Logo Search packages:      
Sourcecode: linux version File versions  Download package

xfs_super.c

/*
 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_clnt.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_alloc.h"
#include "xfs_dmapi.h"
#include "xfs_quota.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_itable.h"
#include "xfs_rw.h"
#include "xfs_acl.h"
#include "xfs_attr.h"
#include "xfs_buf_item.h"
#include "xfs_utils.h"
#include "xfs_vnodeops.h"
#include "xfs_vfsops.h"
#include "xfs_version.h"

#include <linux/namei.h>
#include <linux/init.h>
#include <linux/mount.h>
#include <linux/mempool.h>
#include <linux/writeback.h>
#include <linux/kthread.h>
#include <linux/freezer.h>

static struct quotactl_ops xfs_quotactl_operations;
static struct super_operations xfs_super_operations;
static kmem_zone_t *xfs_vnode_zone;
static kmem_zone_t *xfs_ioend_zone;
mempool_t *xfs_ioend_pool;

STATIC struct xfs_mount_args *
xfs_args_allocate(
      struct super_block      *sb,
      int               silent)
{
      struct xfs_mount_args   *args;

      args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
      args->logbufs = args->logbufsize = -1;
      strncpy(args->fsname, sb->s_id, MAXNAMELEN);

      /* Copy the already-parsed mount(2) flags we're interested in */
      if (sb->s_flags & MS_DIRSYNC)
            args->flags |= XFSMNT_DIRSYNC;
      if (sb->s_flags & MS_SYNCHRONOUS)
            args->flags |= XFSMNT_WSYNC;
      if (silent)
            args->flags |= XFSMNT_QUIET;
      args->flags |= XFSMNT_32BITINODES;

      return args;
}

__uint64_t
xfs_max_file_offset(
      unsigned int            blockshift)
{
      unsigned int            pagefactor = 1;
      unsigned int            bitshift = BITS_PER_LONG - 1;

      /* Figure out maximum filesize, on Linux this can depend on
       * the filesystem blocksize (on 32 bit platforms).
       * __block_prepare_write does this in an [unsigned] long...
       *      page->index << (PAGE_CACHE_SHIFT - bbits)
       * So, for page sized blocks (4K on 32 bit platforms),
       * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
       *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
       * but for smaller blocksizes it is less (bbits = log2 bsize).
       * Note1: get_block_t takes a long (implicit cast from above)
       * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
       * can optionally convert the [unsigned] long from above into
       * an [unsigned] long long.
       */

#if BITS_PER_LONG == 32
# if defined(CONFIG_LBD)
      ASSERT(sizeof(sector_t) == 8);
      pagefactor = PAGE_CACHE_SIZE;
      bitshift = BITS_PER_LONG;
# else
      pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
# endif
#endif

      return (((__uint64_t)pagefactor) << bitshift) - 1;
}

STATIC_INLINE void
xfs_set_inodeops(
      struct inode            *inode)
{
      switch (inode->i_mode & S_IFMT) {
      case S_IFREG:
            inode->i_op = &xfs_inode_operations;
            inode->i_fop = &xfs_file_operations;
            inode->i_mapping->a_ops = &xfs_address_space_operations;
            break;
      case S_IFDIR:
            inode->i_op = &xfs_dir_inode_operations;
            inode->i_fop = &xfs_dir_file_operations;
            break;
      case S_IFLNK:
            inode->i_op = &xfs_symlink_inode_operations;
            if (inode->i_blocks)
                  inode->i_mapping->a_ops = &xfs_address_space_operations;
            break;
      default:
            inode->i_op = &xfs_inode_operations;
            init_special_inode(inode, inode->i_mode, inode->i_rdev);
            break;
      }
}

