------*/
/*
 * Frequency setting (for hardware capable of it)
 * It's a bit complicated and you don't really want to look into it.
 * (called in wavelan_ioctl)
 */
static int wv_set_frequency(unsigned long ioaddr,     /* I/O port of the card */
                           iw_freq * frequency)
{
      const int BAND_NUM = 10;      /* Number of bands */
      long freq = 0L;         /* offset to 2.4 GHz in .5 MHz */
#ifdef DEBUG_IOCTL_INFO
      int i;
#endif

      /* Setting by frequency */
      /* Theoretically, you may set any frequency between
       * the two limits with a 0.5 MHz precision. In practice,
       * I don't want you to have trouble with local regulations.
       */
      if ((frequency->e == 1) &&
          (frequency->m >= (int) 2.412e8)
          && (frequency->m <= (int) 2.487e8)) {
            freq = ((frequency->m / 10000) - 24000L) / 5;
      }

      /* Setting by channel (same as wfreqsel) */
      /* Warning: each channel is 22 MHz wide, so some of the channels
       * will interfere. */
      if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
            /* Get frequency offset. */
            freq = channel_bands[frequency->m] >> 1;
      }

      /* Verify that the frequency is allowed. */
      if (freq != 0L) {
            u16 table[10];    /* Authorized frequency table */

            /* Read the frequency table. */
            fee_read(ioaddr, 0x71, table, 10);

#ifdef DEBUG_IOCTL_INFO
            printk(KERN_DEBUG "Frequency table: ");
            for (i = 0; i < 10; i++) {
                  printk(" %04X", table[i]);
            }
            printk("\n");
#endif

            /* Look in the table to see whether the frequency is allowed. */
            if (!(table[9 - ((freq - 24) / 16)] &
                  (1 << ((freq - 24) % 16)))) return -EINVAL;     /* not allowed */
      } else
            return -EINVAL;

      /* if we get a usable frequency */
      if (freq != 0L) {
            unsigned short area[16];
            unsigned short dac[2];
            unsigned short area_verify[16];
            unsigned short dac_verify[2];
            /* Corresponding gain (in the power adjust value table)
             * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
             * and WCIN062D.DOC, page 6.2.9. */
            unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
            int power_band = 0;     /* Selected band */
            unsigned short power_adjust;  /* Correct value */

            /* Search for the gain. */
            power_band = 0;
            while ((freq > power_limit[power_band]) &&
                   (power_limit[++power_band] != 0));

            /* Read the first area. */
            fee_read(ioaddr, 0x00, area, 16);

            /* Read the DAC. */
            fee_read(ioaddr, 0x60, dac, 2);

            /* Read the new power adjust value. */
            fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
                   1);
            if (power_band & 0x1)
                  power_adjust >>= 8;
            else
                  power_adjust &= 0xFF;

#ifdef DEBUG_IOCTL_INFO
            printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
            for (i = 0; i < 16; i++) {
                  printk(" %04X", area[i]);
            }
            printk("\n");

            printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
                   dac[0], dac[1]);
#endif

            /* Frequency offset (for info only) */
            area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);

            /* Receiver Principle main divider coefficient */
            area[3] = (freq >> 1) + 2400L - 352L;
            area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);

            /* Transmitter Main divider coefficient */
            area[13] = (freq >> 1) + 2400L;
            area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);

            /* Other parts of the area are flags, bit streams or unused. */

            /* Set the value in the DAC. */
            dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
            dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);

            /* Write the first area. */
            fee_write(ioaddr, 0x00, area, 16);

            /* Write the DAC. */
            fee_write(ioaddr, 0x60, dac, 2);

            /* We now should verify here that the writing of the EEPROM went OK. */

            /* Reread the first area. */
            fee_read(ioaddr, 0x00, area_verify, 16);

            /* Reread the DAC. */
            fee_read(ioaddr, 0x60, dac_verify, 2);

            /* Compare. */
            if (memcmp(area, area_verify, 16 * 2) ||
                memcmp(dac, dac_verify, 2 * 2)) {
#ifdef DEBUG_IOCTL_ERROR
                  printk(KERN_INFO
                         "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
#endif
                  return -EOPNOTSUPP;
            }

            /* We must download the frequency parameters to the
             * synthesizers (from the EEPROM - area 1)
             * Note: as the EEPROM is automatically decremented, we set the end
             * if the area... */
            mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
            mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
                  MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);

            /* Wait until the download is finished. */
            fee_wait(ioaddr, 100, 100);

            /* We must now download the power adjust value (gain) to
             * the synthesizers (from the EEPROM - area 7 - DAC). */
            mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
            mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
                  MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);

            /* Wait for the download to finish. */
            fee_wait(ioaddr, 100, 100);

#ifdef DEBUG_IOCTL_INFO
            /* Verification of what we have done */

            printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
            for (i = 0; i < 16; i++) {
                  printk(" %04X", area_verify[i]);
            }
            printk("\n");

            printk(KERN_DEBUG "WaveLAN EEPROM DAC:  %04X %04X\n",
                   dac_verify[0], dac_verify[1]);
#endif

            return 0;
      } else
            return -EINVAL;   /* Bah, never get there... */
}

/*------------------------------------------------------------------*/
/*
 * Give the list of available frequencies.
 */
static int wv_frequency_list(unsigned long ioaddr,    /* I/O port of the card */
                            iw_freq * list,     /* List of frequencies to fill */
                            int max)
{                       /* Maximum number of frequencies */
      u16 table[10];    /* Authorized frequency table */
      long freq = 0L;         /* offset to 2.4 GHz in .5 MHz + 12 MHz */
      int i;                  /* index in the table */
      int c = 0;        /* Channel number */

      /* Read the frequency table. */
      fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);

      /* Check all frequencies. */
      i = 0;
      for (freq = 0; freq < 150; freq++)
            /* Look in the table if the frequency is allowed */
            if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
                  /* Compute approximate channel number */
                  while ((c < ARRAY_SIZE(channel_bands)) &&
                        (((channel_bands[c] >> 1) - 24) < freq)) 
                        c++;
                  list[i].i = c;    /* Set the list index */

                  /* put in the list */
                  list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
                  list[i++].e = 1;

                  /* Check number. */
                  if (i >= max)
                        return (i);
            }

      return (i);
}

#ifdef IW_WIRELESS_SPY
/*------------------------------------------------------------------*/
/*
 * Gather wireless spy statistics:  for each packet, compare the source
 * address with our list, and if they match, get the statistics.
 * Sorry, but this function really needs the wireless extensions.
 */
static inline void wl_spy_gather(struct net_device * dev,
                         u8 * mac,  /* MAC address */
                         u8 * stats)      /* Statistics to gather */
{
      struct iw_quality wstats;

      wstats.qual = stats[2] & MMR_SGNL_QUAL;
      wstats.level = stats[0] & MMR_SIGNAL_LVL;
      wstats.noise = stats[1] & MMR_SILENCE_LVL;
      wstats.updated = 0x7;

      /* Update spy records */
      wireless_spy_update(dev, mac, &wstats);
}
#endif /* IW_WIRELESS_SPY */

#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
 * This function calculates a histogram of the signal level.
 * As the noise is quite constant, it's like doing it on the SNR.
 * We have defined a set of interval (lp->his_range), and each time
 * the level goes in that interval, we increment the count (lp->his_sum).
 * With this histogram you may detect if one WaveLAN is really weak,
 * or you may also calculate the mean and standard deviation of the level.
 */
static inline void wl_his_gather(struct net_device * dev, u8 * stats)
{                       /* Statistics to gather */
      net_local *lp = (net_local *) dev->priv;
      u8 level = stats[0] & MMR_SIGNAL_LVL;
      int i;

      /* Find the correct interval. */
      i = 0;
      while ((i < (lp->his_number - 1))
             && (level >= lp->his_range[i++]));

      /* Increment interval counter. */
      (lp->his_sum[i])++;
}
#endif /* HISTOGRAM */

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get protocol name
 */
static int wavelan_get_name(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu,
                      char *extra)
{
      strcpy(wrqu->name, "WaveLAN");
      return 0;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : set NWID
 */
static int wavelan_set_nwid(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu,
                      char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      psa_t psa;
      mm_t m;
      unsigned long flags;
      int ret = 0;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      /* Set NWID in WaveLAN. */
      if (!wrqu->nwid.disabled) {
            /* Set NWID in psa */
            psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
            psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
            psa.psa_nwid_select = 0x01;
            psa_write(ioaddr, lp->hacr,
                    (char *) psa.psa_nwid - (char *) &psa,
                    (unsigned char *) psa.psa_nwid, 3);

            /* Set NWID in mmc. */
            m.w.mmw_netw_id_l = psa.psa_nwid[1];
            m.w.mmw_netw_id_h = psa.psa_nwid[0];
            mmc_write(ioaddr,
                    (char *) &m.w.mmw_netw_id_l -
                    (char *) &m,
                    (unsigned char *) &m.w.mmw_netw_id_l, 2);
            mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
      } else {
            /* Disable NWID in the psa. */
            psa.psa_nwid_select = 0x00;
            psa_write(ioaddr, lp->hacr,
                    (char *) &psa.psa_nwid_select -
                    (char *) &psa,
                    (unsigned char *) &psa.psa_nwid_select,
                    1);

            /* Disable NWID in the mmc (no filtering). */
            mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
                  MMW_LOOPT_SEL_DIS_NWID);
      }
      /* update the Wavelan checksum */
      update_psa_checksum(dev, ioaddr, lp->hacr);

