Logo Search packages:      
Sourcecode: linux version File versions  Download package

wd33c93.c

/*
 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
 *    john@geolog.com
 *    jshiffle@netcom.com
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

/*
 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
 * provided much of the inspiration and some of the code for this
 * driver. Everything I know about Amiga DMA was gleaned from careful
 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
 * borrowed shamelessly from all over that source. Thanks Hamish!
 *
 * _This_ driver is (I feel) an improvement over the old one in
 * several respects:
 *
 *    -  Target Disconnection/Reconnection  is now supported. Any
 *          system with more than one device active on the SCSI bus
 *          will benefit from this. The driver defaults to what I
 *          call 'adaptive disconnect' - meaning that each command
 *          is evaluated individually as to whether or not it should
 *          be run with the option to disconnect/reselect (if the
 *          device chooses), or as a "SCSI-bus-hog".
 *
 *    -  Synchronous data transfers are now supported. Because of
 *          a few devices that choke after telling the driver that
 *          they can do sync transfers, we don't automatically use
 *          this faster protocol - it can be enabled via the command-
 *          line on a device-by-device basis.
 *
 *    -  Runtime operating parameters can now be specified through
 *       the 'amiboot' or the 'insmod' command line. For amiboot do:
 *          "amiboot [usual stuff] wd33c93=blah,blah,blah"
 *       The defaults should be good for most people. See the comment
 *       for 'setup_strings' below for more details.
 *
 *    -  The old driver relied exclusively on what the Western Digital
 *          docs call "Combination Level 2 Commands", which are a great
 *          idea in that the CPU is relieved of a lot of interrupt
 *          overhead. However, by accepting a certain (user-settable)
 *          amount of additional interrupts, this driver achieves
 *          better control over the SCSI bus, and data transfers are
 *          almost as fast while being much easier to define, track,
 *          and debug.
 *
 *
 * TODO:
 *       more speed. linked commands.
 *
 *
 * People with bug reports, wish-lists, complaints, comments,
 * or improvements are asked to pah-leeez email me (John Shifflett)
 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
 * this thing into as good a shape as possible, and I'm positive
 * there are lots of lurking bugs and "Stupid Places".
 *
 * Updates:
 *
 * Added support for pre -A chips, which don't have advanced features
 * and will generate CSR_RESEL rather than CSR_RESEL_AM.
 *    Richard Hirst <richard@sleepie.demon.co.uk>  August 2000
 *
 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
 * default_sx_per for asynchronous data transfers. Added adjustment
 * of transfer periods in sx_table to the actual input-clock.
 *  peter fuerst <post@pfrst.de>  February 2007
 */

#include <linux/module.h>

#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/blkdev.h>

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include <asm/irq.h>

#include "wd33c93.h"

#define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns


#define WD33C93_VERSION    "1.26++"
#define WD33C93_DATE       "10/Feb/2007"

MODULE_AUTHOR("John Shifflett");
MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
MODULE_LICENSE("GPL");

/*
 * 'setup_strings' is a single string used to pass operating parameters and
 * settings from the kernel/module command-line to the driver. 'setup_args[]'
 * is an array of strings that define the compile-time default values for
 * these settings. If Linux boots with an amiboot or insmod command-line,
 * those settings are combined with 'setup_args[]'. Note that amiboot
 * command-lines are prefixed with "wd33c93=" while insmod uses a
 * "setup_strings=" prefix. The driver recognizes the following keywords
 * (lower case required) and arguments:
 *
 * -  nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
 *                    the 7 possible SCSI devices. Set a bit to negotiate for
 *                    asynchronous transfers on that device. To maintain
 *                    backwards compatibility, a command-line such as
 *                    "wd33c93=255" will be automatically translated to
 *                    "wd33c93=nosync:0xff".
 * -  nodma:x        -x = 1 to disable DMA, x = 0 to enable it. Argument is
 *                    optional - if not present, same as "nodma:1".
 * -  period:ns      -ns is the minimum # of nanoseconds in a SCSI data transfer
 *                    period. Default is 500; acceptable values are 250 - 1000.
 * -  disconnect:x   -x = 0 to never allow disconnects, 2 to always allow them.
 *                    x = 1 does 'adaptive' disconnects, which is the default
 *                    and generally the best choice.
 * -  debug:x        -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
 *                    various types of debug output to printed - see the DB_xxx
 *                    defines in wd33c93.h
 * -  clock:x        -x = clock input in MHz for WD33c93 chip. Normal values
 *                    would be from 8 through 20. Default is 8.
 * -  burst:x        -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
 *                    Single Byte DMA, which is the default. Argument is
 *                    optional - if not present, same as "burst:1".
 * -  fast:x         -x = 1 to enable Fast SCSI, which is only effective with
 *                    input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
 *                    it, which is the default.  Argument is optional - if not
 *                    present, same as "fast:1".
 * -  next           -No argument. Used to separate blocks of keywords when
 *                    there's more than one host adapter in the system.
 *
 * Syntax Notes:
 * -  Numeric arguments can be decimal or the '0x' form of hex notation. There
 *    _must_ be a colon between a keyword and its numeric argument, with no
 *    spaces.
 * -  Keywords are separated by commas, no spaces, in the standard kernel
 *    command-line manner.
 * -  A keyword in the 'nth' comma-separated command-line member will overwrite
 *    the 'nth' element of setup_args[]. A blank command-line member (in
 *    other words, a comma with no preceding keyword) will _not_ overwrite
 *    the corresponding setup_args[] element.
 * -  If a keyword is used more than once, the first one applies to the first
 *    SCSI host found, the second to the second card, etc, unless the 'next'
 *    keyword is used to change the order.
 *
 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
 * -  wd33c93=nosync:255
 * -  wd33c93=nodma
 * -  wd33c93=nodma:1
 * -  wd33c93=disconnect:2,nosync:0x08,period:250
 * -  wd33c93=debug:0x1c
 */

/* Normally, no defaults are specified */
static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };

static char *setup_strings;
module_param(setup_strings, charp, 0);

static void wd33c93_execute(struct Scsi_Host *instance);

#ifdef CONFIG_WD33C93_PIO
static inline uchar
read_wd33c93(const wd33c93_regs regs, uchar reg_num)
{
      uchar data;

      outb(reg_num, regs.SASR);
      data = inb(regs.SCMD);
      return data;
}

static inline unsigned long
read_wd33c93_count(const wd33c93_regs regs)
{
      unsigned long value;

      outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
      value = inb(regs.SCMD) << 16;
      value |= inb(regs.SCMD) << 8;
      value |= inb(regs.SCMD);
      return value;
}

static inline uchar
read_aux_stat(const wd33c93_regs regs)
{
      return inb(regs.SASR);
}

static inline void
write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
{
      outb(reg_num, regs.SASR);
      outb(value, regs.SCMD);
}

static inline void
write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
{
      outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
      outb((value >> 16) & 0xff, regs.SCMD);
      outb((value >> 8) & 0xff, regs.SCMD);
      outb( value & 0xff, regs.SCMD);
}

#define write_wd33c93_cmd(regs, cmd) \
      write_wd33c93((regs), WD_COMMAND, (cmd))

static inline void
write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
{
      int i;

      outb(WD_CDB_1, regs.SASR);
      for (i=0; i<len; i++)
            outb(cmnd[i], regs.SCMD);
}

#else /* CONFIG_WD33C93_PIO */
static inline uchar
read_wd33c93(const wd33c93_regs regs, uchar reg_num)
{
      *regs.SASR = reg_num;
      mb();
      return (*regs.SCMD);
}

static unsigned long
read_wd33c93_count(const wd33c93_regs regs)
{
      unsigned long value;

      *regs.SASR = WD_TRANSFER_COUNT_MSB;
      mb();
      value = *regs.SCMD << 16;
      value |= *regs.SCMD << 8;
      value |= *regs.SCMD;
      mb();
      return value;
}

static inline uchar
read_aux_stat(const wd33c93_regs regs)
{
      return *regs.SASR;
}

static inline void
write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
{
      *regs.SASR = reg_num;
      mb();
      *regs.SCMD = value;
      mb();
}

static void
write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
{
      *regs.SASR = WD_TRANSFER_COUNT_MSB;
      mb();
      *regs.SCMD = value >> 16;
      *regs.SCMD = value >> 8;
      *regs.SCMD = value;
      mb();
}

static inline void
write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
{
      *regs.SASR = WD_COMMAND;
      mb();
      *regs.SCMD = cmd;
      mb();
}

static inline void
write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
{
      int i;

      *regs.SASR = WD_CDB_1;
      for (i = 0; i < len; i++)
            *regs.SCMD = cmnd[i];
}
#endif /* CONFIG_WD33C93_PIO */

static inline uchar
read_1_byte(const wd33c93_regs regs)
{
      uchar asr;
      uchar x = 0;

      write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
      write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
      do {
            asr = read_aux_stat(regs);
            if (asr & ASR_DBR)
                  x = read_wd33c93(regs, WD_DATA);
      } while (!(asr & ASR_INT));
      return x;
}

static int
round_period(unsigned int period, const struct sx_period *sx_table)
{
      int x;

      for (x = 1; sx_table[x].period_ns; x++) {
            if ((period <= sx_table[x - 0].period_ns) &&
                (period > sx_table[x - 1].period_ns)) {
                  return x;
            }
      }
      return 7;
}