STATIC_INLINE void
xfs_revalidate_inode(
      xfs_mount_t       *mp,
      bhv_vnode_t       *vp,
      xfs_inode_t       *ip)
{
      struct inode            *inode = vn_to_inode(vp);

      inode->i_mode     = ip->i_d.di_mode;
      inode->i_nlink    = ip->i_d.di_nlink;
      inode->i_uid      = ip->i_d.di_uid;
      inode->i_gid      = ip->i_d.di_gid;

      switch (inode->i_mode & S_IFMT) {
      case S_IFBLK:
      case S_IFCHR:
            inode->i_rdev =
                  MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
                        sysv_minor(ip->i_df.if_u2.if_rdev));
            break;
      default:
            inode->i_rdev = 0;
            break;
      }

      inode->i_generation = ip->i_d.di_gen;
      i_size_write(inode, ip->i_d.di_size);
      inode->i_blocks =
            XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
      inode->i_atime.tv_sec   = ip->i_d.di_atime.t_sec;
      inode->i_atime.tv_nsec  = ip->i_d.di_atime.t_nsec;
      inode->i_mtime.tv_sec   = ip->i_d.di_mtime.t_sec;
      inode->i_mtime.tv_nsec  = ip->i_d.di_mtime.t_nsec;
      inode->i_ctime.tv_sec   = ip->i_d.di_ctime.t_sec;
      inode->i_ctime.tv_nsec  = ip->i_d.di_ctime.t_nsec;
      if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
            inode->i_flags |= S_IMMUTABLE;
      else
            inode->i_flags &= ~S_IMMUTABLE;
      if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
            inode->i_flags |= S_APPEND;
      else
            inode->i_flags &= ~S_APPEND;
      if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
            inode->i_flags |= S_SYNC;
      else
            inode->i_flags &= ~S_SYNC;
      if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
            inode->i_flags |= S_NOATIME;
      else
            inode->i_flags &= ~S_NOATIME;
      xfs_iflags_clear(ip, XFS_IMODIFIED);
}

void
xfs_initialize_vnode(
      struct xfs_mount  *mp,
      bhv_vnode_t       *vp,
      struct xfs_inode  *ip)
{
      struct inode            *inode = vn_to_inode(vp);

      if (!ip->i_vnode) {
            ip->i_vnode = vp;
            inode->i_private = ip;
      }

      /*
       * We need to set the ops vectors, and unlock the inode, but if
       * we have been called during the new inode create process, it is
       * too early to fill in the Linux inode.  We will get called a
       * second time once the inode is properly set up, and then we can
       * finish our work.
       */
      if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
            xfs_revalidate_inode(mp, vp, ip);
            xfs_set_inodeops(inode);

            xfs_iflags_clear(ip, XFS_INEW);
            barrier();

            unlock_new_inode(inode);
      }
}

int
xfs_blkdev_get(
      xfs_mount_t       *mp,
      const char        *name,
      struct block_device     **bdevp)
{
      int               error = 0;

      *bdevp = open_bdev_excl(name, 0, mp);
      if (IS_ERR(*bdevp)) {
            error = PTR_ERR(*bdevp);
            printk("XFS: Invalid device [%s], error=%d\n", name, error);
      }

      return -error;
}

void
xfs_blkdev_put(
      struct block_device     *bdev)
{
      if (bdev)
            close_bdev_excl(bdev);
}

/*
 * Try to write out the superblock using barriers.
 */
STATIC int
xfs_barrier_test(
      xfs_mount_t *mp)
{
      xfs_buf_t   *sbp = xfs_getsb(mp, 0);
      int         error;

      XFS_BUF_UNDONE(sbp);
      XFS_BUF_UNREAD(sbp);
      XFS_BUF_UNDELAYWRITE(sbp);
      XFS_BUF_WRITE(sbp);
      XFS_BUF_UNASYNC(sbp);
      XFS_BUF_ORDERED(sbp);

      xfsbdstrat(mp, sbp);
      error = xfs_iowait(sbp);