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get NWID 
 */
static int wavelan_get_nwid(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu,
                      char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      psa_t psa;
      unsigned long flags;
      int ret = 0;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      /* Read the NWID. */
      psa_read(ioaddr, lp->hacr,
             (char *) psa.psa_nwid - (char *) &psa,
             (unsigned char *) psa.psa_nwid, 3);
      wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
      wrqu->nwid.disabled = !(psa.psa_nwid_select);
      wrqu->nwid.fixed = 1;   /* Superfluous */

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : set frequency
 */
static int wavelan_set_freq(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu,
                      char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      unsigned long flags;
      int ret;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
      if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
            (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
            ret = wv_set_frequency(ioaddr, &(wrqu->freq));
      else
            ret = -EOPNOTSUPP;

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get frequency
 */
static int wavelan_get_freq(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu,
                      char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      psa_t psa;
      unsigned long flags;
      int ret = 0;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
       * Does it work for everybody, especially old cards? */
      if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
            (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
            unsigned short freq;

            /* Ask the EEPROM to read the frequency from the first area. */
            fee_read(ioaddr, 0x00, &freq, 1);
            wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
            wrqu->freq.e = 1;
      } else {
            psa_read(ioaddr, lp->hacr,
                   (char *) &psa.psa_subband - (char *) &psa,
                   (unsigned char *) &psa.psa_subband, 1);

            if (psa.psa_subband <= 4) {
                  wrqu->freq.m = fixed_bands[psa.psa_subband];
                  wrqu->freq.e = (psa.psa_subband != 0);
            } else
                  ret = -EOPNOTSUPP;
      }

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : set level threshold
 */
static int wavelan_set_sens(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu,
                      char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      psa_t psa;
      unsigned long flags;
      int ret = 0;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      /* Set the level threshold. */
      /* We should complain loudly if wrqu->sens.fixed = 0, because we
       * can't set auto mode... */
      psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
      psa_write(ioaddr, lp->hacr,
              (char *) &psa.psa_thr_pre_set - (char *) &psa,
              (unsigned char *) &psa.psa_thr_pre_set, 1);
      /* update the Wavelan checksum */
      update_psa_checksum(dev, ioaddr, lp->hacr);
      mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
            psa.psa_thr_pre_set);

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get level threshold
 */
static int wavelan_get_sens(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu,
                      char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      psa_t psa;
      unsigned long flags;
      int ret = 0;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      /* Read the level threshold. */
      psa_read(ioaddr, lp->hacr,
             (char *) &psa.psa_thr_pre_set - (char *) &psa,
             (unsigned char *) &psa.psa_thr_pre_set, 1);
      wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
      wrqu->sens.fixed = 1;

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : set encryption key
 */
static int wavelan_set_encode(struct net_device *dev,
                        struct iw_request_info *info,
                        union iwreq_data *wrqu,
                        char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      unsigned long flags;
      psa_t psa;
      int ret = 0;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);

      /* Check if capable of encryption */
      if (!mmc_encr(ioaddr)) {
            ret = -EOPNOTSUPP;
      }

      /* Check the size of the key */
      if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
            ret = -EINVAL;
      }

      if(!ret) {
            /* Basic checking... */
            if (wrqu->encoding.length == 8) {
                  /* Copy the key in the driver */
                  memcpy(psa.psa_encryption_key, extra,
                         wrqu->encoding.length);
                  psa.psa_encryption_select = 1;

                  psa_write(ioaddr, lp->hacr,
                          (char *) &psa.psa_encryption_select -
                          (char *) &psa,
                          (unsigned char *) &psa.
                          psa_encryption_select, 8 + 1);

                  mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
                        MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
                  mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
                          (unsigned char *) &psa.
                          psa_encryption_key, 8);
            }

            /* disable encryption */
            if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
                  psa.psa_encryption_select = 0;
                  psa_write(ioaddr, lp->hacr,
                          (char *) &psa.psa_encryption_select -
                          (char *) &psa,
                          (unsigned char *) &psa.
                          psa_encryption_select, 1);

                  mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
            }
            /* update the Wavelan checksum */
            update_psa_checksum(dev, ioaddr, lp->hacr);
      }

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get encryption key
 */
static int wavelan_get_encode(struct net_device *dev,
                        struct iw_request_info *info,
                        union iwreq_data *wrqu,
                        char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      psa_t psa;
      unsigned long flags;
      int ret = 0;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      /* Check if encryption is available */
      if (!mmc_encr(ioaddr)) {
            ret = -EOPNOTSUPP;
      } else {
            /* Read the encryption key */
            psa_read(ioaddr, lp->hacr,
                   (char *) &psa.psa_encryption_select -
                   (char *) &psa,
                   (unsigned char *) &psa.
                   psa_encryption_select, 1 + 8);

            /* encryption is enabled ? */
            if (psa.psa_encryption_select)
                  wrqu->encoding.flags = IW_ENCODE_ENABLED;
            else
                  wrqu->encoding.flags = IW_ENCODE_DISABLED;
            wrqu->encoding.flags |= mmc_encr(ioaddr);

            /* Copy the key to the user buffer */
            wrqu->encoding.length = 8;
            memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
      }

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get range info
 */
static int wavelan_get_range(struct net_device *dev,
                       struct iw_request_info *info,
                       union iwreq_data *wrqu,
                       char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      struct iw_range *range = (struct iw_range *) extra;
      unsigned long flags;
      int ret = 0;

      /* Set the length (very important for backward compatibility) */
      wrqu->data.length = sizeof(struct iw_range);

      /* Set all the info we don't care or don't know about to zero */
      memset(range, 0, sizeof(struct iw_range));

      /* Set the Wireless Extension versions */
      range->we_version_compiled = WIRELESS_EXT;
      range->we_version_source = 9;

      /* Set information in the range struct.  */
      range->throughput = 1.6 * 1000 * 1000;    /* don't argue on this ! */
      range->min_nwid = 0x0000;
      range->max_nwid = 0xFFFF;

      range->sensitivity = 0x3F;
      range->max_qual.qual = MMR_SGNL_QUAL;
      range->max_qual.level = MMR_SIGNAL_LVL;
      range->max_qual.noise = MMR_SILENCE_LVL;
      range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
      /* Need to get better values for those two */
      range->avg_qual.level = 30;
      range->avg_qual.noise = 8;

      range->num_bitrates = 1;
      range->bitrate[0] = 2000000;  /* 2 Mb/s */

      /* Event capability (kernel + driver) */
      range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
                        IW_EVENT_CAPA_MASK(0x8B04));
      range->event_capa[1] = IW_EVENT_CAPA_K_1;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
      if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
            (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
            range->num_channels = 10;
            range->num_frequency = wv_frequency_list(ioaddr, range->freq,
                                          IW_MAX_FREQUENCIES);
      } else
            range->num_channels = range->num_frequency = 0;

      /* Encryption supported ? */
      if (mmc_encr(ioaddr)) {
            range->encoding_size[0] = 8;  /* DES = 64 bits key */
            range->num_encoding_sizes = 1;
            range->max_encoding_tokens = 1;     /* Only one key possible */
      } else {
            range->num_encoding_sizes = 0;
            range->max_encoding_tokens = 0;
      }

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Private Handler : set quality threshold
 */
static int wavelan_set_qthr(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu,
                      char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      psa_t psa;
      unsigned long flags;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      psa.psa_quality_thr = *(extra) & 0x0F;
      psa_write(ioaddr, lp->hacr,
              (char *) &psa.psa_quality_thr - (char *) &psa,
              (unsigned char *) &psa.psa_quality_thr, 1);
      /* update the Wavelan checksum */
      update_psa_checksum(dev, ioaddr, lp->hacr);
      mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
            psa.psa_quality_thr);

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return 0;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Private Handler : get quality threshold
 */
static int wavelan_get_qthr(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu,
                      char *extra)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */
      psa_t psa;
      unsigned long flags;

      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      psa_read(ioaddr, lp->hacr,
             (char *) &psa.psa_quality_thr - (char *) &psa,
             (unsigned char *) &psa.psa_quality_thr, 1);
      *(extra) = psa.psa_quality_thr & 0x0F;

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

      return 0;
}

#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
 * Wireless Private Handler : set histogram
 */
static int wavelan_set_histo(struct net_device *dev,
                       struct iw_request_info *info,
                       union iwreq_data *wrqu,
                       char *extra)
{
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */

      /* Check the number of intervals. */
      if (wrqu->data.length > 16) {
            return(-E2BIG);
      }

      /* Disable histo while we copy the addresses.
       * As we don't disable interrupts, we need to do this */
      lp->his_number = 0;

      /* Are there ranges to copy? */
      if (wrqu->data.length > 0) {
            /* Copy interval ranges to the driver */
            memcpy(lp->his_range, extra, wrqu->data.length);

            {
              int i;
              printk(KERN_DEBUG "Histo :");
              for(i = 0; i < wrqu->data.length; i++)
                printk(" %d", lp->his_range[i]);
              printk("\n");
            }

            /* Reset result structure. */
            memset(lp->his_sum, 0x00, sizeof(long) * 16);
      }

      /* Now we can set the number of ranges */
      lp->his_number = wrqu->data.length;

      return(0);
}

/*------------------------------------------------------------------*/
/*
 * Wireless Private Handler : get histogram
 */
static int wavelan_get_histo(struct net_device *dev,
                       struct iw_request_info *info,
                       union iwreq_data *wrqu,
                       char *extra)
{
      net_local *lp = (net_local *) dev->priv;  /* lp is not unused */

      /* Set the number of intervals. */
      wrqu->data.length = lp->his_number;