/*
 * Calculate Synchronous Transfer Register value from SDTR code.
 */
static uchar
calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
               const struct sx_period *sx_table)
{
      /* When doing Fast SCSI synchronous data transfers, the corresponding
       * value in 'sx_table' is two times the actually used transfer period.
       */
      uchar result;

      if (offset && fast) {
            fast = STR_FSS;
            period *= 2;
      } else {
            fast = 0;
      }
      period *= 4;            /* convert SDTR code to ns */
      result = sx_table[round_period(period,sx_table)].reg_value;
      result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
      result |= fast;
      return result;
}

/*
 * Calculate SDTR code bytes [3],[4] from period and offset.
 */
static inline void
calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
                uchar  msg[2])
{
      /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
       * actually used transfer period for Fast SCSI synchronous data
       * transfers is half that value.
       */
      period /= 4;
      if (offset && fast)
            period /= 2;
      msg[0] = period;
      msg[1] = offset;
}

int
wd33c93_queuecommand(struct scsi_cmnd *cmd,
            void (*done)(struct scsi_cmnd *))
{
      struct WD33C93_hostdata *hostdata;
      struct scsi_cmnd *tmp;

      hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;

      DB(DB_QUEUE_COMMAND,
         printk("Q-%d-%02x-%ld( ", cmd->device->id, cmd->cmnd[0], cmd->serial_number))

/* Set up a few fields in the scsi_cmnd structure for our own use:
 *  - host_scribble is the pointer to the next cmd in the input queue
 *  - scsi_done points to the routine we call when a cmd is finished
 *  - result is what you'd expect
 */
      cmd->host_scribble = NULL;
      cmd->scsi_done = done;
      cmd->result = 0;

/* We use the Scsi_Pointer structure that's included with each command
 * as a scratchpad (as it's intended to be used!). The handy thing about
 * the SCp.xxx fields is that they're always associated with a given
 * cmd, and are preserved across disconnect-reselect. This means we
 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
 * if we keep all the critical pointers and counters in SCp:
 *  - SCp.ptr is the pointer into the RAM buffer
 *  - SCp.this_residual is the size of that buffer
 *  - SCp.buffer points to the current scatter-gather buffer
 *  - SCp.buffers_residual tells us how many S.G. buffers there are
 *  - SCp.have_data_in is not used
 *  - SCp.sent_command is not used
 *  - SCp.phase records this command's SRCID_ER bit setting
 */

      if (cmd->use_sg) {
            cmd->SCp.buffer = (struct scatterlist *) cmd->request_buffer;
            cmd->SCp.buffers_residual = cmd->use_sg - 1;
            cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
            cmd->SCp.this_residual = cmd->SCp.buffer->length;
      } else {
            cmd->SCp.buffer = NULL;
            cmd->SCp.buffers_residual = 0;
            cmd->SCp.ptr = (char *) cmd->request_buffer;
            cmd->SCp.this_residual = cmd->request_bufflen;
      }

/* WD docs state that at the conclusion of a "LEVEL2" command, the
 * status byte can be retrieved from the LUN register. Apparently,
 * this is the case only for *uninterrupted* LEVEL2 commands! If
 * there are any unexpected phases entered, even if they are 100%
 * legal (different devices may choose to do things differently),
 * the LEVEL2 command sequence is exited. This often occurs prior
 * to receiving the status byte, in which case the driver does a
 * status phase interrupt and gets the status byte on its own.
 * While such a command can then be "resumed" (ie restarted to
 * finish up as a LEVEL2 command), the LUN register will NOT be
 * a valid status byte at the command's conclusion, and we must
 * use the byte obtained during the earlier interrupt. Here, we
 * preset SCp.Status to an illegal value (0xff) so that when
 * this command finally completes, we can tell where the actual
 * status byte is stored.
 */

      cmd->SCp.Status = ILLEGAL_STATUS_BYTE;

      /*
       * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
       * commands are added to the head of the queue so that the desired
       * sense data is not lost before REQUEST_SENSE executes.
       */

      spin_lock_irq(&hostdata->lock);

      if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
            cmd->host_scribble = (uchar *) hostdata->input_Q;
            hostdata->input_Q = cmd;
      } else {          /* find the end of the queue */
            for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
                 tmp->host_scribble;
                 tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
            tmp->host_scribble = (uchar *) cmd;
      }

/* We know that there's at least one command in 'input_Q' now.
 * Go see if any of them are runnable!
 */

      wd33c93_execute(cmd->device->host);

      DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->serial_number))

      spin_unlock_irq(&hostdata->lock);
      return 0;
}

/*
 * This routine attempts to start a scsi command. If the host_card is
 * already connected, we give up immediately. Otherwise, look through
 * the input_Q, using the first command we find that's intended
 * for a currently non-busy target/lun.
 *
 * wd33c93_execute() is always called with interrupts disabled or from
 * the wd33c93_intr itself, which means that a wd33c93 interrupt
 * cannot occur while we are in here.
 */
static void
wd33c93_execute(struct Scsi_Host *instance)
{
      struct WD33C93_hostdata *hostdata =
          (struct WD33C93_hostdata *) instance->hostdata;
      const wd33c93_regs regs = hostdata->regs;
      struct scsi_cmnd *cmd, *prev;

      DB(DB_EXECUTE, printk("EX("))
      if (hostdata->selecting || hostdata->connected) {
            DB(DB_EXECUTE, printk(")EX-0 "))
            return;
      }

      /*
       * Search through the input_Q for a command destined
       * for an idle target/lun.
       */

      cmd = (struct scsi_cmnd *) hostdata->input_Q;
      prev = NULL;
      while (cmd) {
            if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
                  break;
            prev = cmd;
            cmd = (struct scsi_cmnd *) cmd->host_scribble;
      }

      /* quit if queue empty or all possible targets are busy */

      if (!cmd) {
            DB(DB_EXECUTE, printk(")EX-1 "))
            return;
      }

      /*  remove command from queue */

      if (prev)
            prev->host_scribble = cmd->host_scribble;
      else
            hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;

#ifdef PROC_STATISTICS
      hostdata->cmd_cnt[cmd->device->id]++;
#endif

      /*
       * Start the selection process
       */

      if (cmd->sc_data_direction == DMA_TO_DEVICE)
            write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
      else
            write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);

/* Now we need to figure out whether or not this command is a good
 * candidate for disconnect/reselect. We guess to the best of our
 * ability, based on a set of hierarchical rules. When several
 * devices are operating simultaneously, disconnects are usually
 * an advantage. In a single device system, or if only 1 device
 * is being accessed, transfers usually go faster if disconnects
 * are not allowed:
 *
 * + Commands should NEVER disconnect if hostdata->disconnect =
 *   DIS_NEVER (this holds for tape drives also), and ALWAYS
 *   disconnect if hostdata->disconnect = DIS_ALWAYS.
 * + Tape drive commands should always be allowed to disconnect.
 * + Disconnect should be allowed if disconnected_Q isn't empty.
 * + Commands should NOT disconnect if input_Q is empty.
 * + Disconnect should be allowed if there are commands in input_Q
 *   for a different target/lun. In this case, the other commands
 *   should be made disconnect-able, if not already.
 *
 * I know, I know - this code would flunk me out of any
 * "C Programming 101" class ever offered. But it's easy
 * to change around and experiment with for now.
 */

      cmd->SCp.phase = 0;     /* assume no disconnect */
      if (hostdata->disconnect == DIS_NEVER)
            goto no;
      if (hostdata->disconnect == DIS_ALWAYS)
            goto yes;
      if (cmd->device->type == 1)   /* tape drive? */
            goto yes;
      if (hostdata->disconnected_Q) /* other commands disconnected? */
            goto yes;
      if (!(hostdata->input_Q))     /* input_Q empty? */
            goto no;
      for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
           prev = (struct scsi_cmnd *) prev->host_scribble) {
            if ((prev->device->id != cmd->device->id) ||
                (prev->device->lun != cmd->device->lun)) {
                  for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
                       prev = (struct scsi_cmnd *) prev->host_scribble)
                        prev->SCp.phase = 1;
                  goto yes;
            }
      }

      goto no;

 yes:
      cmd->SCp.phase = 1;

#ifdef PROC_STATISTICS
      hostdata->disc_allowed_cnt[cmd->device->id]++;
#endif

 no:

      write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));

      write_wd33c93(regs, WD_TARGET_LUN, cmd->device->lun);
      write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
                  hostdata->sync_xfer[cmd->device->id]);
      hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);

      if ((hostdata->level2 == L2_NONE) ||
          (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {

            /*
             * Do a 'Select-With-ATN' command. This will end with
             * one of the following interrupts:
             *    CSR_RESEL_AM:  failure - can try again later.
             *    CSR_TIMEOUT:   failure - give up.
             *    CSR_SELECT:    success - proceed.
             */

            hostdata->selecting = cmd;

/* Every target has its own synchronous transfer setting, kept in the
 * sync_xfer array, and a corresponding status byte in sync_stat[].
 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
 * means that the parameters are undetermined as yet, and that we
 * need to send an SDTR message to this device after selection is
 * complete: We set SS_FIRST to tell the interrupt routine to do so.
 * If we've been asked not to try synchronous transfers on this
 * target (and _all_ luns within it), we'll still send the SDTR message
 * later, but at that time we'll negotiate for async by specifying a
 * sync fifo depth of 0.
 */
            if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
                  hostdata->sync_stat[cmd->device->id] = SS_FIRST;
            hostdata->state = S_SELECTING;
            write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
            write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
      } else {

            /*
             * Do a 'Select-With-ATN-Xfer' command. This will end with
             * one of the following interrupts:
             *    CSR_RESEL_AM:  failure - can try again later.
             *    CSR_TIMEOUT:   failure - give up.
             *    anything else: success - proceed.
             */

            hostdata->connected = cmd;
            write_wd33c93(regs, WD_COMMAND_PHASE, 0);

            /* copy command_descriptor_block into WD chip
             * (take advantage of auto-incrementing)
             */

            write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);

            /* The wd33c93 only knows about Group 0, 1, and 5 commands when
             * it's doing a 'select-and-transfer'. To be safe, we write the
             * size of the CDB into the OWN_ID register for every case. This
             * way there won't be problems with vendor-unique, audio, etc.
             */

            write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);

            /* When doing a non-disconnect command with DMA, we can save
             * ourselves a DATA phase interrupt later by setting everything
             * up ahead of time.
             */

            if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) {
                  if (hostdata->dma_setup(cmd,
                      (cmd->sc_data_direction == DMA_TO_DEVICE) ?
                       DATA_OUT_DIR : DATA_IN_DIR))
                        write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
                  else {
                        write_wd33c93_count(regs,
                                        cmd->SCp.this_residual);
                        write_wd33c93(regs, WD_CONTROL,
                                    CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
                        hostdata->dma = D_DMA_RUNNING;
                  }
            } else
                  write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */

            hostdata->state = S_RUNNING_LEVEL2;
            write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
      }

      /*
       * Since the SCSI bus can handle only 1 connection at a time,
       * we get out of here now. If the selection fails, or when
       * the command disconnects, we'll come back to this routine
       * to search the input_Q again...
       */

      DB(DB_EXECUTE,
         printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->serial_number))
}

static void
transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
           int data_in_dir, struct WD33C93_hostdata *hostdata)
{
      uchar asr;

      DB(DB_TRANSFER,
         printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))

      write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
      write_wd33c93_count(regs, cnt);
      write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
      if (data_in_dir) {
            do {
                  asr = read_aux_stat(regs);
                  if (asr & ASR_DBR)
                        *buf++ = read_wd33c93(regs, WD_DATA);
            } while (!(asr & ASR_INT));
      } else {
            do {
                  asr = read_aux_stat(regs);
                  if (asr & ASR_DBR)
                        write_wd33c93(regs, WD_DATA, *buf++);
            } while (!(asr & ASR_INT));
      }

      /* Note: we are returning with the interrupt UN-cleared.
       * Since (presumably) an entire I/O operation has
       * completed, the bus phase is probably different, and
       * the interrupt routine will discover this when it
       * responds to the uncleared int.
       */

}

static void
transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
            int data_in_dir)
{
      struct WD33C93_hostdata *hostdata;
      unsigned long length;

      hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;

/* Normally, you'd expect 'this_residual' to be non-zero here.
 * In a series of scatter-gather transfers, however, this
 * routine will usually be called with 'this_residual' equal
 * to 0 and 'buffers_residual' non-zero. This means that a
 * previous transfer completed, clearing 'this_residual', and
 * now we need to setup the next scatter-gather buffer as the
 * source or destination for THIS transfer.
 */
      if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
            ++cmd->SCp.buffer;
            --cmd->SCp.buffers_residual;
            cmd->SCp.this_residual = cmd->SCp.buffer->length;
            cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
      }
      if (!cmd->SCp.this_residual) /* avoid bogus setups */
            return;

      write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
                  hostdata->sync_xfer[cmd->device->id]);

/* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
 */

      if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
#ifdef PROC_STATISTICS
            hostdata->pio_cnt++;
#endif
            transfer_pio(regs, (uchar *) cmd->SCp.ptr,
                       cmd->SCp.this_residual, data_in_dir, hostdata);
            length = cmd->SCp.this_residual;
            cmd->SCp.this_residual = read_wd33c93_count(regs);
            cmd->SCp.ptr += (length - cmd->SCp.this_residual);
      }

/* We are able to do DMA (in fact, the Amiga hardware is
 * already going!), so start up the wd33c93 in DMA mode.
 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
 * transfer completes and causes an interrupt, we're
 * reminded to tell the Amiga to shut down its end. We'll
 * postpone the updating of 'this_residual' and 'ptr'
 * until then.
 */

      else {
#ifdef PROC_STATISTICS
            hostdata->dma_cnt++;
#endif
            write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
            write_wd33c93_count(regs, cmd->SCp.this_residual);

            if ((hostdata->level2 >= L2_DATA) ||
                (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
                  write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
                  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
                  hostdata->state = S_RUNNING_LEVEL2;
            } else
                  write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);

            hostdata->dma = D_DMA_RUNNING;
      }
}

void
wd33c93_intr(struct Scsi_Host *instance)
{
      struct WD33C93_hostdata *hostdata =
          (struct WD33C93_hostdata *) instance->hostdata;
      const wd33c93_regs regs = hostdata->regs;
      struct scsi_cmnd *patch, *cmd;
      uchar asr, sr, phs, id, lun, *ucp, msg;
      unsigned long length, flags;

      asr = read_aux_stat(regs);
      if (!(asr & ASR_INT) || (asr & ASR_BSY))
            return;

      spin_lock_irqsave(&hostdata->lock, flags);

#ifdef PROC_STATISTICS
      hostdata->int_cnt++;
#endif

      cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */
      sr = read_wd33c93(regs, WD_SCSI_STATUS);  /* clear the interrupt */
      phs = read_wd33c93(regs, WD_COMMAND_PHASE);

      DB(DB_INTR, printk("{%02x:%02x-", asr, sr))

/* After starting a DMA transfer, the next interrupt
 * is guaranteed to be in response to completion of
 * the transfer. Since the Amiga DMA hardware runs in
 * in an open-ended fashion, it needs to be told when
 * to stop; do that here if D_DMA_RUNNING is true.
 * Also, we have to update 'this_residual' and 'ptr'
 * based on the contents of the TRANSFER_COUNT register,
 * in case the device decided to do an intermediate
 * disconnect (a device may do this if it has to do a
 * seek, or just to be nice and let other devices have
 * some bus time during long transfers). After doing
 * whatever is needed, we go on and service the WD3393
 * interrupt normally.
 */
          if (hostdata->dma == D_DMA_RUNNING) {
            DB(DB_TRANSFER,
               printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual))
                hostdata->dma_stop(cmd->device->host, cmd, 1);
            hostdata->dma = D_DMA_OFF;
            length = cmd->SCp.this_residual;
            cmd->SCp.this_residual = read_wd33c93_count(regs);
            cmd->SCp.ptr += (length - cmd->SCp.this_residual);
            DB(DB_TRANSFER,
               printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual))
      }

/* Respond to the specific WD3393 interrupt - there are quite a few! */
      switch (sr) {
      case CSR_TIMEOUT:
            DB(DB_INTR, printk("TIMEOUT"))

                if (hostdata->state == S_RUNNING_LEVEL2)
                  hostdata->connected = NULL;
            else {
                  cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */
                  hostdata->selecting = NULL;
            }

            cmd->result = DID_NO_CONNECT << 16;
            hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
            hostdata->state = S_UNCONNECTED;
            cmd->scsi_done(cmd);

            /* From esp.c:
             * There is a window of time within the scsi_done() path
             * of execution where interrupts are turned back on full
             * blast and left that way.  During that time we could
             * reconnect to a disconnected command, then we'd bomb
             * out below.  We could also end up executing two commands
             * at _once_.  ...just so you know why the restore_flags()
             * is here...
             */

            spin_unlock_irqrestore(&hostdata->lock, flags);

/* We are not connected to a target - check to see if there
 * are commands waiting to be executed.
 */

            wd33c93_execute(instance);
            break;

/* Note: this interrupt should not occur in a LEVEL2 command */

      case CSR_SELECT:
            DB(DB_INTR, printk("SELECT"))
                hostdata->connected = cmd =
                (struct scsi_cmnd *) hostdata->selecting;
            hostdata->selecting = NULL;