      /*
       * Clear all the flags we set and possible error state in the
       * buffer.  We only did the write to try out whether barriers
       * worked and shouldn't leave any traces in the superblock
       * buffer.
       */
      XFS_BUF_DONE(sbp);
      XFS_BUF_ERROR(sbp, 0);
      XFS_BUF_UNORDERED(sbp);

      xfs_buf_relse(sbp);
      return error;
}

void
xfs_mountfs_check_barriers(xfs_mount_t *mp)
{
      int error;

      if (mp->m_logdev_targp != mp->m_ddev_targp) {
            xfs_fs_cmn_err(CE_NOTE, mp,
              "Disabling barriers, not supported with external log device");
            mp->m_flags &= ~XFS_MOUNT_BARRIER;
            return;
      }

      if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
                              QUEUE_ORDERED_NONE) {
            xfs_fs_cmn_err(CE_NOTE, mp,
              "Disabling barriers, not supported by the underlying device");
            mp->m_flags &= ~XFS_MOUNT_BARRIER;
            return;
      }

      if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
            xfs_fs_cmn_err(CE_NOTE, mp,
              "Disabling barriers, underlying device is readonly");
            mp->m_flags &= ~XFS_MOUNT_BARRIER;
            return;
      }

      error = xfs_barrier_test(mp);
      if (error) {
            xfs_fs_cmn_err(CE_NOTE, mp,
              "Disabling barriers, trial barrier write failed");
            mp->m_flags &= ~XFS_MOUNT_BARRIER;
            return;
      }
}

void
xfs_blkdev_issue_flush(
      xfs_buftarg_t           *buftarg)
{
      blkdev_issue_flush(buftarg->bt_bdev, NULL);
}

STATIC struct inode *
xfs_fs_alloc_inode(
      struct super_block      *sb)
{
      bhv_vnode_t       *vp;

      vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
      if (unlikely(!vp))
            return NULL;
      return vn_to_inode(vp);
}

STATIC void
xfs_fs_destroy_inode(
      struct inode            *inode)
{
      kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
}

STATIC void
xfs_fs_inode_init_once(
      kmem_zone_t       *zonep,
      void              *vnode)
{
      inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
}

STATIC int
xfs_init_zones(void)
{
      xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
                              KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
                              KM_ZONE_SPREAD,
                              xfs_fs_inode_init_once);
      if (!xfs_vnode_zone)
            goto out;

      xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
      if (!xfs_ioend_zone)
            goto out_destroy_vnode_zone;

      xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
                                      xfs_ioend_zone);
      if (!xfs_ioend_pool)
            goto out_free_ioend_zone;
      return 0;

 out_free_ioend_zone:
      kmem_zone_destroy(xfs_ioend_zone);
 out_destroy_vnode_zone:
      kmem_zone_destroy(xfs_vnode_zone);
 out:
      return -ENOMEM;
}

STATIC void
xfs_destroy_zones(void)
{
      mempool_destroy(xfs_ioend_pool);
      kmem_zone_destroy(xfs_vnode_zone);
      kmem_zone_destroy(xfs_ioend_zone);
}

/*
 * Attempt to flush the inode, this will actually fail
 * if the inode is pinned, but we dirty the inode again
 * at the point when it is unpinned after a log write,
 * since this is when the inode itself becomes flushable.
 */
STATIC int
xfs_fs_write_inode(
      struct inode            *inode,
      int               sync)
{
      int               error = 0, flags = FLUSH_INODE;

      vn_trace_entry(XFS_I(inode), __FUNCTION__,
                  (inst_t *)__return_address);
      if (sync) {
            filemap_fdatawait(inode->i_mapping);
            flags |= FLUSH_SYNC;
      }
      error = xfs_inode_flush(XFS_I(inode), flags);
      /*
       * if we failed to write out the inode then mark
       * it dirty again so we'll try again later.
       */
      if (error)
            mark_inode_dirty_sync(inode);

      return -error;
}

STATIC void
xfs_fs_clear_inode(
      struct inode            *inode)
{
      xfs_inode_t       *ip = XFS_I(inode);

      /*
       * ip can be null when xfs_iget_core calls xfs_idestroy if we
       * find an inode with di_mode == 0 but without IGET_CREATE set.
       */
      if (ip) {
            vn_trace_entry(ip, __FUNCTION__, (inst_t *)__return_address);