      /* Give back the distribution statistics */
      if(lp->his_number > 0)
            memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);

      return(0);
}
#endif                  /* HISTOGRAM */

/*------------------------------------------------------------------*/
/*
 * Structures to export the Wireless Handlers
 */

static const iw_handler       wavelan_handler[] =
{
      NULL,                   /* SIOCSIWNAME */
      wavelan_get_name,       /* SIOCGIWNAME */
      wavelan_set_nwid,       /* SIOCSIWNWID */
      wavelan_get_nwid,       /* SIOCGIWNWID */
      wavelan_set_freq,       /* SIOCSIWFREQ */
      wavelan_get_freq,       /* SIOCGIWFREQ */
      NULL,                   /* SIOCSIWMODE */
      NULL,                   /* SIOCGIWMODE */
      wavelan_set_sens,       /* SIOCSIWSENS */
      wavelan_get_sens,       /* SIOCGIWSENS */
      NULL,                   /* SIOCSIWRANGE */
      wavelan_get_range,            /* SIOCGIWRANGE */
      NULL,                   /* SIOCSIWPRIV */
      NULL,                   /* SIOCGIWPRIV */
      NULL,                   /* SIOCSIWSTATS */
      NULL,                   /* SIOCGIWSTATS */
      iw_handler_set_spy,           /* SIOCSIWSPY */
      iw_handler_get_spy,           /* SIOCGIWSPY */
      iw_handler_set_thrspy,        /* SIOCSIWTHRSPY */
      iw_handler_get_thrspy,        /* SIOCGIWTHRSPY */
      NULL,                   /* SIOCSIWAP */
      NULL,                   /* SIOCGIWAP */
      NULL,                   /* -- hole -- */
      NULL,                   /* SIOCGIWAPLIST */
      NULL,                   /* -- hole -- */
      NULL,                   /* -- hole -- */
      NULL,                   /* SIOCSIWESSID */
      NULL,                   /* SIOCGIWESSID */
      NULL,                   /* SIOCSIWNICKN */
      NULL,                   /* SIOCGIWNICKN */
      NULL,                   /* -- hole -- */
      NULL,                   /* -- hole -- */
      NULL,                   /* SIOCSIWRATE */
      NULL,                   /* SIOCGIWRATE */
      NULL,                   /* SIOCSIWRTS */
      NULL,                   /* SIOCGIWRTS */
      NULL,                   /* SIOCSIWFRAG */
      NULL,                   /* SIOCGIWFRAG */
      NULL,                   /* SIOCSIWTXPOW */
      NULL,                   /* SIOCGIWTXPOW */
      NULL,                   /* SIOCSIWRETRY */
      NULL,                   /* SIOCGIWRETRY */
      /* Bummer ! Why those are only at the end ??? */
      wavelan_set_encode,           /* SIOCSIWENCODE */
      wavelan_get_encode,           /* SIOCGIWENCODE */
};

static const iw_handler       wavelan_private_handler[] =
{
      wavelan_set_qthr,       /* SIOCIWFIRSTPRIV */
      wavelan_get_qthr,       /* SIOCIWFIRSTPRIV + 1 */
#ifdef HISTOGRAM
      wavelan_set_histo,            /* SIOCIWFIRSTPRIV + 2 */
      wavelan_get_histo,            /* SIOCIWFIRSTPRIV + 3 */
#endif      /* HISTOGRAM */
};

static const struct iw_priv_args wavelan_private_args[] = {
/*{ cmd,         set_args,                            get_args, name } */
  { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
  { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
  { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16,                    0, "sethisto" },
  { SIOCGIPHISTO, 0,                     IW_PRIV_TYPE_INT | 16, "gethisto" },
};

static const struct iw_handler_def  wavelan_handler_def =
{
      .num_standard     = ARRAY_SIZE(wavelan_handler),
      .num_private      = ARRAY_SIZE(wavelan_private_handler),
      .num_private_args = ARRAY_SIZE(wavelan_private_args),
      .standard   = wavelan_handler,
      .private    = wavelan_private_handler,
      .private_args     = wavelan_private_args,
      .get_wireless_stats = wavelan_get_wireless_stats,
};

/*------------------------------------------------------------------*/
/*
 * Get wireless statistics.
 * Called by /proc/net/wireless
 */
static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;
      mmr_t m;
      iw_stats *wstats;
      unsigned long flags;

#ifdef DEBUG_IOCTL_TRACE
      printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
             dev->name);
#endif

      /* Check */
      if (lp == (net_local *) NULL)
            return (iw_stats *) NULL;
      
      /* Disable interrupts and save flags. */
      spin_lock_irqsave(&lp->spinlock, flags);
      
      wstats = &lp->wstats;

      /* Get data from the mmc. */
      mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);

      mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
      mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
             2);
      mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
             4);

      mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);

      /* Copy data to wireless stuff. */
      wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
      wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
      wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
      wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
      wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) 
                  | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) 
                  | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
      wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
      wstats->discard.code = 0L;
      wstats->discard.misc = 0L;

      /* Enable interrupts and restore flags. */
      spin_unlock_irqrestore(&lp->spinlock, flags);

#ifdef DEBUG_IOCTL_TRACE
      printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
             dev->name);
#endif
      return &lp->wstats;
}

/************************* PACKET RECEPTION *************************/
/*
 * This part deals with receiving the packets.
 * The interrupt handler gets an interrupt when a packet has been
 * successfully received and calls this part.
 */

/*------------------------------------------------------------------*/
/*
 * This routine does the actual copying of data (including the Ethernet
 * header structure) from the WaveLAN card to an sk_buff chain that
 * will be passed up to the network interface layer. NOTE: we
 * currently don't handle trailer protocols (neither does the rest of
 * the network interface), so if that is needed, it will (at least in
 * part) be added here.  The contents of the receive ring buffer are
 * copied to a message chain that is then passed to the kernel.
 *
 * Note: if any errors occur, the packet is "dropped on the floor".
 * (called by wv_packet_rcv())
 */
static void
wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      struct sk_buff *skb;

#ifdef DEBUG_RX_TRACE
      printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
             dev->name, buf_off, sksize);
#endif

      /* Allocate buffer for the data */
      if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
#ifdef DEBUG_RX_ERROR
            printk(KERN_INFO
                   "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
                   dev->name, sksize);
#endif
            lp->stats.rx_dropped++;
            return;
      }

      /* Copy the packet to the buffer. */
      obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
      skb->protocol = eth_type_trans(skb, dev);

#ifdef DEBUG_RX_INFO
      wv_packet_info(skb_mac_header(skb), sksize, dev->name,
                   "wv_packet_read");
#endif                        /* DEBUG_RX_INFO */

      /* Statistics-gathering and associated stuff.
       * It seem a bit messy with all the define, but it's really
       * simple... */
      if (
#ifdef IW_WIRELESS_SPY        /* defined in iw_handler.h */
               (lp->spy_data.spy_number > 0) ||
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
               (lp->his_number > 0) ||
#endif /* HISTOGRAM */
               0) {
            u8 stats[3];      /* signal level, noise level, signal quality */

            /* Read signal level, silence level and signal quality bytes */
            /* Note: in the PCMCIA hardware, these are part of the frame.
             * It seems that for the ISA hardware, it's nowhere to be
             * found in the frame, so I'm obliged to do this (it has a
             * side effect on /proc/net/wireless).
             * Any ideas?
             */
            mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
            mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
            mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);

#ifdef DEBUG_RX_INFO
            printk(KERN_DEBUG
                   "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
                   dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
                   stats[2] & 0x0F);
#endif

            /* Spying stuff */
#ifdef IW_WIRELESS_SPY
            wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
                        stats);
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
            wl_his_gather(dev, stats);
#endif /* HISTOGRAM */
      }

      /*
       * Hand the packet to the network module.
       */
      netif_rx(skb);

      /* Keep statistics up to date */
      dev->last_rx = jiffies;
      lp->stats.rx_packets++;
      lp->stats.rx_bytes += sksize;

#ifdef DEBUG_RX_TRACE
      printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * Transfer as many packets as we can
 * from the device RAM.
 * (called in wavelan_interrupt()).
 * Note : the spinlock is already grabbed for us.
 */
static void wv_receive(struct net_device * dev)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;
      fd_t fd;
      rbd_t rbd;
      int nreaped = 0;

#ifdef DEBUG_RX_TRACE
      printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
#endif

      /* Loop on each received packet. */
      for (;;) {
            obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
                     sizeof(fd));

            /* Note about the status :
             * It start up to be 0 (the value we set). Then, when the RU
             * grab the buffer to prepare for reception, it sets the
             * FD_STATUS_B flag. When the RU has finished receiving the
             * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
             * completion and set the other flags to indicate the eventual
             * errors. FD_STATUS_OK indicates that the reception was OK.
             */

            /* If the current frame is not complete, we have reached the end. */
            if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
                  break;      /* This is how we exit the loop. */

            nreaped++;

            /* Check whether frame was correctly received. */
            if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
                  /* Does the frame contain a pointer to the data?  Let's check. */
                  if (fd.fd_rbd_offset != I82586NULL) {
                        /* Read the receive buffer descriptor */
                        obram_read(ioaddr, fd.fd_rbd_offset,
                                 (unsigned char *) &rbd,
                                 sizeof(rbd));

#ifdef DEBUG_RX_ERROR
                        if ((rbd.rbd_status & RBD_STATUS_EOF) !=
                            RBD_STATUS_EOF) printk(KERN_INFO
                                             "%s: wv_receive(): missing EOF flag.\n",
                                             dev->name);

                        if ((rbd.rbd_status & RBD_STATUS_F) !=
                            RBD_STATUS_F) printk(KERN_INFO
                                           "%s: wv_receive(): missing F flag.\n",
                                           dev->name);
#endif                        /* DEBUG_RX_ERROR */

