Logo Search packages:      
Sourcecode: linux version File versions  Download package

setup_32.c

/*
 *  Copyright (C) 1995  Linus Torvalds
 *
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *
 *  Memory region support
 *    David Parsons <orc@pell.chi.il.us>, July-August 1999
 *
 *  Added E820 sanitization routine (removes overlapping memory regions);
 *  Brian Moyle <bmoyle@mvista.com>, February 2001
 *
 * Moved CPU detection code to cpu/${cpu}.c
 *    Patrick Mochel <mochel@osdl.org>, March 2002
 *
 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
 *  Alex Achenbach <xela@slit.de>, December 2002.
 *
 */

/*
 * This file handles the architecture-dependent parts of initialization
 */

#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/acpi.h>
#include <linux/apm_bios.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/console.h>
#include <linux/mca.h>
#include <linux/root_dev.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/efi.h>
#include <linux/init.h>
#include <linux/edd.h>
#include <linux/nodemask.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/dmi.h>
#include <linux/pfn.h>

#include <video/edid.h>

#include <asm/apic.h>
#include <asm/e820.h>
#include <asm/mpspec.h>
#include <asm/mmzone.h>
#include <asm/setup.h>
#include <asm/arch_hooks.h>
#include <asm/sections.h>
#include <asm/io_apic.h>
#include <asm/ist.h>
#include <asm/io.h>
#include <asm/vmi.h>
#include <setup_arch.h>
#include <bios_ebda.h>
#include <asm/cacheflush.h>

/* This value is set up by the early boot code to point to the value
   immediately after the boot time page tables.  It contains a *physical*
   address, and must not be in the .bss segment! */
unsigned long init_pg_tables_end __initdata = ~0UL;

int disable_pse __cpuinitdata = 0;

/*
 * Machine setup..
 */
extern struct resource code_resource;
extern struct resource data_resource;
extern struct resource bss_resource;

/* cpu data as detected by the assembly code in head.S */
struct cpuinfo_x86 new_cpu_data __cpuinitdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
/* common cpu data for all cpus */
struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
EXPORT_SYMBOL(boot_cpu_data);

unsigned long mmu_cr4_features;

/* for MCA, but anyone else can use it if they want */
unsigned int machine_id;
unsigned int machine_submodel_id;
unsigned int BIOS_revision;
unsigned int mca_pentium_flag;

/* Boot loader ID as an integer, for the benefit of proc_dointvec */
int bootloader_type;

/* user-defined highmem size */
static unsigned int highmem_pages = -1;

/*
 * Setup options
 */
struct screen_info screen_info;
EXPORT_SYMBOL(screen_info);
struct apm_info apm_info;
EXPORT_SYMBOL(apm_info);
struct edid_info edid_info;
EXPORT_SYMBOL_GPL(edid_info);
struct ist_info ist_info;
#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
      defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
EXPORT_SYMBOL(ist_info);
#endif

extern void early_cpu_init(void);
extern int root_mountflags;

unsigned long saved_videomode;

#define RAMDISK_IMAGE_START_MASK    0x07FF
#define RAMDISK_PROMPT_FLAG         0x8000
#define RAMDISK_LOAD_FLAG           0x4000      

static char __initdata command_line[COMMAND_LINE_SIZE];

struct boot_params __initdata boot_params;

#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
struct edd edd;
#ifdef CONFIG_EDD_MODULE
EXPORT_SYMBOL(edd);
#endif
/**
 * copy_edd() - Copy the BIOS EDD information
 *              from boot_params into a safe place.
 *
 */
static inline void copy_edd(void)
{
     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
          sizeof(edd.mbr_signature));
     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
     edd.edd_info_nr = boot_params.eddbuf_entries;
}
#else
static inline void copy_edd(void)
{
}
#endif

int __initdata user_defined_memmap = 0;