            /* construct an IDENTIFY message with correct disconnect bit */

            hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
            if (cmd->SCp.phase)
                  hostdata->outgoing_msg[0] |= 0x40;

            if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {

                  hostdata->sync_stat[cmd->device->id] = SS_WAITING;

/* Tack on a 2nd message to ask about synchronous transfers. If we've
 * been asked to do only asynchronous transfers on this device, we
 * request a fifo depth of 0, which is equivalent to async - should
 * solve the problems some people have had with GVP's Guru ROM.
 */

                  hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
                  hostdata->outgoing_msg[2] = 3;
                  hostdata->outgoing_msg[3] = EXTENDED_SDTR;
                  if (hostdata->no_sync & (1 << cmd->device->id)) {
                        calc_sync_msg(hostdata->default_sx_per, 0,
                                    0, hostdata->outgoing_msg + 4);
                  } else {
                        calc_sync_msg(optimum_sx_per(hostdata),
                                    OPTIMUM_SX_OFF,
                                    hostdata->fast,
                                    hostdata->outgoing_msg + 4);
                  }
                  hostdata->outgoing_len = 6;
#ifdef SYNC_DEBUG
                  ucp = hostdata->outgoing_msg + 1;
                  printk(" sending SDTR %02x03%02x%02x%02x ",
                        ucp[0], ucp[2], ucp[3], ucp[4]);
#endif
            } else
                  hostdata->outgoing_len = 1;

            hostdata->state = S_CONNECTED;
            spin_unlock_irqrestore(&hostdata->lock, flags);
            break;

      case CSR_XFER_DONE | PHS_DATA_IN:
      case CSR_UNEXP | PHS_DATA_IN:
      case CSR_SRV_REQ | PHS_DATA_IN:
            DB(DB_INTR,
               printk("IN-%d.%d", cmd->SCp.this_residual,
                    cmd->SCp.buffers_residual))
                transfer_bytes(regs, cmd, DATA_IN_DIR);
            if (hostdata->state != S_RUNNING_LEVEL2)
                  hostdata->state = S_CONNECTED;
            spin_unlock_irqrestore(&hostdata->lock, flags);
            break;

      case CSR_XFER_DONE | PHS_DATA_OUT:
      case CSR_UNEXP | PHS_DATA_OUT:
      case CSR_SRV_REQ | PHS_DATA_OUT:
            DB(DB_INTR,
               printk("OUT-%d.%d", cmd->SCp.this_residual,
                    cmd->SCp.buffers_residual))
                transfer_bytes(regs, cmd, DATA_OUT_DIR);
            if (hostdata->state != S_RUNNING_LEVEL2)
                  hostdata->state = S_CONNECTED;
            spin_unlock_irqrestore(&hostdata->lock, flags);
            break;

/* Note: this interrupt should not occur in a LEVEL2 command */

      case CSR_XFER_DONE | PHS_COMMAND:
      case CSR_UNEXP | PHS_COMMAND:
      case CSR_SRV_REQ | PHS_COMMAND:
            DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->serial_number))
                transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
                         hostdata);
            hostdata->state = S_CONNECTED;
            spin_unlock_irqrestore(&hostdata->lock, flags);
            break;

      case CSR_XFER_DONE | PHS_STATUS:
      case CSR_UNEXP | PHS_STATUS:
      case CSR_SRV_REQ | PHS_STATUS:
            DB(DB_INTR, printk("STATUS="))
            cmd->SCp.Status = read_1_byte(regs);
            DB(DB_INTR, printk("%02x", cmd->SCp.Status))
                if (hostdata->level2 >= L2_BASIC) {
                  sr = read_wd33c93(regs, WD_SCSI_STATUS);  /* clear interrupt */
                  udelay(7);
                  hostdata->state = S_RUNNING_LEVEL2;
                  write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
                  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
            } else {
                  hostdata->state = S_CONNECTED;
            }
            spin_unlock_irqrestore(&hostdata->lock, flags);
            break;

      case CSR_XFER_DONE | PHS_MESS_IN:
      case CSR_UNEXP | PHS_MESS_IN:
      case CSR_SRV_REQ | PHS_MESS_IN:
            DB(DB_INTR, printk("MSG_IN="))

            msg = read_1_byte(regs);
            sr = read_wd33c93(regs, WD_SCSI_STATUS);  /* clear interrupt */
            udelay(7);

            hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
            if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
                  msg = EXTENDED_MESSAGE;
            else
                  hostdata->incoming_ptr = 0;

            cmd->SCp.Message = msg;
            switch (msg) {

            case COMMAND_COMPLETE:
                  DB(DB_INTR, printk("CCMP-%ld", cmd->serial_number))
                      write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
                  hostdata->state = S_PRE_CMP_DISC;
                  break;

            case SAVE_POINTERS:
                  DB(DB_INTR, printk("SDP"))
                      write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
                  hostdata->state = S_CONNECTED;
                  break;

            case RESTORE_POINTERS:
                  DB(DB_INTR, printk("RDP"))
                      if (hostdata->level2 >= L2_BASIC) {
                        write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
                        write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
                        hostdata->state = S_RUNNING_LEVEL2;
                  } else {
                        write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
                        hostdata->state = S_CONNECTED;
                  }
                  break;

            case DISCONNECT:
                  DB(DB_INTR, printk("DIS"))
                      cmd->device->disconnect = 1;
                  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
                  hostdata->state = S_PRE_TMP_DISC;
                  break;

            case MESSAGE_REJECT:
                  DB(DB_INTR, printk("REJ"))
#ifdef SYNC_DEBUG
                      printk("-REJ-");
#endif
                  if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
                        hostdata->sync_stat[cmd->device->id] = SS_SET;
                        /* we want default_sx_per, not DEFAULT_SX_PER */
                        hostdata->sync_xfer[cmd->device->id] =
                              calc_sync_xfer(hostdata->default_sx_per
                                    / 4, 0, 0, hostdata->sx_table);
                  }
                  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
                  hostdata->state = S_CONNECTED;
                  break;

            case EXTENDED_MESSAGE:
                  DB(DB_INTR, printk("EXT"))

                      ucp = hostdata->incoming_msg;

#ifdef SYNC_DEBUG
                  printk("%02x", ucp[hostdata->incoming_ptr]);
#endif
                  /* Is this the last byte of the extended message? */

                  if ((hostdata->incoming_ptr >= 2) &&
                      (hostdata->incoming_ptr == (ucp[1] + 1))) {

                        switch (ucp[2]) { /* what's the EXTENDED code? */
                        case EXTENDED_SDTR:
                              /* default to default async period */
                              id = calc_sync_xfer(hostdata->
                                          default_sx_per / 4, 0,
                                          0, hostdata->sx_table);
                              if (hostdata->sync_stat[cmd->device->id] !=
                                  SS_WAITING) {

/* A device has sent an unsolicited SDTR message; rather than go
 * through the effort of decoding it and then figuring out what
 * our reply should be, we're just gonna say that we have a
 * synchronous fifo depth of 0. This will result in asynchronous
 * transfers - not ideal but so much easier.
 * Actually, this is OK because it assures us that if we don't
 * specifically ask for sync transfers, we won't do any.
 */

                                    write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);     /* want MESS_OUT */
                                    hostdata->outgoing_msg[0] =
                                        EXTENDED_MESSAGE;
                                    hostdata->outgoing_msg[1] = 3;
                                    hostdata->outgoing_msg[2] =
                                        EXTENDED_SDTR;
                                    calc_sync_msg(hostdata->
                                          default_sx_per, 0,
                                          0, hostdata->outgoing_msg + 3);
                                    hostdata->outgoing_len = 5;
                              } else {
                                    if (ucp[4]) /* well, sync transfer */
                                          id = calc_sync_xfer(ucp[3], ucp[4],
                                                      hostdata->fast,
                                                      hostdata->sx_table);
                                    else if (ucp[3]) /* very unlikely... */
                                          id = calc_sync_xfer(ucp[3], ucp[4],
                                                      0, hostdata->sx_table);
                              }
                              hostdata->sync_xfer[cmd->device->id] = id;
#ifdef SYNC_DEBUG
                              printk(" sync_xfer=%02x\n",
                                     hostdata->sync_xfer[cmd->device->id]);
#endif
                              hostdata->sync_stat[cmd->device->id] =
                                  SS_SET;
                              write_wd33c93_cmd(regs,
                                            WD_CMD_NEGATE_ACK);
                              hostdata->state = S_CONNECTED;
                              break;
                        case EXTENDED_WDTR:
                              write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);     /* want MESS_OUT */
                              printk("sending WDTR ");
                              hostdata->outgoing_msg[0] =
                                  EXTENDED_MESSAGE;
                              hostdata->outgoing_msg[1] = 2;
                              hostdata->outgoing_msg[2] =
                                  EXTENDED_WDTR;
                              hostdata->outgoing_msg[3] = 0;      /* 8 bit transfer width */
                              hostdata->outgoing_len = 4;
                              write_wd33c93_cmd(regs,
                                            WD_CMD_NEGATE_ACK);
                              hostdata->state = S_CONNECTED;
                              break;
                        default:
                              write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);     /* want MESS_OUT */
                              printk
                                  ("Rejecting Unknown Extended Message(%02x). ",
                                   ucp[2]);
                              hostdata->outgoing_msg[0] =
                                  MESSAGE_REJECT;
                              hostdata->outgoing_len = 1;
                              write_wd33c93_cmd(regs,
                                            WD_CMD_NEGATE_ACK);
                              hostdata->state = S_CONNECTED;
                              break;
                        }
                        hostdata->incoming_ptr = 0;
                  }