                        /* Read the packet and transmit to Linux */
                        wv_packet_read(dev, rbd.rbd_bufl,
                                     rbd.
                                     rbd_status &
                                     RBD_STATUS_ACNT);
                  }
#ifdef DEBUG_RX_ERROR
                  else  /* if frame has no data */
                        printk(KERN_INFO
                               "%s: wv_receive(): frame has no data.\n",
                               dev->name);
#endif
            } else {    /* If reception was no successful */

                  lp->stats.rx_errors++;

#ifdef DEBUG_RX_INFO
                  printk(KERN_DEBUG
                         "%s: wv_receive(): frame not received successfully (%X).\n",
                         dev->name, fd.fd_status);
#endif

#ifdef DEBUG_RX_ERROR
                  if ((fd.fd_status & FD_STATUS_S6) != 0)
                        printk(KERN_INFO
                               "%s: wv_receive(): no EOF flag.\n",
                               dev->name);
#endif

                  if ((fd.fd_status & FD_STATUS_S7) != 0) {
                        lp->stats.rx_length_errors++;
#ifdef DEBUG_RX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_receive(): frame too short.\n",
                               dev->name);
#endif
                  }

                  if ((fd.fd_status & FD_STATUS_S8) != 0) {
                        lp->stats.rx_over_errors++;
#ifdef DEBUG_RX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_receive(): rx DMA overrun.\n",
                               dev->name);
#endif
                  }

                  if ((fd.fd_status & FD_STATUS_S9) != 0) {
                        lp->stats.rx_fifo_errors++;
#ifdef DEBUG_RX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_receive(): ran out of resources.\n",
                               dev->name);
#endif
                  }

                  if ((fd.fd_status & FD_STATUS_S10) != 0) {
                        lp->stats.rx_frame_errors++;
#ifdef DEBUG_RX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_receive(): alignment error.\n",
                               dev->name);
#endif
                  }

                  if ((fd.fd_status & FD_STATUS_S11) != 0) {
                        lp->stats.rx_crc_errors++;
#ifdef DEBUG_RX_FAIL
                        printk(KERN_DEBUG
                               "%s: wv_receive(): CRC error.\n",
                               dev->name);
#endif
                  }
            }

            fd.fd_status = 0;
            obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
                      (unsigned char *) &fd.fd_status,
                      sizeof(fd.fd_status));

            fd.fd_command = FD_COMMAND_EL;
            obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
                      (unsigned char *) &fd.fd_command,
                      sizeof(fd.fd_command));

            fd.fd_command = 0;
            obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
                      (unsigned char *) &fd.fd_command,
                      sizeof(fd.fd_command));

            lp->rx_last = lp->rx_head;
            lp->rx_head = fd.fd_link_offset;
      }                 /* for(;;) -> loop on all frames */

#ifdef DEBUG_RX_INFO
      if (nreaped > 1)
            printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
                   dev->name, nreaped);
#endif
#ifdef DEBUG_RX_TRACE
      printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
#endif
}

/*********************** PACKET TRANSMISSION ***********************/
/*
 * This part deals with sending packets through the WaveLAN.
 *
 */

/*------------------------------------------------------------------*/
/*
 * This routine fills in the appropriate registers and memory
 * locations on the WaveLAN card and starts the card off on
 * the transmit.
 *
 * The principle:
 * Each block contains a transmit command, a NOP command,
 * a transmit block descriptor and a buffer.
 * The CU read the transmit block which point to the tbd,
 * read the tbd and the content of the buffer.
 * When it has finish with it, it goes to the next command
 * which in our case is the NOP. The NOP points on itself,
 * so the CU stop here.
 * When we add the next block, we modify the previous nop
 * to make it point on the new tx command.
 * Simple, isn't it ?
 *
 * (called in wavelan_packet_xmit())
 */
static int wv_packet_write(struct net_device * dev, void *buf, short length)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      unsigned short txblock;
      unsigned short txpred;
      unsigned short tx_addr;
      unsigned short nop_addr;
      unsigned short tbd_addr;
      unsigned short buf_addr;
      ac_tx_t tx;
      ac_nop_t nop;
      tbd_t tbd;
      int clen = length;
      unsigned long flags;

#ifdef DEBUG_TX_TRACE
      printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
             length);
#endif

      spin_lock_irqsave(&lp->spinlock, flags);

      /* Check nothing bad has happened */
      if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_TX_ERROR
            printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
                   dev->name);
#endif
            spin_unlock_irqrestore(&lp->spinlock, flags);
            return 1;
      }

      /* Calculate addresses of next block and previous block. */
      txblock = lp->tx_first_free;
      txpred = txblock - TXBLOCKZ;
      if (txpred < OFFSET_CU)
            txpred += NTXBLOCKS * TXBLOCKZ;
      lp->tx_first_free += TXBLOCKZ;
      if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
            lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;

      lp->tx_n_in_use++;

      /* Calculate addresses of the different parts of the block. */
      tx_addr = txblock;
      nop_addr = tx_addr + sizeof(tx);
      tbd_addr = nop_addr + sizeof(nop);
      buf_addr = tbd_addr + sizeof(tbd);

      /*
       * Transmit command
       */
      tx.tx_h.ac_status = 0;
      obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
                (unsigned char *) &tx.tx_h.ac_status,
                sizeof(tx.tx_h.ac_status));

      /*
       * NOP command
       */
      nop.nop_h.ac_status = 0;
      obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
                (unsigned char *) &nop.nop_h.ac_status,
                sizeof(nop.nop_h.ac_status));
      nop.nop_h.ac_link = nop_addr;
      obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
                (unsigned char *) &nop.nop_h.ac_link,
                sizeof(nop.nop_h.ac_link));

      /*
       * Transmit buffer descriptor
       */
      tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
      tbd.tbd_next_bd_offset = I82586NULL;
      tbd.tbd_bufl = buf_addr;
      tbd.tbd_bufh = 0;
      obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));

      /*
       * Data
       */
      obram_write(ioaddr, buf_addr, buf, length);

      /*
       * Overwrite the predecessor NOP link
       * so that it points to this txblock.
       */
      nop_addr = txpred + sizeof(tx);
      nop.nop_h.ac_status = 0;
      obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
                (unsigned char *) &nop.nop_h.ac_status,
                sizeof(nop.nop_h.ac_status));
      nop.nop_h.ac_link = txblock;
      obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
                (unsigned char *) &nop.nop_h.ac_link,
                sizeof(nop.nop_h.ac_link));

      /* Make sure the watchdog will keep quiet for a while */
      dev->trans_start = jiffies;

      /* Keep stats up to date. */
      lp->stats.tx_bytes += length;

      if (lp->tx_first_in_use == I82586NULL)
            lp->tx_first_in_use = txblock;

      if (lp->tx_n_in_use < NTXBLOCKS - 1)
            netif_wake_queue(dev);

      spin_unlock_irqrestore(&lp->spinlock, flags);
      
#ifdef DEBUG_TX_INFO
      wv_packet_info((u8 *) buf, length, dev->name,
                   "wv_packet_write");
#endif                        /* DEBUG_TX_INFO */

#ifdef DEBUG_TX_TRACE
      printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
#endif

      return 0;
}

/*------------------------------------------------------------------*/
/*
 * This routine is called when we want to send a packet (NET3 callback)
 * In this routine, we check if the harware is ready to accept
 * the packet.  We also prevent reentrance.  Then we call the function
 * to send the packet.
 */
static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long flags;
      char data[ETH_ZLEN];

#ifdef DEBUG_TX_TRACE
      printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
             (unsigned) skb);
#endif

      /*
       * Block a timer-based transmit from overlapping.
       * In other words, prevent reentering this routine.
       */
      netif_stop_queue(dev);

      /* If somebody has asked to reconfigure the controller, 
       * we can do it now.
       */
      if (lp->reconfig_82586) {
            spin_lock_irqsave(&lp->spinlock, flags);
            wv_82586_config(dev);
            spin_unlock_irqrestore(&lp->spinlock, flags);
            /* Check that we can continue */
            if (lp->tx_n_in_use == (NTXBLOCKS - 1))
                  return 1;
      }
#ifdef DEBUG_TX_ERROR
      if (skb->next)
            printk(KERN_INFO "skb has next\n");
#endif

      /* Do we need some padding? */
      /* Note : on wireless the propagation time is in the order of 1us,
       * and we don't have the Ethernet specific requirement of beeing
       * able to detect collisions, therefore in theory we don't really
       * need to pad. Jean II */
      if (skb->len < ETH_ZLEN) {
            memset(data, 0, ETH_ZLEN);
            skb_copy_from_linear_data(skb, data, skb->len);
            /* Write packet on the card */
            if(wv_packet_write(dev, data, ETH_ZLEN))
                  return 1;   /* We failed */
      }
      else if(wv_packet_write(dev, skb->data, skb->len))
            return 1;   /* We failed */


      dev_kfree_skb(skb);

#ifdef DEBUG_TX_TRACE
      printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
#endif
      return 0;
}

/*********************** HARDWARE CONFIGURATION ***********************/
/*
 * This part does the real job of starting and configuring the hardware.
 */

/*--------------------------------------------------------------------*/
/*
 * Routine to initialize the Modem Management Controller.
 * (called by wv_hw_reset())
 */
static int wv_mmc_init(struct net_device * dev)
{
      unsigned long ioaddr = dev->base_addr;
      net_local *lp = (net_local *) dev->priv;
      psa_t psa;
      mmw_t m;
      int configured;

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
#endif

      /* Read the parameter storage area. */
      psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));

#ifdef USE_PSA_CONFIG
      configured = psa.psa_conf_status & 1;
#else
      configured = 0;
#endif

      /* Is the PSA is not configured */
      if (!configured) {
            /* User will be able to configure NWID later (with iwconfig). */
            psa.psa_nwid[0] = 0;
            psa.psa_nwid[1] = 0;