/*
 * "mem=nopentium" disables the 4MB page tables.
 * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM
 * to <mem>, overriding the bios size.
 * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from
 * <start> to <start>+<mem>, overriding the bios size.
 *
 * HPA tells me bootloaders need to parse mem=, so no new
 * option should be mem=  [also see Documentation/i386/boot.txt]
 */
static int __init parse_mem(char *arg)
{
      if (!arg)
            return -EINVAL;

      if (strcmp(arg, "nopentium") == 0) {
            clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
            disable_pse = 1;
      } else {
            /* If the user specifies memory size, we
             * limit the BIOS-provided memory map to
             * that size. exactmap can be used to specify
             * the exact map. mem=number can be used to
             * trim the existing memory map.
             */
            unsigned long long mem_size;
 
            mem_size = memparse(arg, &arg);
            limit_regions(mem_size);
            user_defined_memmap = 1;
      }
      return 0;
}
early_param("mem", parse_mem);

#ifdef CONFIG_PROC_VMCORE
/* elfcorehdr= specifies the location of elf core header
 * stored by the crashed kernel.
 */
static int __init parse_elfcorehdr(char *arg)
{
      if (!arg)
            return -EINVAL;

      elfcorehdr_addr = memparse(arg, &arg);
      return 0;
}
early_param("elfcorehdr", parse_elfcorehdr);
#endif /* CONFIG_PROC_VMCORE */

/*
 * highmem=size forces highmem to be exactly 'size' bytes.
 * This works even on boxes that have no highmem otherwise.
 * This also works to reduce highmem size on bigger boxes.
 */
static int __init parse_highmem(char *arg)
{
      if (!arg)
            return -EINVAL;

      highmem_pages = memparse(arg, &arg) >> PAGE_SHIFT;
      return 0;
}
early_param("highmem", parse_highmem);

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the
 * vmalloc area - the default is 128m.
 */
static int __init parse_vmalloc(char *arg)
{
      if (!arg)
            return -EINVAL;

      __VMALLOC_RESERVE = memparse(arg, &arg);
      return 0;
}
early_param("vmalloc", parse_vmalloc);

/*
 * reservetop=size reserves a hole at the top of the kernel address space which
 * a hypervisor can load into later.  Needed for dynamically loaded hypervisors,
 * so relocating the fixmap can be done before paging initialization.
 */
static int __init parse_reservetop(char *arg)
{
      unsigned long address;

      if (!arg)
            return -EINVAL;

      address = memparse(arg, &arg);
      reserve_top_address(address);
      return 0;
}
early_param("reservetop", parse_reservetop);

/*
 * Determine low and high memory ranges:
 */
unsigned long __init find_max_low_pfn(void)
{
      unsigned long max_low_pfn;

      max_low_pfn = max_pfn;
      if (max_low_pfn > MAXMEM_PFN) {
            if (highmem_pages == -1)
                  highmem_pages = max_pfn - MAXMEM_PFN;
            if (highmem_pages + MAXMEM_PFN < max_pfn)
                  max_pfn = MAXMEM_PFN + highmem_pages;
            if (highmem_pages + MAXMEM_PFN > max_pfn) {
                  printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages));
                  highmem_pages = 0;
            }
            max_low_pfn = MAXMEM_PFN;
#ifndef CONFIG_HIGHMEM
            /* Maximum memory usable is what is directly addressable */
            printk(KERN_WARNING "Warning only %ldMB will be used.\n",
                              MAXMEM>>20);
            if (max_pfn > MAX_NONPAE_PFN)
                  printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n");
            else
                  printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
            max_pfn = MAXMEM_PFN;
#else /* !CONFIG_HIGHMEM */
#ifndef CONFIG_HIGHMEM64G
            if (max_pfn > MAX_NONPAE_PFN) {
                  max_pfn = MAX_NONPAE_PFN;
                  printk(KERN_WARNING "Warning only 4GB will be used.\n");
                  printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n");
            }
#endif /* !CONFIG_HIGHMEM64G */
#endif /* !CONFIG_HIGHMEM */
      } else {
            if (highmem_pages == -1)
                  highmem_pages = 0;
#ifdef CONFIG_HIGHMEM
            if (highmem_pages >= max_pfn) {
                  printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
                  highmem_pages = 0;
            }
            if (highmem_pages) {
                  if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){
                        printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages));
                        highmem_pages = 0;
                  }
                  max_low_pfn -= highmem_pages;
            }
#else
            if (highmem_pages)
                  printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
#endif
      }
      return max_low_pfn;
}