                  /* We need to read more MESS_IN bytes for the extended message */

                  else {
                        hostdata->incoming_ptr++;
                        write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
                        hostdata->state = S_CONNECTED;
                  }
                  break;

            default:
                  printk("Rejecting Unknown Message(%02x) ", msg);
                  write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);     /* want MESS_OUT */
                  hostdata->outgoing_msg[0] = MESSAGE_REJECT;
                  hostdata->outgoing_len = 1;
                  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
                  hostdata->state = S_CONNECTED;
            }
            spin_unlock_irqrestore(&hostdata->lock, flags);
            break;

/* Note: this interrupt will occur only after a LEVEL2 command */

      case CSR_SEL_XFER_DONE:

/* Make sure that reselection is enabled at this point - it may
 * have been turned off for the command that just completed.
 */

            write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
            if (phs == 0x60) {
                  DB(DB_INTR, printk("SX-DONE-%ld", cmd->serial_number))
                      cmd->SCp.Message = COMMAND_COMPLETE;
                  lun = read_wd33c93(regs, WD_TARGET_LUN);
                  DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
                      hostdata->connected = NULL;
                  hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
                  hostdata->state = S_UNCONNECTED;
                  if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
                        cmd->SCp.Status = lun;
                  if (cmd->cmnd[0] == REQUEST_SENSE
                      && cmd->SCp.Status != GOOD)
                        cmd->result =
                            (cmd->
                             result & 0x00ffff) | (DID_ERROR << 16);
                  else
                        cmd->result =
                            cmd->SCp.Status | (cmd->SCp.Message << 8);
                  cmd->scsi_done(cmd);

/* We are no longer  connected to a target - check to see if
 * there are commands waiting to be executed.
 */
                  spin_unlock_irqrestore(&hostdata->lock, flags);
                  wd33c93_execute(instance);
            } else {
                  printk
                      ("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",
                       asr, sr, phs, cmd->serial_number);
                  spin_unlock_irqrestore(&hostdata->lock, flags);
            }
            break;

/* Note: this interrupt will occur only after a LEVEL2 command */

      case CSR_SDP:
            DB(DB_INTR, printk("SDP"))
                hostdata->state = S_RUNNING_LEVEL2;
            write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
            write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
            spin_unlock_irqrestore(&hostdata->lock, flags);
            break;

      case CSR_XFER_DONE | PHS_MESS_OUT:
      case CSR_UNEXP | PHS_MESS_OUT:
      case CSR_SRV_REQ | PHS_MESS_OUT:
            DB(DB_INTR, printk("MSG_OUT="))

/* To get here, we've probably requested MESSAGE_OUT and have
 * already put the correct bytes in outgoing_msg[] and filled
 * in outgoing_len. We simply send them out to the SCSI bus.
 * Sometimes we get MESSAGE_OUT phase when we're not expecting
 * it - like when our SDTR message is rejected by a target. Some
 * targets send the REJECT before receiving all of the extended
 * message, and then seem to go back to MESSAGE_OUT for a byte
 * or two. Not sure why, or if I'm doing something wrong to
 * cause this to happen. Regardless, it seems that sending
 * NOP messages in these situations results in no harm and
 * makes everyone happy.
 */
                if (hostdata->outgoing_len == 0) {
                  hostdata->outgoing_len = 1;
                  hostdata->outgoing_msg[0] = NOP;
            }
            transfer_pio(regs, hostdata->outgoing_msg,
                       hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
            DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
                hostdata->outgoing_len = 0;
            hostdata->state = S_CONNECTED;
            spin_unlock_irqrestore(&hostdata->lock, flags);
            break;

      case CSR_UNEXP_DISC:

/* I think I've seen this after a request-sense that was in response
 * to an error condition, but not sure. We certainly need to do
 * something when we get this interrupt - the question is 'what?'.
 * Let's think positively, and assume some command has finished
 * in a legal manner (like a command that provokes a request-sense),
 * so we treat it as a normal command-complete-disconnect.
 */

/* Make sure that reselection is enabled at this point - it may
 * have been turned off for the command that just completed.
 */

            write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
            if (cmd == NULL) {
                  printk(" - Already disconnected! ");
                  hostdata->state = S_UNCONNECTED;
                  spin_unlock_irqrestore(&hostdata->lock, flags);
                  return;
            }
            DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->serial_number))
                hostdata->connected = NULL;
            hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
            hostdata->state = S_UNCONNECTED;
            if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
                  cmd->result =
                      (cmd->result & 0x00ffff) | (DID_ERROR << 16);
            else
                  cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
            cmd->scsi_done(cmd);

/* We are no longer connected to a target - check to see if
 * there are commands waiting to be executed.
 */
            /* look above for comments on scsi_done() */
            spin_unlock_irqrestore(&hostdata->lock, flags);
            wd33c93_execute(instance);
            break;

      case CSR_DISC:

/* Make sure that reselection is enabled at this point - it may
 * have been turned off for the command that just completed.
 */

            write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
            DB(DB_INTR, printk("DISC-%ld", cmd->serial_number))
                if (cmd == NULL) {
                  printk(" - Already disconnected! ");
                  hostdata->state = S_UNCONNECTED;
            }
            switch (hostdata->state) {
            case S_PRE_CMP_DISC:
                  hostdata->connected = NULL;
                  hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
                  hostdata->state = S_UNCONNECTED;
                  DB(DB_INTR, printk(":%d", cmd->SCp.Status))
                      if (cmd->cmnd[0] == REQUEST_SENSE
                        && cmd->SCp.Status != GOOD)
                        cmd->result =
                            (cmd->
                             result & 0x00ffff) | (DID_ERROR << 16);
                  else
                        cmd->result =
                            cmd->SCp.Status | (cmd->SCp.Message << 8);
                  cmd->scsi_done(cmd);
                  break;
            case S_PRE_TMP_DISC:
            case S_RUNNING_LEVEL2:
                  cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
                  hostdata->disconnected_Q = cmd;
                  hostdata->connected = NULL;
                  hostdata->state = S_UNCONNECTED;

#ifdef PROC_STATISTICS
                  hostdata->disc_done_cnt[cmd->device->id]++;
#endif

                  break;
            default:
                  printk("*** Unexpected DISCONNECT interrupt! ***");
                  hostdata->state = S_UNCONNECTED;
            }

/* We are no longer connected to a target - check to see if
 * there are commands waiting to be executed.
 */
            spin_unlock_irqrestore(&hostdata->lock, flags);
            wd33c93_execute(instance);
            break;

      case CSR_RESEL_AM:
      case CSR_RESEL:
            DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))

                /* Old chips (pre -A ???) don't have advanced features and will
                 * generate CSR_RESEL.  In that case we have to extract the LUN the
                 * hard way (see below).
                 * First we have to make sure this reselection didn't
                 * happen during Arbitration/Selection of some other device.
                 * If yes, put losing command back on top of input_Q.
                 */
                if (hostdata->level2 <= L2_NONE) {

                  if (hostdata->selecting) {
                        cmd = (struct scsi_cmnd *) hostdata->selecting;
                        hostdata->selecting = NULL;
                        hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
                        cmd->host_scribble =
                            (uchar *) hostdata->input_Q;
                        hostdata->input_Q = cmd;
                  }
            }

            else {

                  if (cmd) {
                        if (phs == 0x00) {
                              hostdata->busy[cmd->device->id] &=
                                  ~(1 << cmd->device->lun);
                              cmd->host_scribble =
                                  (uchar *) hostdata->input_Q;
                              hostdata->input_Q = cmd;
                        } else {
                              printk
                                  ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
                                   asr, sr, phs);
                              while (1)
                                    printk("\r");
                        }
                  }

            }

            /* OK - find out which device reselected us. */

            id = read_wd33c93(regs, WD_SOURCE_ID);
            id &= SRCID_MASK;