            /* no NWID checking since NWID is not set */
            psa.psa_nwid_select = 0;

            /* Disable encryption */
            psa.psa_encryption_select = 0;

            /* Set to standard values:
             * 0x04 for AT,
             * 0x01 for MCA,
             * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
             */
            if (psa.psa_comp_number & 1)
                  psa.psa_thr_pre_set = 0x01;
            else
                  psa.psa_thr_pre_set = 0x04;
            psa.psa_quality_thr = 0x03;

            /* It is configured */
            psa.psa_conf_status |= 1;

#ifdef USE_PSA_CONFIG
            /* Write the psa. */
            psa_write(ioaddr, lp->hacr,
                    (char *) psa.psa_nwid - (char *) &psa,
                    (unsigned char *) psa.psa_nwid, 4);
            psa_write(ioaddr, lp->hacr,
                    (char *) &psa.psa_thr_pre_set - (char *) &psa,
                    (unsigned char *) &psa.psa_thr_pre_set, 1);
            psa_write(ioaddr, lp->hacr,
                    (char *) &psa.psa_quality_thr - (char *) &psa,
                    (unsigned char *) &psa.psa_quality_thr, 1);
            psa_write(ioaddr, lp->hacr,
                    (char *) &psa.psa_conf_status - (char *) &psa,
                    (unsigned char *) &psa.psa_conf_status, 1);
            /* update the Wavelan checksum */
            update_psa_checksum(dev, ioaddr, lp->hacr);
#endif
      }

      /* Zero the mmc structure. */
      memset(&m, 0x00, sizeof(m));

      /* Copy PSA info to the mmc. */
      m.mmw_netw_id_l = psa.psa_nwid[1];
      m.mmw_netw_id_h = psa.psa_nwid[0];

      if (psa.psa_nwid_select & 1)
            m.mmw_loopt_sel = 0x00;
      else
            m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;

      memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
             sizeof(m.mmw_encr_key));

      if (psa.psa_encryption_select)
            m.mmw_encr_enable =
                MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
      else
            m.mmw_encr_enable = 0;

      m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
      m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;

      /*
       * Set default modem control parameters.
       * See NCR document 407-0024326 Rev. A.
       */
      m.mmw_jabber_enable = 0x01;
      m.mmw_freeze = 0;
      m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
      m.mmw_ifs = 0x20;
      m.mmw_mod_delay = 0x04;
      m.mmw_jam_time = 0x38;

      m.mmw_des_io_invert = 0;
      m.mmw_decay_prm = 0;
      m.mmw_decay_updat_prm = 0;

      /* Write all info to MMC. */
      mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));

      /* The following code starts the modem of the 2.00 frequency
       * selectable cards at power on.  It's not strictly needed for the
       * following boots.
       * The original patch was by Joe Finney for the PCMCIA driver, but
       * I've cleaned it up a bit and added documentation.
       * Thanks to Loeke Brederveld from Lucent for the info.
       */

      /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
       * Does it work for everybody, especially old cards? */
      /* Note: WFREQSEL verifies that it is able to read a sensible
       * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
       * is 0xA (Xilinx version) or 0xB (Ariadne version).
       * My test is more crude but does work. */
      if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
            (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
            /* We must download the frequency parameters to the
             * synthesizers (from the EEPROM - area 1)
             * Note: as the EEPROM is automatically decremented, we set the end
             * if the area... */
            m.mmw_fee_addr = 0x0F;
            m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
            mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
                    (unsigned char *) &m.mmw_fee_ctrl, 2);

            /* Wait until the download is finished. */
            fee_wait(ioaddr, 100, 100);

#ifdef DEBUG_CONFIG_INFO
            /* The frequency was in the last word downloaded. */
            mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
                   (unsigned char *) &m.mmw_fee_data_l, 2);

            /* Print some info for the user. */
            printk(KERN_DEBUG
                   "%s: WaveLAN 2.00 recognised (frequency select).  Current frequency = %ld\n",
                   dev->name,
                   ((m.
                   mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
                   5 / 2 + 24000L);
#endif

            /* We must now download the power adjust value (gain) to
             * the synthesizers (from the EEPROM - area 7 - DAC). */
            m.mmw_fee_addr = 0x61;
            m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
            mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
                    (unsigned char *) &m.mmw_fee_ctrl, 2);

            /* Wait until the download is finished. */
      }
      /* if 2.00 card */
#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
#endif
      return 0;
}

/*------------------------------------------------------------------*/
/*
 * Construct the fd and rbd structures.
 * Start the receive unit.
 * (called by wv_hw_reset())
 */
static int wv_ru_start(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      u16 scb_cs;
      fd_t fd;
      rbd_t rbd;
      u16 rx;
      u16 rx_next;
      int i;

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
#endif

      obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
               (unsigned char *) &scb_cs, sizeof(scb_cs));
      if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
            return 0;

      lp->rx_head = OFFSET_RU;

      for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
            rx_next =
                (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;

            fd.fd_status = 0;
            fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
            fd.fd_link_offset = rx_next;
            fd.fd_rbd_offset = rx + sizeof(fd);
            obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));

            rbd.rbd_status = 0;
            rbd.rbd_next_rbd_offset = I82586NULL;
            rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
            rbd.rbd_bufh = 0;
            rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
            obram_write(ioaddr, rx + sizeof(fd),
                      (unsigned char *) &rbd, sizeof(rbd));

            lp->rx_last = rx;
      }

      obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
                (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));

      scb_cs = SCB_CMD_RUC_GO;
      obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
                (unsigned char *) &scb_cs, sizeof(scb_cs));

      set_chan_attn(ioaddr, lp->hacr);

      for (i = 1000; i > 0; i--) {
            obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
                     (unsigned char *) &scb_cs, sizeof(scb_cs));
            if (scb_cs == 0)
                  break;

            udelay(10);
      }

      if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_INFO
                   "%s: wavelan_ru_start(): board not accepting command.\n",
                   dev->name);
#endif
            return -1;
      }
#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
#endif
      return 0;
}

/*------------------------------------------------------------------*/
/*
 * Initialise the transmit blocks.
 * Start the command unit executing the NOP
 * self-loop of the first transmit block.
 *
 * Here we create the list of send buffers used to transmit packets
 * between the PC and the command unit. For each buffer, we create a
 * buffer descriptor (pointing on the buffer), a transmit command
 * (pointing to the buffer descriptor) and a NOP command.
 * The transmit command is linked to the NOP, and the NOP to itself.
 * When we will have finished executing the transmit command, we will
 * then loop on the NOP. By releasing the NOP link to a new command,
 * we may send another buffer.
 *
 * (called by wv_hw_reset())
 */
static int wv_cu_start(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      int i;
      u16 txblock;
      u16 first_nop;
      u16 scb_cs;

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
#endif

      lp->tx_first_free = OFFSET_CU;
      lp->tx_first_in_use = I82586NULL;

      for (i = 0, txblock = OFFSET_CU;
           i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
            ac_tx_t tx;
            ac_nop_t nop;
            tbd_t tbd;
            unsigned short tx_addr;
            unsigned short nop_addr;
            unsigned short tbd_addr;
            unsigned short buf_addr;

            tx_addr = txblock;
            nop_addr = tx_addr + sizeof(tx);
            tbd_addr = nop_addr + sizeof(nop);
            buf_addr = tbd_addr + sizeof(tbd);

            tx.tx_h.ac_status = 0;
            tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
            tx.tx_h.ac_link = nop_addr;
            tx.tx_tbd_offset = tbd_addr;
            obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
                      sizeof(tx));

            nop.nop_h.ac_status = 0;
            nop.nop_h.ac_command = acmd_nop;
            nop.nop_h.ac_link = nop_addr;
            obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
                      sizeof(nop));

            tbd.tbd_status = TBD_STATUS_EOF;
            tbd.tbd_next_bd_offset = I82586NULL;
            tbd.tbd_bufl = buf_addr;
            tbd.tbd_bufh = 0;
            obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
                      sizeof(tbd));
      }

      first_nop =
          OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
      obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
                (unsigned char *) &first_nop, sizeof(first_nop));

      scb_cs = SCB_CMD_CUC_GO;
      obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
                (unsigned char *) &scb_cs, sizeof(scb_cs));

      set_chan_attn(ioaddr, lp->hacr);

      for (i = 1000; i > 0; i--) {
            obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
                     (unsigned char *) &scb_cs, sizeof(scb_cs));
            if (scb_cs == 0)
                  break;

            udelay(10);
      }

      if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_INFO
                   "%s: wavelan_cu_start(): board not accepting command.\n",
                   dev->name);
#endif
            return -1;
      }

      lp->tx_n_in_use = 0;
      netif_start_queue(dev);
#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
#endif
      return 0;
}

/*------------------------------------------------------------------*/
/*
 * This routine does a standard configuration of the WaveLAN 
 * controller (i82586).
 *
 * It initialises the scp, iscp and scb structure
 * The first two are just pointers to the next.
 * The last one is used for basic configuration and for basic
 * communication (interrupt status).
 *
 * (called by wv_hw_reset())
 */
static int wv_82586_start(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      scp_t scp;        /* system configuration pointer */
      iscp_t iscp;            /* intermediate scp */
      scb_t scb;        /* system control block */
      ach_t cb;         /* Action command header */
      u8 zeroes[512];
      int i;

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
#endif

      /*
       * Clear the onboard RAM.
       */
      memset(&zeroes[0], 0x00, sizeof(zeroes));
      for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
            obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));

      /*
       * Construct the command unit structures:
       * scp, iscp, scb, cb.
       */
      memset(&scp, 0x00, sizeof(scp));
      scp.scp_sysbus = SCP_SY_16BBUS;
      scp.scp_iscpl = OFFSET_ISCP;
      obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
                sizeof(scp));

      memset(&iscp, 0x00, sizeof(iscp));
      iscp.iscp_busy = 1;
      iscp.iscp_offset = OFFSET_SCB;
      obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
                sizeof(iscp));