/*
 * workaround for Dell systems that neglect to reserve EBDA
 */
static void __init reserve_ebda_region(void)
{
      unsigned int addr;
      addr = get_bios_ebda();
      if (addr)
            reserve_bootmem(addr, PAGE_SIZE);   
}

#ifndef CONFIG_NEED_MULTIPLE_NODES
void __init setup_bootmem_allocator(void);
static unsigned long __init setup_memory(void)
{
      /*
       * partially used pages are not usable - thus
       * we are rounding upwards:
       */
      min_low_pfn = PFN_UP(init_pg_tables_end);

      find_max_pfn();

      max_low_pfn = find_max_low_pfn();

#ifdef CONFIG_HIGHMEM
      highstart_pfn = highend_pfn = max_pfn;
      if (max_pfn > max_low_pfn) {
            highstart_pfn = max_low_pfn;
      }
      printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
            pages_to_mb(highend_pfn - highstart_pfn));
      num_physpages = highend_pfn;
      high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
#else
      num_physpages = max_low_pfn;
      high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
#endif
#ifdef CONFIG_FLATMEM
      max_mapnr = num_physpages;
#endif
      printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
                  pages_to_mb(max_low_pfn));

      setup_bootmem_allocator();

      return max_low_pfn;
}

void __init zone_sizes_init(void)
{
      unsigned long max_zone_pfns[MAX_NR_ZONES];
      memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
      max_zone_pfns[ZONE_DMA] =
            virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
      max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
#ifdef CONFIG_HIGHMEM
      max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
      add_active_range(0, 0, highend_pfn);
#else
      add_active_range(0, 0, max_low_pfn);
#endif

      free_area_init_nodes(max_zone_pfns);
}
#else
extern unsigned long __init setup_memory(void);
extern void zone_sizes_init(void);
#endif /* !CONFIG_NEED_MULTIPLE_NODES */

static inline unsigned long long get_total_mem(void)
{
      unsigned long long total;

      total = max_low_pfn - min_low_pfn;
#ifdef CONFIG_HIGHMEM
      total += highend_pfn - highstart_pfn;
#endif

      return total << PAGE_SHIFT;
}

#ifdef CONFIG_KEXEC
static void __init reserve_crashkernel(void)
{
      unsigned long long total_mem;
      unsigned long long crash_size, crash_base;
      int ret;

      total_mem = get_total_mem();

      ret = parse_crashkernel(boot_command_line, total_mem,
                  &crash_size, &crash_base);
      if (ret == 0 && crash_size > 0) {
            if (crash_base > 0) {
                  printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
                              "for crashkernel (System RAM: %ldMB)\n",
                              (unsigned long)(crash_size >> 20),
                              (unsigned long)(crash_base >> 20),
                              (unsigned long)(total_mem >> 20));
                  crashk_res.start = crash_base;
                  crashk_res.end   = crash_base + crash_size - 1;
                  reserve_bootmem(crash_base, crash_size);
            } else
                  printk(KERN_INFO "crashkernel reservation failed - "
                              "you have to specify a base address\n");
      }
}
#else
static inline void __init reserve_crashkernel(void)
{}
#endif

void __init setup_bootmem_allocator(void)
{
      unsigned long bootmap_size;
      /*
       * Initialize the boot-time allocator (with low memory only):
       */
      bootmap_size = init_bootmem(min_low_pfn, max_low_pfn);

      register_bootmem_low_pages(max_low_pfn);