            XFS_STATS_INC(vn_rele);
            XFS_STATS_INC(vn_remove);
            XFS_STATS_INC(vn_reclaim);
            XFS_STATS_DEC(vn_active);

            xfs_inactive(ip);
            xfs_iflags_clear(ip, XFS_IMODIFIED);
            if (xfs_reclaim(ip))
                  panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
      }

      ASSERT(XFS_I(inode) == NULL);
}

/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
      struct xfs_mount *mp,
      void        *data,
      void        (*syncer)(struct xfs_mount *, void *))
{
      struct bhv_vfs_sync_work *work;

      work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
      INIT_LIST_HEAD(&work->w_list);
      work->w_syncer = syncer;
      work->w_data = data;
      work->w_mount = mp;
      spin_lock(&mp->m_sync_lock);
      list_add_tail(&work->w_list, &mp->m_sync_list);
      spin_unlock(&mp->m_sync_lock);
      wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
xfs_flush_inode_work(
      struct xfs_mount *mp,
      void        *arg)
{
      struct inode      *inode = arg;
      filemap_flush(inode->i_mapping);
      iput(inode);
}

void
xfs_flush_inode(
      xfs_inode_t *ip)
{
      struct inode      *inode = ip->i_vnode;

      igrab(inode);
      xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
      delay(msecs_to_jiffies(500));
}

/*
 * This is the "bigger hammer" version of xfs_flush_inode_work...
 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
 */
STATIC void
xfs_flush_device_work(
      struct xfs_mount *mp,
      void        *arg)
{
      struct inode      *inode = arg;
      sync_blockdev(mp->m_super->s_bdev);
      iput(inode);
}

void
xfs_flush_device(
      xfs_inode_t *ip)
{
      struct inode      *inode = vn_to_inode(XFS_ITOV(ip));

      igrab(inode);
      xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
      delay(msecs_to_jiffies(500));
      xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}

STATIC void
xfs_sync_worker(
      struct xfs_mount *mp,
      void        *unused)
{
      int         error;

      if (!(mp->m_flags & XFS_MOUNT_RDONLY))
            error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR |
                             SYNC_REFCACHE | SYNC_SUPER);
      mp->m_sync_seq++;
      wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
      void              *arg)
{
      struct xfs_mount  *mp = arg;
      long              timeleft;
      bhv_vfs_sync_work_t     *work, *n;
      LIST_HEAD         (tmp);

      set_freezable();
      timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
      for (;;) {
            timeleft = schedule_timeout_interruptible(timeleft);
            /* swsusp */
            try_to_freeze();
            if (kthread_should_stop() && list_empty(&mp->m_sync_list))
                  break;

            spin_lock(&mp->m_sync_lock);
            /*
             * We can get woken by laptop mode, to do a sync -
             * that's the (only!) case where the list would be
             * empty with time remaining.
             */
            if (!timeleft || list_empty(&mp->m_sync_list)) {
                  if (!timeleft)
                        timeleft = xfs_syncd_centisecs *
                                          msecs_to_jiffies(10);
                  INIT_LIST_HEAD(&mp->m_sync_work.w_list);
                  list_add_tail(&mp->m_sync_work.w_list,
                              &mp->m_sync_list);
            }
            list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
                  list_move(&work->w_list, &tmp);
            spin_unlock(&mp->m_sync_lock);

            list_for_each_entry_safe(work, n, &tmp, w_list) {
                  (*work->w_syncer)(mp, work->w_data);
                  list_del(&work->w_list);
                  if (work == &mp->m_sync_work)
                        continue;
                  kmem_free(work, sizeof(struct bhv_vfs_sync_work));
            }
      }

      return 0;
}

STATIC void
xfs_fs_put_super(
      struct super_block      *sb)
{
      struct xfs_mount  *mp = XFS_M(sb);
      int               error;

      kthread_stop(mp->m_sync_task);

      xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
      error = xfs_unmount(mp, 0, NULL);
      if (error)
            printk("XFS: unmount got error=%d\n", error);
}

STATIC void
xfs_fs_write_super(
      struct super_block      *sb)
{
      if (!(sb->s_flags & MS_RDONLY))
            xfs_sync(XFS_M(sb), SYNC_FSDATA);
      sb->s_dirt = 0;
}