      /* Our first command is to reset the i82586. */
      memset(&scb, 0x00, sizeof(scb));
      scb.scb_command = SCB_CMD_RESET;
      scb.scb_cbl_offset = OFFSET_CU;
      scb.scb_rfa_offset = OFFSET_RU;
      obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
                sizeof(scb));

      set_chan_attn(ioaddr, lp->hacr);

      /* Wait for command to finish. */
      for (i = 1000; i > 0; i--) {
            obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
                     sizeof(iscp));

            if (iscp.iscp_busy == (unsigned short) 0)
                  break;

            udelay(10);
      }

      if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_INFO
                   "%s: wv_82586_start(): iscp_busy timeout.\n",
                   dev->name);
#endif
            return -1;
      }

      /* Check command completion. */
      for (i = 15; i > 0; i--) {
            obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
                     sizeof(scb));

            if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
                  break;

            udelay(10);
      }

      if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_INFO
                   "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
                   dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
#endif
            return -1;
      }

      wv_ack(dev);

      /* Set the action command header. */
      memset(&cb, 0x00, sizeof(cb));
      cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
      cb.ac_link = OFFSET_CU;
      obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));

      if (wv_synchronous_cmd(dev, "diag()") == -1)
            return -1;

      obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
      if (cb.ac_status & AC_SFLD_FAIL) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_INFO
                   "%s: wv_82586_start(): i82586 Self Test failed.\n",
                   dev->name);
#endif
            return -1;
      }
#ifdef DEBUG_I82586_SHOW
      wv_scb_show(ioaddr);
#endif

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
#endif
      return 0;
}

/*------------------------------------------------------------------*/
/*
 * This routine does a standard configuration of the WaveLAN
 * controller (i82586).
 *
 * This routine is a violent hack. We use the first free transmit block
 * to make our configuration. In the buffer area, we create the three
 * configuration commands (linked). We make the previous NOP point to
 * the beginning of the buffer instead of the tx command. After, we go
 * as usual to the NOP command.
 * Note that only the last command (mc_set) will generate an interrupt.
 *
 * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
 */
static void wv_82586_config(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      unsigned short txblock;
      unsigned short txpred;
      unsigned short tx_addr;
      unsigned short nop_addr;
      unsigned short tbd_addr;
      unsigned short cfg_addr;
      unsigned short ias_addr;
      unsigned short mcs_addr;
      ac_tx_t tx;
      ac_nop_t nop;
      ac_cfg_t cfg;           /* Configure action */
      ac_ias_t ias;           /* IA-setup action */
      ac_mcs_t mcs;           /* Multicast setup */
      struct dev_mc_list *dmi;

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
#endif

      /* Check nothing bad has happened */
      if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
                   dev->name);
#endif
            return;
      }

      /* Calculate addresses of next block and previous block. */
      txblock = lp->tx_first_free;
      txpred = txblock - TXBLOCKZ;
      if (txpred < OFFSET_CU)
            txpred += NTXBLOCKS * TXBLOCKZ;
      lp->tx_first_free += TXBLOCKZ;
      if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
            lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;

      lp->tx_n_in_use++;

      /* Calculate addresses of the different parts of the block. */
      tx_addr = txblock;
      nop_addr = tx_addr + sizeof(tx);
      tbd_addr = nop_addr + sizeof(nop);
      cfg_addr = tbd_addr + sizeof(tbd_t);      /* beginning of the buffer */
      ias_addr = cfg_addr + sizeof(cfg);
      mcs_addr = ias_addr + sizeof(ias);

      /*
       * Transmit command
       */
      tx.tx_h.ac_status = 0xFFFF;   /* Fake completion value */
      obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
                (unsigned char *) &tx.tx_h.ac_status,
                sizeof(tx.tx_h.ac_status));

      /*
       * NOP command
       */
      nop.nop_h.ac_status = 0;
      obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
                (unsigned char *) &nop.nop_h.ac_status,
                sizeof(nop.nop_h.ac_status));
      nop.nop_h.ac_link = nop_addr;
      obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
                (unsigned char *) &nop.nop_h.ac_link,
                sizeof(nop.nop_h.ac_link));

      /* Create a configure action. */
      memset(&cfg, 0x00, sizeof(cfg));

      /*
       * For Linux we invert AC_CFG_ALOC() so as to conform
       * to the way that net packets reach us from above.
       * (See also ac_tx_t.)
       *
       * Updated from Wavelan Manual WCIN085B
       */
      cfg.cfg_byte_cnt =
          AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
      cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
      cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
      cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
          AC_CFG_ILPBCK(0) |
          AC_CFG_PRELEN(AC_CFG_PLEN_2) |
          AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
      cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
          AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
      cfg.cfg_ifs = 0x20;
      cfg.cfg_slotl = 0x0C;
      cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
      cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
          AC_CFG_BTSTF(0) |
          AC_CFG_CRC16(0) |
          AC_CFG_NCRC(0) |
          AC_CFG_TNCRS(1) |
          AC_CFG_MANCH(0) |
          AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
      cfg.cfg_byte15 = AC_CFG_ICDS(0) |
          AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
/*
  cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
*/
      cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);

      cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
      cfg.cfg_h.ac_link = ias_addr;
      obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));

      /* Set up the MAC address */
      memset(&ias, 0x00, sizeof(ias));
      ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
      ias.ias_h.ac_link = mcs_addr;
      memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
             sizeof(ias.ias_addr));
      obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));

      /* Initialize adapter's Ethernet multicast addresses */
      memset(&mcs, 0x00, sizeof(mcs));
      mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
      mcs.mcs_h.ac_link = nop_addr;
      mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
      obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));

      /* Any address to set? */
      if (lp->mc_count) {
            for (dmi = dev->mc_list; dmi; dmi = dmi->next)
                  outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
                        WAVELAN_ADDR_SIZE >> 1);

#ifdef DEBUG_CONFIG_INFO
 {
            DECLARE_MAC_BUF(mac);
            printk(KERN_DEBUG
                   "%s: wv_82586_config(): set %d multicast addresses:\n",
                   dev->name, lp->mc_count);
            for (dmi = dev->mc_list; dmi; dmi = dmi->next)
                  printk(KERN_DEBUG " %s\n",
                         print_mac(mac, dmi->dmi_addr));
 }
#endif
      }

      /*
       * Overwrite the predecessor NOP link
       * so that it points to the configure action.
       */
      nop_addr = txpred + sizeof(tx);
      nop.nop_h.ac_status = 0;
      obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
                (unsigned char *) &nop.nop_h.ac_status,
                sizeof(nop.nop_h.ac_status));
      nop.nop_h.ac_link = cfg_addr;
      obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
                (unsigned char *) &nop.nop_h.ac_link,
                sizeof(nop.nop_h.ac_link));

      /* Job done, clear the flag */
      lp->reconfig_82586 = 0;

      if (lp->tx_first_in_use == I82586NULL)
            lp->tx_first_in_use = txblock;

      if (lp->tx_n_in_use == (NTXBLOCKS - 1))
            netif_stop_queue(dev);

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * This routine, called by wavelan_close(), gracefully stops the 
 * WaveLAN controller (i82586).
 * (called by wavelan_close())
 */
static void wv_82586_stop(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;
      u16 scb_cmd;

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
#endif

      /* Suspend both command unit and receive unit. */
      scb_cmd =
          (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
                                     SCB_CMD_RUC_SUS);
      obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
                (unsigned char *) &scb_cmd, sizeof(scb_cmd));
      set_chan_attn(ioaddr, lp->hacr);

      /* No more interrupts */
      wv_ints_off(dev);

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * Totally reset the WaveLAN and restart it.
 * Performs the following actions:
 *    1. A power reset (reset DMA)
 *    2. Initialize the radio modem (using wv_mmc_init)
 *    3. Reset & Configure LAN controller (using wv_82586_start)
 *    4. Start the LAN controller's command unit
 *    5. Start the LAN controller's receive unit
 * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
 */
static int wv_hw_reset(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long ioaddr = dev->base_addr;

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
             (unsigned int) dev);
#endif

      /* Increase the number of resets done. */
      lp->nresets++;

      wv_hacr_reset(ioaddr);
      lp->hacr = HACR_DEFAULT;

      if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
            return -1;

      /* Enable the card to send interrupts. */
      wv_ints_on(dev);

      /* Start card functions */
      if (wv_cu_start(dev) < 0)
            return -1;

      /* Setup the controller and parameters */
      wv_82586_config(dev);

      /* Finish configuration with the receive unit */
      if (wv_ru_start(dev) < 0)
            return -1;

#ifdef DEBUG_CONFIG_TRACE
      printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
#endif
      return 0;
}

/*------------------------------------------------------------------*/
/*
 * Check if there is a WaveLAN at the specific base address.
 * As a side effect, this reads the MAC address.
 * (called in wavelan_probe() and init_module())
 */
static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
{
      int i;                  /* Loop counter */

      /* Check if the base address if available. */
      if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
            return -EBUSY;          /* ioaddr already used */

      /* Reset host interface */
      wv_hacr_reset(ioaddr);

      /* Read the MAC address from the parameter storage area. */
      psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
             mac, 6);

      release_region(ioaddr, sizeof(ha_t));