            /* and extract the lun from the ID message. (Note that we don't
             * bother to check for a valid message here - I guess this is
             * not the right way to go, but...)
             */

            if (sr == CSR_RESEL_AM) {
                  lun = read_wd33c93(regs, WD_DATA);
                  if (hostdata->level2 < L2_RESELECT)
                        write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
                  lun &= 7;
            } else {
                  /* Old chip; wait for msgin phase to pick up the LUN. */
                  for (lun = 255; lun; lun--) {
                        if ((asr = read_aux_stat(regs)) & ASR_INT)
                              break;
                        udelay(10);
                  }
                  if (!(asr & ASR_INT)) {
                        printk
                            ("wd33c93: Reselected without IDENTIFY\n");
                        lun = 0;
                  } else {
                        /* Verify this is a change to MSG_IN and read the message */
                        sr = read_wd33c93(regs, WD_SCSI_STATUS);
                        udelay(7);
                        if (sr == (CSR_ABORT | PHS_MESS_IN) ||
                            sr == (CSR_UNEXP | PHS_MESS_IN) ||
                            sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
                              /* Got MSG_IN, grab target LUN */
                              lun = read_1_byte(regs);
                              /* Now we expect a 'paused with ACK asserted' int.. */
                              asr = read_aux_stat(regs);
                              if (!(asr & ASR_INT)) {
                                    udelay(10);
                                    asr = read_aux_stat(regs);
                                    if (!(asr & ASR_INT))
                                          printk
                                              ("wd33c93: No int after LUN on RESEL (%02x)\n",
                                               asr);
                              }
                              sr = read_wd33c93(regs, WD_SCSI_STATUS);
                              udelay(7);
                              if (sr != CSR_MSGIN)
                                    printk
                                        ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
                                         sr);
                              lun &= 7;
                              write_wd33c93_cmd(regs,
                                            WD_CMD_NEGATE_ACK);
                        } else {
                              printk
                                  ("wd33c93: Not MSG_IN on reselect (%02x)\n",
                                   sr);
                              lun = 0;
                        }
                  }
            }

            /* Now we look for the command that's reconnecting. */

            cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
            patch = NULL;
            while (cmd) {
                  if (id == cmd->device->id && lun == cmd->device->lun)
                        break;
                  patch = cmd;
                  cmd = (struct scsi_cmnd *) cmd->host_scribble;
            }

            /* Hmm. Couldn't find a valid command.... What to do? */

            if (!cmd) {
                  printk
                      ("---TROUBLE: target %d.%d not in disconnect queue---",
                       id, lun);
                  spin_unlock_irqrestore(&hostdata->lock, flags);
                  return;
            }

            /* Ok, found the command - now start it up again. */

            if (patch)
                  patch->host_scribble = cmd->host_scribble;
            else
                  hostdata->disconnected_Q =
                      (struct scsi_cmnd *) cmd->host_scribble;
            hostdata->connected = cmd;

            /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
             * because these things are preserved over a disconnect.
             * But we DO need to fix the DPD bit so it's correct for this command.
             */

            if (cmd->sc_data_direction == DMA_TO_DEVICE)
                  write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
            else
                  write_wd33c93(regs, WD_DESTINATION_ID,
                              cmd->device->id | DSTID_DPD);
            if (hostdata->level2 >= L2_RESELECT) {
                  write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */
                  write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
                  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
                  hostdata->state = S_RUNNING_LEVEL2;
            } else
                  hostdata->state = S_CONNECTED;

            DB(DB_INTR, printk("-%ld", cmd->serial_number))
                spin_unlock_irqrestore(&hostdata->lock, flags);
            break;

      default:
            printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
            spin_unlock_irqrestore(&hostdata->lock, flags);
      }

      DB(DB_INTR, printk("} "))

}

static void
reset_wd33c93(struct Scsi_Host *instance)
{
      struct WD33C93_hostdata *hostdata =
          (struct WD33C93_hostdata *) instance->hostdata;
      const wd33c93_regs regs = hostdata->regs;
      uchar sr;

#ifdef CONFIG_SGI_IP22
      {
            int busycount = 0;
            extern void sgiwd93_reset(unsigned long);
            /* wait 'til the chip gets some time for us */
            while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
                  udelay (10);
      /*
       * there are scsi devices out there, which manage to lock up
       * the wd33c93 in a busy condition. In this state it won't
       * accept the reset command. The only way to solve this is to
       * give the chip a hardware reset (if possible). The code below
       * does this for the SGI Indy, where this is possible
       */
      /* still busy ? */
      if (read_aux_stat(regs) & ASR_BSY)
            sgiwd93_reset(instance->base); /* yeah, give it the hard one */
      }
#endif

      write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
                  instance->this_id | hostdata->clock_freq);
      write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
      write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
                  calc_sync_xfer(hostdata->default_sx_per / 4,
                             DEFAULT_SX_OFF, 0, hostdata->sx_table));
      write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);


#ifdef CONFIG_MVME147_SCSI
      udelay(25);       /* The old wd33c93 on MVME147 needs this, at least */
#endif

      while (!(read_aux_stat(regs) & ASR_INT))
            ;
      sr = read_wd33c93(regs, WD_SCSI_STATUS);

      hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
      if (sr == 0x00)
            hostdata->chip = C_WD33C93;
      else if (sr == 0x01) {
            write_wd33c93(regs, WD_QUEUE_TAG, 0xa5);  /* any random number */
            sr = read_wd33c93(regs, WD_QUEUE_TAG);
            if (sr == 0xa5) {
                  hostdata->chip = C_WD33C93B;
                  write_wd33c93(regs, WD_QUEUE_TAG, 0);
            } else
                  hostdata->chip = C_WD33C93A;
      } else
            hostdata->chip = C_UNKNOWN_CHIP;

      if (hostdata->chip != C_WD33C93B)   /* Fast SCSI unavailable */
            hostdata->fast = 0;

      write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
      write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
}

int
wd33c93_host_reset(struct scsi_cmnd * SCpnt)
{
      struct Scsi_Host *instance;
      struct WD33C93_hostdata *hostdata;
      int i;

      instance = SCpnt->device->host;
      hostdata = (struct WD33C93_hostdata *) instance->hostdata;

      printk("scsi%d: reset. ", instance->host_no);
      disable_irq(instance->irq);

      hostdata->dma_stop(instance, NULL, 0);
      for (i = 0; i < 8; i++) {
            hostdata->busy[i] = 0;
            hostdata->sync_xfer[i] =
                  calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
                              0, hostdata->sx_table);
            hostdata->sync_stat[i] = SS_UNSET;  /* using default sync values */
      }
      hostdata->input_Q = NULL;
      hostdata->selecting = NULL;
      hostdata->connected = NULL;
      hostdata->disconnected_Q = NULL;
      hostdata->state = S_UNCONNECTED;
      hostdata->dma = D_DMA_OFF;
      hostdata->incoming_ptr = 0;
      hostdata->outgoing_len = 0;

      reset_wd33c93(instance);
      SCpnt->result = DID_RESET << 16;
      enable_irq(instance->irq);
      return SUCCESS;
}

int
wd33c93_abort(struct scsi_cmnd * cmd)
{
      struct Scsi_Host *instance;
      struct WD33C93_hostdata *hostdata;
      wd33c93_regs regs;
      struct scsi_cmnd *tmp, *prev;

      disable_irq(cmd->device->host->irq);

      instance = cmd->device->host;
      hostdata = (struct WD33C93_hostdata *) instance->hostdata;
      regs = hostdata->regs;

/*
 * Case 1 : If the command hasn't been issued yet, we simply remove it
 *     from the input_Q.
 */

      tmp = (struct scsi_cmnd *) hostdata->input_Q;
      prev = NULL;
      while (tmp) {
            if (tmp == cmd) {
                  if (prev)
                        prev->host_scribble = cmd->host_scribble;
                  else
                        hostdata->input_Q =
                            (struct scsi_cmnd *) cmd->host_scribble;
                  cmd->host_scribble = NULL;
                  cmd->result = DID_ABORT << 16;
                  printk
                      ("scsi%d: Abort - removing command %ld from input_Q. ",
                       instance->host_no, cmd->serial_number);
                  enable_irq(cmd->device->host->irq);
                  cmd->scsi_done(cmd);
                  return SUCCESS;
            }
            prev = tmp;
            tmp = (struct scsi_cmnd *) tmp->host_scribble;
      }

/*
 * Case 2 : If the command is connected, we're going to fail the abort
 *     and let the high level SCSI driver retry at a later time or
 *     issue a reset.
 *
 *     Timeouts, and therefore aborted commands, will be highly unlikely
 *     and handling them cleanly in this situation would make the common
 *     case of noresets less efficient, and would pollute our code.  So,
 *     we fail.
 */

      if (hostdata->connected == cmd) {
            uchar sr, asr;
            unsigned long timeout;

            printk("scsi%d: Aborting connected command %ld - ",
                   instance->host_no, cmd->serial_number);

            printk("stopping DMA - ");
            if (hostdata->dma == D_DMA_RUNNING) {
                  hostdata->dma_stop(instance, cmd, 0);
                  hostdata->dma = D_DMA_OFF;
            }

            printk("sending wd33c93 ABORT command - ");
            write_wd33c93(regs, WD_CONTROL,
                        CTRL_IDI | CTRL_EDI | CTRL_POLLED);
            write_wd33c93_cmd(regs, WD_CMD_ABORT);