STATIC int
xfs_fs_sync_super(
      struct super_block      *sb,
      int               wait)
{
      struct xfs_mount  *mp = XFS_M(sb);
      int               error;
      int               flags;

      /*
       * Treat a sync operation like a freeze.  This is to work
       * around a race in sync_inodes() which works in two phases
       * - an asynchronous flush, which can write out an inode
       * without waiting for file size updates to complete, and a
       * synchronous flush, which wont do anything because the
       * async flush removed the inode's dirty flag.  Also
       * sync_inodes() will not see any files that just have
       * outstanding transactions to be flushed because we don't
       * dirty the Linux inode until after the transaction I/O
       * completes.
       */
      if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
            /*
             * First stage of freeze - no more writers will make progress
             * now we are here, so we flush delwri and delalloc buffers
             * here, then wait for all I/O to complete.  Data is frozen at
             * that point. Metadata is not frozen, transactions can still
             * occur here so don't bother flushing the buftarg (i.e
             * SYNC_QUIESCE) because it'll just get dirty again.
             */
            flags = SYNC_DATA_QUIESCE;
      } else
            flags = SYNC_FSDATA;

      error = xfs_sync(mp, flags);
      sb->s_dirt = 0;

      if (unlikely(laptop_mode)) {
            int   prev_sync_seq = mp->m_sync_seq;

            /*
             * The disk must be active because we're syncing.
             * We schedule xfssyncd now (now that the disk is
             * active) instead of later (when it might not be).
             */
            wake_up_process(mp->m_sync_task);
            /*
             * We have to wait for the sync iteration to complete.
             * If we don't, the disk activity caused by the sync
             * will come after the sync is completed, and that
             * triggers another sync from laptop mode.
             */
            wait_event(mp->m_wait_single_sync_task,
                        mp->m_sync_seq != prev_sync_seq);
      }

      return -error;
}

STATIC int
xfs_fs_statfs(
      struct dentry           *dentry,
      struct kstatfs          *statp)
{
      return -xfs_statvfs(XFS_M(dentry->d_sb), statp,
                        vn_from_inode(dentry->d_inode));
}

STATIC int
xfs_fs_remount(
      struct super_block      *sb,
      int               *flags,
      char              *options)
{
      struct xfs_mount  *mp = XFS_M(sb);
      struct xfs_mount_args   *args = xfs_args_allocate(sb, 0);
      int               error;

      error = xfs_parseargs(mp, options, args, 1);
      if (!error)
            error = xfs_mntupdate(mp, flags, args);
      kmem_free(args, sizeof(*args));
      return -error;
}

STATIC void
xfs_fs_lockfs(
      struct super_block      *sb)
{
      xfs_freeze(XFS_M(sb));
}

STATIC int
xfs_fs_show_options(
      struct seq_file         *m,
      struct vfsmount         *mnt)
{
      return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
}

STATIC int
xfs_fs_quotasync(
      struct super_block      *sb,
      int               type)
{
      return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
}

STATIC int
xfs_fs_getxstate(
      struct super_block      *sb,
      struct fs_quota_stat    *fqs)
{
      return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
}

STATIC int
xfs_fs_setxstate(
      struct super_block      *sb,
      unsigned int            flags,
      int               op)
{
      return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
}

STATIC int
xfs_fs_getxquota(
      struct super_block      *sb,
      int               type,
      qid_t             id,
      struct fs_disk_quota    *fdq)
{
      return -XFS_QM_QUOTACTL(XFS_M(sb),
                         (type == USRQUOTA) ? Q_XGETQUOTA :
                          ((type == GRPQUOTA) ? Q_XGETGQUOTA :
                           Q_XGETPQUOTA), id, (caddr_t)fdq);
}

STATIC int
xfs_fs_setxquota(
      struct super_block      *sb,
      int               type,
      qid_t             id,
      struct fs_disk_quota    *fdq)
{
      return -XFS_QM_QUOTACTL(XFS_M(sb),
                         (type == USRQUOTA) ? Q_XSETQLIM :
                          ((type == GRPQUOTA) ? Q_XSETGQLIM :
                           Q_XSETPQLIM), id, (caddr_t)fdq);
}