      /*
       * Check the first three octets of the address for the manufacturer's code.
       * Note: if this can't find your WaveLAN card, you've got a
       * non-NCR/AT&T/Lucent ISA card.  See wavelan.p.h for detail on
       * how to configure your card.
       */
      for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
            if ((mac[0] == MAC_ADDRESSES[i][0]) &&
                (mac[1] == MAC_ADDRESSES[i][1]) &&
                (mac[2] == MAC_ADDRESSES[i][2]))
                  return 0;

#ifdef DEBUG_CONFIG_INFO
      printk(KERN_WARNING
             "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
             ioaddr, mac[0], mac[1], mac[2]);
#endif
      return -ENODEV;
}

/************************ INTERRUPT HANDLING ************************/

/*
 * This function is the interrupt handler for the WaveLAN card. This
 * routine will be called whenever: 
 */
static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
{
      struct net_device *dev;
      unsigned long ioaddr;
      net_local *lp;
      u16 hasr;
      u16 status;
      u16 ack_cmd;

      dev = dev_id;

#ifdef DEBUG_INTERRUPT_TRACE
      printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
#endif

      lp = (net_local *) dev->priv;
      ioaddr = dev->base_addr;

#ifdef DEBUG_INTERRUPT_INFO
      /* Check state of our spinlock */
      if(spin_is_locked(&lp->spinlock))
            printk(KERN_DEBUG
                   "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
                   dev->name);
#endif

      /* Prevent reentrancy. We need to do that because we may have
       * multiple interrupt handler running concurrently.
       * It is safe because interrupts are disabled before acquiring
       * the spinlock. */
      spin_lock(&lp->spinlock);

      /* We always had spurious interrupts at startup, but lately I
       * saw them comming *between* the request_irq() and the
       * spin_lock_irqsave() in wavelan_open(), so the spinlock
       * protection is no enough.
       * So, we also check lp->hacr that will tell us is we enabled
       * irqs or not (see wv_ints_on()).
       * We can't use netif_running(dev) because we depend on the
       * proper processing of the irq generated during the config. */

      /* Which interrupt it is ? */
      hasr = hasr_read(ioaddr);

#ifdef DEBUG_INTERRUPT_INFO
      printk(KERN_INFO
             "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
             dev->name, hasr, lp->hacr);
#endif

      /* Check modem interrupt */
      if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
            u8 dce_status;

            /*
             * Interrupt from the modem management controller.
             * This will clear it -- ignored for now.
             */
            mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
                   sizeof(dce_status));

#ifdef DEBUG_INTERRUPT_ERROR
            printk(KERN_INFO
                   "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
                   dev->name, dce_status);
#endif
      }

      /* Check if not controller interrupt */
      if (((hasr & HASR_82586_INTR) == 0) ||
          ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
#ifdef DEBUG_INTERRUPT_ERROR
            printk(KERN_INFO
                   "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
                   dev->name, hasr);
#endif
            spin_unlock (&lp->spinlock);
            return IRQ_NONE;
      }

      /* Read interrupt data. */
      obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
               (unsigned char *) &status, sizeof(status));

      /*
       * Acknowledge the interrupt(s).
       */
      ack_cmd = status & SCB_ST_INT;
      obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
                (unsigned char *) &ack_cmd, sizeof(ack_cmd));
      set_chan_attn(ioaddr, lp->hacr);

#ifdef DEBUG_INTERRUPT_INFO
      printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
             dev->name, status);
#endif

      /* Command completed. */
      if ((status & SCB_ST_CX) == SCB_ST_CX) {
#ifdef DEBUG_INTERRUPT_INFO
            printk(KERN_DEBUG
                   "%s: wavelan_interrupt(): command completed.\n",
                   dev->name);
#endif
            wv_complete(dev, ioaddr, lp);
      }

      /* Frame received. */
      if ((status & SCB_ST_FR) == SCB_ST_FR) {
#ifdef DEBUG_INTERRUPT_INFO
            printk(KERN_DEBUG
                   "%s: wavelan_interrupt(): received packet.\n",
                   dev->name);
#endif
            wv_receive(dev);
      }

      /* Check the state of the command unit. */
      if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
          (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
           (netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
            printk(KERN_INFO
                   "%s: wavelan_interrupt(): CU inactive -- restarting\n",
                   dev->name);
#endif
            wv_hw_reset(dev);
      }

      /* Check the state of the command unit. */
      if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
          (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
           (netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
            printk(KERN_INFO
                   "%s: wavelan_interrupt(): RU not ready -- restarting\n",
                   dev->name);
#endif
            wv_hw_reset(dev);
      }

      /* Release spinlock */
      spin_unlock (&lp->spinlock);

#ifdef DEBUG_INTERRUPT_TRACE
      printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
#endif
      return IRQ_HANDLED;
}

/*------------------------------------------------------------------*/
/*
 * Watchdog: when we start a transmission, a timer is set for us in the
 * kernel.  If the transmission completes, this timer is disabled. If
 * the timer expires, we are called and we try to unlock the hardware.
 */
static void wavelan_watchdog(struct net_device *      dev)
{
      net_local * lp = (net_local *)dev->priv;
      u_long            ioaddr = dev->base_addr;
      unsigned long     flags;
      unsigned int      nreaped;

#ifdef DEBUG_INTERRUPT_TRACE
      printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
#endif

#ifdef DEBUG_INTERRUPT_ERROR
      printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
             dev->name);
#endif

      /* Check that we came here for something */
      if (lp->tx_n_in_use <= 0) {
            return;
      }

      spin_lock_irqsave(&lp->spinlock, flags);

      /* Try to see if some buffers are not free (in case we missed
       * an interrupt */
      nreaped = wv_complete(dev, ioaddr, lp);

#ifdef DEBUG_INTERRUPT_INFO
      printk(KERN_DEBUG
             "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
             dev->name, nreaped, lp->tx_n_in_use);
#endif

#ifdef DEBUG_PSA_SHOW
      {
            psa_t psa;
            psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
            wv_psa_show(&psa);
      }
#endif
#ifdef DEBUG_MMC_SHOW
      wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
      wv_cu_show(dev);
#endif

      /* If no buffer has been freed */
      if (nreaped == 0) {
#ifdef DEBUG_INTERRUPT_ERROR
            printk(KERN_INFO
                   "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
                   dev->name);
#endif
            wv_hw_reset(dev);
      }

      /* At this point, we should have some free Tx buffer ;-) */
      if (lp->tx_n_in_use < NTXBLOCKS - 1)
            netif_wake_queue(dev);

      spin_unlock_irqrestore(&lp->spinlock, flags);
      
#ifdef DEBUG_INTERRUPT_TRACE
      printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
#endif
}

/********************* CONFIGURATION CALLBACKS *********************/
/*
 * Here are the functions called by the Linux networking code (NET3)
 * for initialization, configuration and deinstallations of the 
 * WaveLAN ISA hardware.
 */

/*------------------------------------------------------------------*/
/*
 * Configure and start up the WaveLAN PCMCIA adaptor.
 * Called by NET3 when it "opens" the device.
 */
static int wavelan_open(struct net_device * dev)
{
      net_local * lp = (net_local *)dev->priv;
      unsigned long     flags;

#ifdef DEBUG_CALLBACK_TRACE
      printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
             (unsigned int) dev);
#endif

      /* Check irq */
      if (dev->irq == 0) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
                   dev->name);
#endif
            return -ENXIO;
      }

      if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) 
      {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
                   dev->name);
#endif
            return -EAGAIN;
      }

      spin_lock_irqsave(&lp->spinlock, flags);
      
      if (wv_hw_reset(dev) != -1) {
            netif_start_queue(dev);
      } else {
            free_irq(dev->irq, dev);
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_INFO
                   "%s: wavelan_open(): impossible to start the card\n",
                   dev->name);
#endif
            spin_unlock_irqrestore(&lp->spinlock, flags);
            return -EAGAIN;
      }
      spin_unlock_irqrestore(&lp->spinlock, flags);
      
#ifdef DEBUG_CALLBACK_TRACE
      printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
#endif
      return 0;
}

/*------------------------------------------------------------------*/
/*
 * Shut down the WaveLAN ISA card.
 * Called by NET3 when it "closes" the device.
 */
static int wavelan_close(struct net_device * dev)
{
      net_local *lp = (net_local *) dev->priv;
      unsigned long flags;

#ifdef DEBUG_CALLBACK_TRACE
      printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
             (unsigned int) dev);
#endif

      netif_stop_queue(dev);

      /*
       * Flush the Tx and disable Rx.
       */
      spin_lock_irqsave(&lp->spinlock, flags);
      wv_82586_stop(dev);
      spin_unlock_irqrestore(&lp->spinlock, flags);

      free_irq(dev->irq, dev);

#ifdef DEBUG_CALLBACK_TRACE
      printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
#endif
      return 0;
}

/*------------------------------------------------------------------*/
/*
 * Probe an I/O address, and if the WaveLAN is there configure the
 * device structure
 * (called by wavelan_probe() and via init_module()).
 */
static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
{
      u8 irq_mask;
      int irq;
      net_local *lp;
      mac_addr mac;
      int err;

      if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
            return -EADDRINUSE;

      err = wv_check_ioaddr(ioaddr, mac);
      if (err)
            goto out;

      memcpy(dev->dev_addr, mac, 6);

      dev->base_addr = ioaddr;

#ifdef DEBUG_CALLBACK_TRACE
      printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
             dev->name, (unsigned int) dev, ioaddr);
#endif