/* Now we have to attempt to flush out the FIFO... */

            printk("flushing fifo - ");
            timeout = 1000000;
            do {
                  asr = read_aux_stat(regs);
                  if (asr & ASR_DBR)
                        read_wd33c93(regs, WD_DATA);
            } while (!(asr & ASR_INT) && timeout-- > 0);
            sr = read_wd33c93(regs, WD_SCSI_STATUS);
            printk
                ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
                 asr, sr, read_wd33c93_count(regs), timeout);

            /*
             * Abort command processed.
             * Still connected.
             * We must disconnect.
             */

            printk("sending wd33c93 DISCONNECT command - ");
            write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);

            timeout = 1000000;
            asr = read_aux_stat(regs);
            while ((asr & ASR_CIP) && timeout-- > 0)
                  asr = read_aux_stat(regs);
            sr = read_wd33c93(regs, WD_SCSI_STATUS);
            printk("asr=%02x, sr=%02x.", asr, sr);

            hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
            hostdata->connected = NULL;
            hostdata->state = S_UNCONNECTED;
            cmd->result = DID_ABORT << 16;

/*      sti();*/
            wd33c93_execute(instance);

            enable_irq(cmd->device->host->irq);
            cmd->scsi_done(cmd);
            return SUCCESS;
      }

/*
 * Case 3: If the command is currently disconnected from the bus,
 * we're not going to expend much effort here: Let's just return
 * an ABORT_SNOOZE and hope for the best...
 */

      tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
      while (tmp) {
            if (tmp == cmd) {
                  printk
                      ("scsi%d: Abort - command %ld found on disconnected_Q - ",
                       instance->host_no, cmd->serial_number);
                  printk("Abort SNOOZE. ");
                  enable_irq(cmd->device->host->irq);
                  return FAILED;
            }
            tmp = (struct scsi_cmnd *) tmp->host_scribble;
      }

/*
 * Case 4 : If we reached this point, the command was not found in any of
 *     the queues.
 *
 * We probably reached this point because of an unlikely race condition
 * between the command completing successfully and the abortion code,
 * so we won't panic, but we will notify the user in case something really
 * broke.
 */

/*   sti();*/
      wd33c93_execute(instance);

      enable_irq(cmd->device->host->irq);
      printk("scsi%d: warning : SCSI command probably completed successfully"
             "         before abortion. ", instance->host_no);
      return FAILED;
}

#define MAX_WD33C93_HOSTS 4
#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
#define SETUP_BUFFER_SIZE 200
static char setup_buffer[SETUP_BUFFER_SIZE];
static char setup_used[MAX_SETUP_ARGS];
static int done_setup = 0;

static int
wd33c93_setup(char *str)
{
      int i;
      char *p1, *p2;

      /* The kernel does some processing of the command-line before calling
       * this function: If it begins with any decimal or hex number arguments,
       * ints[0] = how many numbers found and ints[1] through [n] are the values
       * themselves. str points to where the non-numeric arguments (if any)
       * start: We do our own parsing of those. We construct synthetic 'nosync'
       * keywords out of numeric args (to maintain compatibility with older
       * versions) and then add the rest of the arguments.
       */

      p1 = setup_buffer;
      *p1 = '\0';
      if (str)
            strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
      setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
      p1 = setup_buffer;
      i = 0;
      while (*p1 && (i < MAX_SETUP_ARGS)) {
            p2 = strchr(p1, ',');
            if (p2) {
                  *p2 = '\0';
                  if (p1 != p2)
                        setup_args[i] = p1;
                  p1 = p2 + 1;
                  i++;
            } else {
                  setup_args[i] = p1;
                  break;
            }
      }
      for (i = 0; i < MAX_SETUP_ARGS; i++)
            setup_used[i] = 0;
      done_setup = 1;

      return 1;
}
__setup("wd33c93=", wd33c93_setup);

/* check_setup_args() returns index if key found, 0 if not
 */
static int
check_setup_args(char *key, int *flags, int *val, char *buf)
{
      int x;
      char *cp;

      for (x = 0; x < MAX_SETUP_ARGS; x++) {
            if (setup_used[x])
                  continue;
            if (!strncmp(setup_args[x], key, strlen(key)))
                  break;
            if (!strncmp(setup_args[x], "next", strlen("next")))
                  return 0;
      }
      if (x == MAX_SETUP_ARGS)
            return 0;
      setup_used[x] = 1;
      cp = setup_args[x] + strlen(key);
      *val = -1;
      if (*cp != ':')
            return ++x;
      cp++;
      if ((*cp >= '0') && (*cp <= '9')) {
            *val = simple_strtoul(cp, NULL, 0);
      }
      return ++x;
}

/*
 * Calculate internal data-transfer-clock cycle from input-clock
 * frequency (/MHz) and fill 'sx_table'.
 *
 * The original driver used to rely on a fixed sx_table, containing periods
 * for (only) the lower limits of the respective input-clock-frequency ranges
 * (8-10/12-15/16-20 MHz). Although it seems, that no problems ocurred with
 * this setting so far, it might be desirable to adjust the transfer periods
 * closer to the really attached, possibly 25% higher, input-clock, since
 * - the wd33c93 may really use a significant shorter period, than it has
 *   negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
 *   instead).
 * - the wd33c93 may ask the target for a lower transfer rate, than the target
 *   is capable of (eg. negotiating for an assumed minimum of 252ns instead of
 *   possible 200ns, which indeed shows up in tests as an approx. 10% lower
 *   transfer rate).
 */
static inline unsigned int
round_4(unsigned int x)
{
      switch (x & 3) {
            case 1: --x;
                  break;
            case 2: ++x;
            case 3: ++x;
      }
      return x;
}

static void
calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
{
      unsigned int d, i;
      if (mhz < 11)
            d = 2;      /* divisor for  8-10 MHz input-clock */
      else if (mhz < 16)
            d = 3;      /* divisor for 12-15 MHz input-clock */
      else
            d = 4;      /* divisor for 16-20 MHz input-clock */

      d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */

      sx_table[0].period_ns = 1;
      sx_table[0].reg_value = 0x20;
      for (i = 1; i < 8; i++) {
            sx_table[i].period_ns = round_4((i+1)*d / 100);
            sx_table[i].reg_value = (i+1)*0x10;
      }
      sx_table[7].reg_value = 0;
      sx_table[8].period_ns = 0;
      sx_table[8].reg_value = 0;
}

/*
 * check and, maybe, map an init- or "clock:"- argument.
 */
static uchar
set_clk_freq(int freq, int *mhz)
{
      int x = freq;
      if (WD33C93_FS_8_10 == freq)
            freq = 8;
      else if (WD33C93_FS_12_15 == freq)
            freq = 12;
      else if (WD33C93_FS_16_20 == freq)
            freq = 16;
      else if (freq > 7 && freq < 11)
            x = WD33C93_FS_8_10;
            else if (freq > 11 && freq < 16)
            x = WD33C93_FS_12_15;
            else if (freq > 15 && freq < 21)
            x = WD33C93_FS_16_20;
      else {
                  /* Hmm, wouldn't it be safer to assume highest freq here? */
            x = WD33C93_FS_8_10;
            freq = 8;
      }
      *mhz = freq;
      return x;
}

/*
 * to be used with the resync: fast: ... options
 */
static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
{
      int i;
      for (i = 0; i < 8; i++)
            if (mask & (1 << i))
                  hd->sync_stat[i] = SS_UNSET;
}

void
wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
           dma_setup_t setup, dma_stop_t stop, int clock_freq)
{
      struct WD33C93_hostdata *hostdata;
      int i;
      int flags;
      int val;
      char buf[32];

      if (!done_setup && setup_strings)
            wd33c93_setup(setup_strings);

      hostdata = (struct WD33C93_hostdata *) instance->hostdata;

      hostdata->regs = regs;
      hostdata->clock_freq = set_clk_freq(clock_freq, &i);
      calc_sx_table(i, hostdata->sx_table);
      hostdata->dma_setup = setup;
      hostdata->dma_stop = stop;
      hostdata->dma_bounce_buffer = NULL;
      hostdata->dma_bounce_len = 0;
      for (i = 0; i < 8; i++) {
            hostdata->busy[i] = 0;
            hostdata->sync_xfer[i] =
                  calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
                              0, hostdata->sx_table);
            hostdata->sync_stat[i] = SS_UNSET;  /* using default sync values */
#ifdef PROC_STATISTICS
            hostdata->cmd_cnt[i] = 0;
            hostdata->disc_allowed_cnt[i] = 0;
            hostdata->disc_done_cnt[i] = 0;
#endif
      }
      hostdata->input_Q = NULL;
      hostdata->selecting = NULL;
      hostdata->connected = NULL;
      hostdata->disconnected_Q = NULL;
      hostdata->state = S_UNCONNECTED;
      hostdata->dma = D_DMA_OFF;
      hostdata->level2 = L2_BASIC;
      hostdata->disconnect = DIS_ADAPTIVE;
      hostdata->args = DEBUG_DEFAULTS;
      hostdata->incoming_ptr = 0;
      hostdata->outgoing_len = 0;
      hostdata->default_sx_per = DEFAULT_SX_PER;
      hostdata->no_sync = 0xff;     /* sync defaults to off */
      hostdata->no_dma = 0;   /* default is DMA enabled */
      hostdata->fast = 0;     /* default is Fast SCSI transfers disabled */
      hostdata->dma_mode = CTRL_DMA;      /* default is Single Byte DMA */