      /*
       * Reserve the bootmem bitmap itself as well. We do this in two
       * steps (first step was init_bootmem()) because this catches
       * the (very unlikely) case of us accidentally initializing the
       * bootmem allocator with an invalid RAM area.
       */
      reserve_bootmem(__pa_symbol(_text), (PFN_PHYS(min_low_pfn) +
                   bootmap_size + PAGE_SIZE-1) - __pa_symbol(_text));

      /*
       * reserve physical page 0 - it's a special BIOS page on many boxes,
       * enabling clean reboots, SMP operation, laptop functions.
       */
      reserve_bootmem(0, PAGE_SIZE);

      /* reserve EBDA region, it's a 4K region */
      reserve_ebda_region();

    /* could be an AMD 768MPX chipset. Reserve a page  before VGA to prevent
       PCI prefetch into it (errata #56). Usually the page is reserved anyways,
       unless you have no PS/2 mouse plugged in. */
      if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
          boot_cpu_data.x86 == 6)
           reserve_bootmem(0xa0000 - 4096, 4096);

#ifdef CONFIG_SMP
      /*
       * But first pinch a few for the stack/trampoline stuff
       * FIXME: Don't need the extra page at 4K, but need to fix
       * trampoline before removing it. (see the GDT stuff)
       */
      reserve_bootmem(PAGE_SIZE, PAGE_SIZE);
#endif
#ifdef CONFIG_ACPI_SLEEP
      /*
       * Reserve low memory region for sleep support.
       */
      acpi_reserve_bootmem();
#endif
#ifdef CONFIG_X86_FIND_SMP_CONFIG
      /*
       * Find and reserve possible boot-time SMP configuration:
       */
      find_smp_config();
#endif
      numa_kva_reserve();
#ifdef CONFIG_BLK_DEV_INITRD
      if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
            unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
            unsigned long ramdisk_size  = boot_params.hdr.ramdisk_size;
            unsigned long ramdisk_end   = ramdisk_image + ramdisk_size;
            unsigned long end_of_lowmem = max_low_pfn << PAGE_SHIFT;

            if (ramdisk_end <= end_of_lowmem) {
                  reserve_bootmem(ramdisk_image, ramdisk_size);
                  initrd_start = ramdisk_image + PAGE_OFFSET;
                  initrd_end = initrd_start+ramdisk_size;
            } else {
                  printk(KERN_ERR "initrd extends beyond end of memory "
                         "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
                         ramdisk_end, end_of_lowmem);
                  initrd_start = 0;
            }
      }
#endif
      reserve_crashkernel();
}

/*
 * The node 0 pgdat is initialized before all of these because
 * it's needed for bootmem.  node>0 pgdats have their virtual
 * space allocated before the pagetables are in place to access
 * them, so they can't be cleared then.
 *
 * This should all compile down to nothing when NUMA is off.
 */
static void __init remapped_pgdat_init(void)
{
      int nid;

      for_each_online_node(nid) {
            if (nid != 0)
                  memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
      }
}

#ifdef CONFIG_MCA
static void set_mca_bus(int x)
{
      MCA_bus = x;
}
#else
static void set_mca_bus(int x) { }
#endif

/* Overridden in paravirt.c if CONFIG_PARAVIRT */
char * __init __attribute__((weak)) memory_setup(void)
{
      return machine_specific_memory_setup();
}

/*
 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 * passed the efi memmap, systab, etc., so we should use these data structures
 * for initialization.  Note, the efi init code path is determined by the
 * global efi_enabled. This allows the same kernel image to be used on existing
 * systems (with a traditional BIOS) as well as on EFI systems.
 */
void __init setup_arch(char **cmdline_p)
{
      unsigned long max_low_pfn;

      memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
      pre_setup_arch_hook();
      early_cpu_init();

      /*
       * FIXME: This isn't an official loader_type right
       * now but does currently work with elilo.
       * If we were configured as an EFI kernel, check to make
       * sure that we were loaded correctly from elilo and that
       * the system table is valid.  If not, then initialize normally.
       */
#ifdef CONFIG_EFI
      if ((boot_params.hdr.type_of_loader == 0x50) &&
          boot_params.efi_info.efi_systab)
            efi_enabled = 1;
#endif

      ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
      screen_info = boot_params.screen_info;
      edid_info = boot_params.edid_info;
      apm_info.bios = boot_params.apm_bios_info;
      ist_info = boot_params.ist_info;
      saved_videomode = boot_params.hdr.vid_mode;
      if( boot_params.sys_desc_table.length != 0 ) {
            set_mca_bus(boot_params.sys_desc_table.table[3] & 0x2);
            machine_id = boot_params.sys_desc_table.table[0];
            machine_submodel_id = boot_params.sys_desc_table.table[1];
            BIOS_revision = boot_params.sys_desc_table.table[2];
      }
      bootloader_type = boot_params.hdr.type_of_loader;

#ifdef CONFIG_BLK_DEV_RAM
      rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
      rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
      rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
#endif
      ARCH_SETUP
      if (efi_enabled)
            efi_init();
      else {
            printk(KERN_INFO "BIOS-provided physical RAM map:\n");
            print_memory_map(memory_setup());
      }

      copy_edd();

      if (!boot_params.hdr.root_flags)
            root_mountflags &= ~MS_RDONLY;
      init_mm.start_code = (unsigned long) _text;
      init_mm.end_code = (unsigned long) _etext;
      init_mm.end_data = (unsigned long) _edata;
      init_mm.brk = init_pg_tables_end + PAGE_OFFSET;

      code_resource.start = virt_to_phys(_text);
      code_resource.end = virt_to_phys(_etext)-1;
      data_resource.start = virt_to_phys(_etext);
      data_resource.end = virt_to_phys(_edata)-1;
      bss_resource.start = virt_to_phys(&__bss_start);
      bss_resource.end = virt_to_phys(&__bss_stop)-1;

      parse_early_param();

      if (user_defined_memmap) {
            printk(KERN_INFO "user-defined physical RAM map:\n");
            print_memory_map("user");
      }

      strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
      *cmdline_p = command_line;

      max_low_pfn = setup_memory();

#ifdef CONFIG_VMI
      /*
       * Must be after max_low_pfn is determined, and before kernel
       * pagetables are setup.
       */
      vmi_init();
#endif

      /*
       * NOTE: before this point _nobody_ is allowed to allocate
       * any memory using the bootmem allocator.  Although the
       * allocator is now initialised only the first 8Mb of the kernel
       * virtual address space has been mapped.  All allocations before
       * paging_init() has completed must use the alloc_bootmem_low_pages()
       * variant (which allocates DMA'able memory) and care must be taken
       * not to exceed the 8Mb limit.
       */

#ifdef CONFIG_SMP
      smp_alloc_memory(); /* AP processor realmode stacks in low memory*/
#endif
      paging_init();
      remapped_pgdat_init();
      sparse_init();
      zone_sizes_init();

      /*
       * NOTE: at this point the bootmem allocator is fully available.
       */

      paravirt_post_allocator_init();

      dmi_scan_machine();

#ifdef CONFIG_X86_GENERICARCH
      generic_apic_probe();
#endif      
      if (efi_enabled)
            efi_map_memmap();

#ifdef CONFIG_ACPI
      /*
       * Parse the ACPI tables for possible boot-time SMP configuration.
       */
      acpi_boot_table_init();
#endif

#ifdef CONFIG_PCI
      early_quirks();
#endif

#ifdef CONFIG_ACPI
      acpi_boot_init();

#if defined(CONFIG_SMP) && defined(CONFIG_X86_PC)
      if (def_to_bigsmp)
            printk(KERN_WARNING "More than 8 CPUs detected and "
                  "CONFIG_X86_PC cannot handle it.\nUse "
                  "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n");
#endif
#endif
#ifdef CONFIG_X86_LOCAL_APIC
      if (smp_found_config)
            get_smp_config();
#endif

      e820_register_memory();
      e820_mark_nosave_regions();

#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
      if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
            conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
      conswitchp = &dummy_con;
#endif
#endif
}

Generated by  Doxygen 1.6.0   Back to index