      /* Check IRQ argument on command line. */
      if (dev->irq != 0) {
            irq_mask = wv_irq_to_psa(dev->irq);

            if (irq_mask == 0) {
#ifdef DEBUG_CONFIG_ERROR
                  printk(KERN_WARNING
                         "%s: wavelan_config(): invalid IRQ %d ignored.\n",
                         dev->name, dev->irq);
#endif
                  dev->irq = 0;
            } else {
#ifdef DEBUG_CONFIG_INFO
                  printk(KERN_DEBUG
                         "%s: wavelan_config(): changing IRQ to %d\n",
                         dev->name, dev->irq);
#endif
                  psa_write(ioaddr, HACR_DEFAULT,
                          psaoff(0, psa_int_req_no), &irq_mask, 1);
                  /* update the Wavelan checksum */
                  update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
                  wv_hacr_reset(ioaddr);
            }
      }

      psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
             &irq_mask, 1);
      if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_INFO
                   "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
                   dev->name, irq_mask);
#endif
            err = -EAGAIN;
            goto out;
      }

      dev->irq = irq;

      dev->mem_start = 0x0000;
      dev->mem_end = 0x0000;
      dev->if_port = 0;

      /* Initialize device structures */
      memset(dev->priv, 0, sizeof(net_local));
      lp = (net_local *) dev->priv;

      /* Back link to the device structure. */
      lp->dev = dev;
      /* Add the device at the beginning of the linked list. */
      lp->next = wavelan_list;
      wavelan_list = lp;

      lp->hacr = HACR_DEFAULT;

      /* Multicast stuff */
      lp->promiscuous = 0;
      lp->mc_count = 0;

      /* Init spinlock */
      spin_lock_init(&lp->spinlock);

      dev->open = wavelan_open;
      dev->stop = wavelan_close;
      dev->hard_start_xmit = wavelan_packet_xmit;
      dev->get_stats = wavelan_get_stats;
      dev->set_multicast_list = &wavelan_set_multicast_list;
        dev->tx_timeout       = &wavelan_watchdog;
        dev->watchdog_timeo   = WATCHDOG_JIFFIES;
#ifdef SET_MAC_ADDRESS
      dev->set_mac_address = &wavelan_set_mac_address;
#endif                        /* SET_MAC_ADDRESS */

      dev->wireless_handlers = &wavelan_handler_def;
      lp->wireless_data.spy_data = &lp->spy_data;
      dev->wireless_data = &lp->wireless_data;

      dev->mtu = WAVELAN_MTU;

      /* Display nice information. */
      wv_init_info(dev);

#ifdef DEBUG_CALLBACK_TRACE
      printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
#endif
      return 0;
out:
      release_region(ioaddr, sizeof(ha_t));
      return err;
}

/*------------------------------------------------------------------*/
/*
 * Check for a network adaptor of this type.  Return '0' iff one 
 * exists.  There seem to be different interpretations of
 * the initial value of dev->base_addr.
 * We follow the example in drivers/net/ne.c.
 * (called in "Space.c")
 */
struct net_device * __init wavelan_probe(int unit)
{
      struct net_device *dev;
      short base_addr;
      int def_irq;
      int i;
      int r = 0;

#ifdef      STRUCT_CHECK
      if (wv_struct_check() != (char *) NULL) {
            printk(KERN_WARNING
                   "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n",
                   dev->name, wv_struct_check());
            return -ENODEV;
      }
#endif                        /* STRUCT_CHECK */

      dev = alloc_etherdev(sizeof(net_local));
      if (!dev)
            return ERR_PTR(-ENOMEM);

      sprintf(dev->name, "eth%d", unit);
      netdev_boot_setup_check(dev);
      base_addr = dev->base_addr;
      def_irq = dev->irq;

#ifdef DEBUG_CALLBACK_TRACE
      printk(KERN_DEBUG
             "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
             dev->name, dev, (unsigned int) dev->base_addr);
#endif

      /* Don't probe at all. */
      if (base_addr < 0) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_WARNING
                   "%s: wavelan_probe(): invalid base address\n",
                   dev->name);
#endif
            r = -ENXIO;
      } else if (base_addr > 0x100) { /* Check a single specified location. */
            r = wavelan_config(dev, base_addr);
#ifdef DEBUG_CONFIG_INFO
            if (r != 0)
                  printk(KERN_DEBUG
                         "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
                         dev->name, base_addr);
#endif

#ifdef DEBUG_CALLBACK_TRACE
            printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
#endif
      } else { /* Scan all possible addresses of the WaveLAN hardware. */
            for (i = 0; i < ARRAY_SIZE(iobase); i++) {
                  dev->irq = def_irq;
                  if (wavelan_config(dev, iobase[i]) == 0) {
#ifdef DEBUG_CALLBACK_TRACE
                        printk(KERN_DEBUG
                               "%s: <-wavelan_probe()\n",
                               dev->name);
#endif
                        break;
                  }
            }
            if (i == ARRAY_SIZE(iobase))
                  r = -ENODEV;
      }
      if (r) 
            goto out;
      r = register_netdev(dev);
      if (r)
            goto out1;
      return dev;
out1:
      release_region(dev->base_addr, sizeof(ha_t));
      wavelan_list = wavelan_list->next;
out:
      free_netdev(dev);
      return ERR_PTR(r);
}

/****************************** MODULE ******************************/
/*
 * Module entry point: insertion and removal
 */

#ifdef      MODULE
/*------------------------------------------------------------------*/
/*
 * Insertion of the module
 * I'm now quite proud of the multi-device support.
 */
int __init init_module(void)
{
      int ret = -EIO;         /* Return error if no cards found */
      int i;

#ifdef DEBUG_MODULE_TRACE
      printk(KERN_DEBUG "-> init_module()\n");
#endif

      /* If probing is asked */
      if (io[0] == 0) {
#ifdef DEBUG_CONFIG_ERROR
            printk(KERN_WARNING
                   "WaveLAN init_module(): doing device probing (bad !)\n");
            printk(KERN_WARNING
                   "Specify base addresses while loading module to correct the problem\n");
#endif

            /* Copy the basic set of address to be probed. */
            for (i = 0; i < ARRAY_SIZE(iobase); i++)
                  io[i] = iobase[i];
      }


      /* Loop on all possible base addresses. */
      i = -1;
      while ((io[++i] != 0) && (i < ARRAY_SIZE(io))) {
            struct net_device *dev = alloc_etherdev(sizeof(net_local));
            if (!dev)
                  break;
            if (name[i])
                  strcpy(dev->name, name[i]);   /* Copy name */
            dev->base_addr = io[i];
            dev->irq = irq[i];

            /* Check if there is something at this base address. */
            if (wavelan_config(dev, io[i]) == 0) {
                  if (register_netdev(dev) != 0) {
                        release_region(dev->base_addr, sizeof(ha_t));
                        wavelan_list = wavelan_list->next;
                  } else {
                        ret = 0;
                        continue;
                  }
            }
            free_netdev(dev);
      }

#ifdef DEBUG_CONFIG_ERROR
      if (!wavelan_list)
            printk(KERN_WARNING
                   "WaveLAN init_module(): no device found\n");
#endif

#ifdef DEBUG_MODULE_TRACE
      printk(KERN_DEBUG "<- init_module()\n");
#endif
      return ret;
}

/*------------------------------------------------------------------*/
/*
 * Removal of the module
 */
void cleanup_module(void)
{
#ifdef DEBUG_MODULE_TRACE
      printk(KERN_DEBUG "-> cleanup_module()\n");
#endif

      /* Loop on all devices and release them. */
      while (wavelan_list) {
            struct net_device *dev = wavelan_list->dev;

#ifdef DEBUG_CONFIG_INFO
            printk(KERN_DEBUG
                   "%s: cleanup_module(): removing device at 0x%x\n",
                   dev->name, (unsigned int) dev);
#endif
            unregister_netdev(dev);

            release_region(dev->base_addr, sizeof(ha_t));
            wavelan_list = wavelan_list->next;

            free_netdev(dev);
      }

#ifdef DEBUG_MODULE_TRACE
      printk(KERN_DEBUG "<- cleanup_module()\n");
#endif
}
#endif                        /* MODULE */
MODULE_LICENSE("GPL");

/*
 * This software may only be used and distributed
 * according to the terms of the GNU General Public License.
 *
 * This software was developed as a component of the
 * Linux operating system.
 * It is based on other device drivers and information
 * either written or supplied by:
 *    Ajay Bakre (bakre@paul.rutgers.edu),
 *    Donald Becker (becker@scyld.com),
 *    Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
 *    Anders Klemets (klemets@it.kth.se),
 *    Vladimir V. Kolpakov (w@stier.koenig.ru),
 *    Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
 *    Pauline Middelink (middelin@polyware.iaf.nl),
 *    Robert Morris (rtm@das.harvard.edu),
 *    Jean Tourrilhes (jt@hplb.hpl.hp.com),
 *    Girish Welling (welling@paul.rutgers.edu),
 *
 * Thanks go also to:
 *    James Ashton (jaa101@syseng.anu.edu.au),
 *    Alan Cox (alan@redhat.com),
 *    Allan Creighton (allanc@cs.usyd.edu.au),
 *    Matthew Geier (matthew@cs.usyd.edu.au),
 *    Remo di Giovanni (remo@cs.usyd.edu.au),
 *    Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
 *    Vipul Gupta (vgupta@cs.binghamton.edu),
 *    Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
 *    Tim Nicholson (tim@cs.usyd.edu.au),
 *    Ian Parkin (ian@cs.usyd.edu.au),
 *    John Rosenberg (johnr@cs.usyd.edu.au),
 *    George Rossi (george@phm.gov.au),
 *    Arthur Scott (arthur@cs.usyd.edu.au),
 *    Peter Storey,
 * for their assistance and advice.
 *
 * Please send bug reports, updates, comments to:
 *
 * Bruce Janson                                    Email:  bruce@cs.usyd.edu.au
 * Basser Department of Computer Science           Phone:  +61-2-9351-3423
 * University of Sydney, N.S.W., 2006, AUSTRALIA   Fax:    +61-2-9351-3838
 */

Generated by  Doxygen 1.6.0   Back to index