#ifdef PROC_INTERFACE
      hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
          PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
#ifdef PROC_STATISTICS
      hostdata->dma_cnt = 0;
      hostdata->pio_cnt = 0;
      hostdata->int_cnt = 0;
#endif
#endif

      if (check_setup_args("clock", &flags, &val, buf)) {
            hostdata->clock_freq = set_clk_freq(val, &val);
            calc_sx_table(val, hostdata->sx_table);
      }

      if (check_setup_args("nosync", &flags, &val, buf))
            hostdata->no_sync = val;

      if (check_setup_args("nodma", &flags, &val, buf))
            hostdata->no_dma = (val == -1) ? 1 : val;

      if (check_setup_args("period", &flags, &val, buf))
            hostdata->default_sx_per =
                hostdata->sx_table[round_period((unsigned int) val,
                                                hostdata->sx_table)].period_ns;

      if (check_setup_args("disconnect", &flags, &val, buf)) {
            if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
                  hostdata->disconnect = val;
            else
                  hostdata->disconnect = DIS_ADAPTIVE;
      }

      if (check_setup_args("level2", &flags, &val, buf))
            hostdata->level2 = val;

      if (check_setup_args("debug", &flags, &val, buf))
            hostdata->args = val & DB_MASK;

      if (check_setup_args("burst", &flags, &val, buf))
            hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;

      if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
            && check_setup_args("fast", &flags, &val, buf))
            hostdata->fast = !!val;

      if ((i = check_setup_args("next", &flags, &val, buf))) {
            while (i)
                  setup_used[--i] = 1;
      }
#ifdef PROC_INTERFACE
      if (check_setup_args("proc", &flags, &val, buf))
            hostdata->proc = val;
#endif

      spin_lock_irq(&hostdata->lock);
      reset_wd33c93(instance);
      spin_unlock_irq(&hostdata->lock);

      printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
             instance->host_no,
             (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
                                              C_WD33C93A) ?
             "WD33c93A" : (hostdata->chip ==
                       C_WD33C93B) ? "WD33c93B" : "unknown",
             hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
#ifdef DEBUGGING_ON
      printk(" debug_flags=0x%02x\n", hostdata->args);
#else
      printk(" debugging=OFF\n");
#endif
      printk("           setup_args=");
      for (i = 0; i < MAX_SETUP_ARGS; i++)
            printk("%s,", setup_args[i]);
      printk("\n");
      printk("           Version %s - %s, Compiled %s at %s\n",
             WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);
}

int
wd33c93_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in)
{

#ifdef PROC_INTERFACE

      char *bp;
      char tbuf[128];
      struct WD33C93_hostdata *hd;
      struct scsi_cmnd *cmd;
      int x;
      static int stop = 0;

      hd = (struct WD33C93_hostdata *) instance->hostdata;

/* If 'in' is TRUE we need to _read_ the proc file. We accept the following
 * keywords (same format as command-line, but arguments are not optional):
 *    debug
 *    disconnect
 *    period
 *    resync
 *    proc
 *    nodma
 *    level2
 *    burst
 *    fast
 *    nosync
 */

      if (in) {
            buf[len] = '\0';
            for (bp = buf; *bp; ) {
                  while (',' == *bp || ' ' == *bp)
                        ++bp;
            if (!strncmp(bp, "debug:", 6)) {
                        hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
            } else if (!strncmp(bp, "disconnect:", 11)) {
                        x = simple_strtoul(bp+11, &bp, 0);
                  if (x < DIS_NEVER || x > DIS_ALWAYS)
                        x = DIS_ADAPTIVE;
                  hd->disconnect = x;
            } else if (!strncmp(bp, "period:", 7)) {
                  x = simple_strtoul(bp+7, &bp, 0);
                  hd->default_sx_per =
                        hd->sx_table[round_period((unsigned int) x,
                                            hd->sx_table)].period_ns;
            } else if (!strncmp(bp, "resync:", 7)) {
                        set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
            } else if (!strncmp(bp, "proc:", 5)) {
                        hd->proc = simple_strtoul(bp+5, &bp, 0);
            } else if (!strncmp(bp, "nodma:", 6)) {
                        hd->no_dma = simple_strtoul(bp+6, &bp, 0);
            } else if (!strncmp(bp, "level2:", 7)) {
                        hd->level2 = simple_strtoul(bp+7, &bp, 0);
                  } else if (!strncmp(bp, "burst:", 6)) {
                        hd->dma_mode =
                              simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
                  } else if (!strncmp(bp, "fast:", 5)) {
                        x = !!simple_strtol(bp+5, &bp, 0);
                        if (x != hd->fast)
                              set_resync(hd, 0xff);
                        hd->fast = x;
                  } else if (!strncmp(bp, "nosync:", 7)) {
                        x = simple_strtoul(bp+7, &bp, 0);
                        set_resync(hd, x ^ hd->no_sync);
                        hd->no_sync = x;
                  } else {
                        break; /* unknown keyword,syntax-error,... */
                  }
            }
            return len;
      }

      spin_lock_irq(&hd->lock);
      bp = buf;
      *bp = '\0';
      if (hd->proc & PR_VERSION) {
            sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s",
                  WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);
            strcat(bp, tbuf);
      }
      if (hd->proc & PR_INFO) {
            sprintf(tbuf, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
                  " dma_mode=%02x fast=%d",
                  hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
            strcat(bp, tbuf);
            strcat(bp, "\nsync_xfer[] =       ");
            for (x = 0; x < 7; x++) {
                  sprintf(tbuf, "\t%02x", hd->sync_xfer[x]);
                  strcat(bp, tbuf);
            }
            strcat(bp, "\nsync_stat[] =       ");
            for (x = 0; x < 7; x++) {
                  sprintf(tbuf, "\t%02x", hd->sync_stat[x]);
                  strcat(bp, tbuf);
            }
      }
#ifdef PROC_STATISTICS
      if (hd->proc & PR_STATISTICS) {
            strcat(bp, "\ncommands issued:    ");
            for (x = 0; x < 7; x++) {
                  sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]);
                  strcat(bp, tbuf);
            }
            strcat(bp, "\ndisconnects allowed:");
            for (x = 0; x < 7; x++) {
                  sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]);
                  strcat(bp, tbuf);
            }
            strcat(bp, "\ndisconnects done:   ");
            for (x = 0; x < 7; x++) {
                  sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]);
                  strcat(bp, tbuf);
            }
            sprintf(tbuf,
                  "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
                  hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
            strcat(bp, tbuf);
      }
#endif
      if (hd->proc & PR_CONNECTED) {
            strcat(bp, "\nconnected:     ");
            if (hd->connected) {
                  cmd = (struct scsi_cmnd *) hd->connected;
                  sprintf(tbuf, " %ld-%d:%d(%02x)",
                        cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
                  strcat(bp, tbuf);
            }
      }
      if (hd->proc & PR_INPUTQ) {
            strcat(bp, "\ninput_Q:       ");
            cmd = (struct scsi_cmnd *) hd->input_Q;
            while (cmd) {
                  sprintf(tbuf, " %ld-%d:%d(%02x)",
                        cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
                  strcat(bp, tbuf);
                  cmd = (struct scsi_cmnd *) cmd->host_scribble;
            }
      }
      if (hd->proc & PR_DISCQ) {
            strcat(bp, "\ndisconnected_Q:");
            cmd = (struct scsi_cmnd *) hd->disconnected_Q;
            while (cmd) {
                  sprintf(tbuf, " %ld-%d:%d(%02x)",
                        cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
                  strcat(bp, tbuf);
                  cmd = (struct scsi_cmnd *) cmd->host_scribble;
            }
      }
      strcat(bp, "\n");
      spin_unlock_irq(&hd->lock);
      *start = buf;
      if (stop) {
            stop = 0;
            return 0;
      }
      if (off > 0x40000)      /* ALWAYS stop after 256k bytes have been read */
            stop = 1;
      if (hd->proc & PR_STOP) /* stop every other time */
            stop = 1;
      return strlen(bp);

#else                   /* PROC_INTERFACE */

      return 0;

#endif                        /* PROC_INTERFACE */

}

void
wd33c93_release(void)
{
}

EXPORT_SYMBOL(wd33c93_host_reset);
EXPORT_SYMBOL(wd33c93_init);
EXPORT_SYMBOL(wd33c93_release);
EXPORT_SYMBOL(wd33c93_abort);
EXPORT_SYMBOL(wd33c93_queuecommand);
EXPORT_SYMBOL(wd33c93_intr);
EXPORT_SYMBOL(wd33c93_proc_info);

Generated by  Doxygen 1.6.0   Back to index