STATIC int
xfs_fs_fill_super(
      struct super_block      *sb,
      void              *data,
      int               silent)
{
      struct inode            *rootvp;
      struct xfs_mount  *mp = NULL;
      struct xfs_mount_args   *args = xfs_args_allocate(sb, silent);
      struct kstatfs          statvfs;
      int               error;

      mp = xfs_mount_init();

      INIT_LIST_HEAD(&mp->m_sync_list);
      spin_lock_init(&mp->m_sync_lock);
      init_waitqueue_head(&mp->m_wait_single_sync_task);

      mp->m_super = sb;
      sb->s_fs_info = mp;

      if (sb->s_flags & MS_RDONLY)
            mp->m_flags |= XFS_MOUNT_RDONLY;

      error = xfs_parseargs(mp, (char *)data, args, 0);
      if (error)
            goto fail_vfsop;

      sb_min_blocksize(sb, BBSIZE);
      sb->s_export_op = &xfs_export_operations;
      sb->s_qcop = &xfs_quotactl_operations;
      sb->s_op = &xfs_super_operations;

      error = xfs_mount(mp, args, NULL);
      if (error)
            goto fail_vfsop;

      error = xfs_statvfs(mp, &statvfs, NULL);
      if (error)
            goto fail_unmount;

      sb->s_dirt = 1;
      sb->s_magic = statvfs.f_type;
      sb->s_blocksize = statvfs.f_bsize;
      sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
      sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
      sb->s_time_gran = 1;
      set_posix_acl_flag(sb);

      error = xfs_root(mp, &rootvp);
      if (error)
            goto fail_unmount;

      sb->s_root = d_alloc_root(vn_to_inode(rootvp));
      if (!sb->s_root) {
            error = ENOMEM;
            goto fail_vnrele;
      }
      if (is_bad_inode(sb->s_root->d_inode)) {
            error = EINVAL;
            goto fail_vnrele;
      }

      mp->m_sync_work.w_syncer = xfs_sync_worker;
      mp->m_sync_work.w_mount = mp;
      mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
      if (IS_ERR(mp->m_sync_task)) {
            error = -PTR_ERR(mp->m_sync_task);
            goto fail_vnrele;
      }

      vn_trace_exit(XFS_I(sb->s_root->d_inode), __FUNCTION__,
                  (inst_t *)__return_address);

      kmem_free(args, sizeof(*args));
      return 0;

fail_vnrele:
      if (sb->s_root) {
            dput(sb->s_root);
            sb->s_root = NULL;
      } else {
            VN_RELE(rootvp);
      }

fail_unmount:
      xfs_unmount(mp, 0, NULL);

fail_vfsop:
      kmem_free(args, sizeof(*args));
      return -error;
}

STATIC int
xfs_fs_get_sb(
      struct file_system_type *fs_type,
      int               flags,
      const char        *dev_name,
      void              *data,
      struct vfsmount         *mnt)
{
      return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
                     mnt);
}

static struct super_operations xfs_super_operations = {
      .alloc_inode            = xfs_fs_alloc_inode,
      .destroy_inode          = xfs_fs_destroy_inode,
      .write_inode            = xfs_fs_write_inode,
      .clear_inode            = xfs_fs_clear_inode,
      .put_super        = xfs_fs_put_super,
      .write_super            = xfs_fs_write_super,
      .sync_fs          = xfs_fs_sync_super,
      .write_super_lockfs     = xfs_fs_lockfs,
      .statfs                 = xfs_fs_statfs,
      .remount_fs       = xfs_fs_remount,
      .show_options           = xfs_fs_show_options,
};

static struct quotactl_ops xfs_quotactl_operations = {
      .quota_sync       = xfs_fs_quotasync,
      .get_xstate       = xfs_fs_getxstate,
      .set_xstate       = xfs_fs_setxstate,
      .get_xquota       = xfs_fs_getxquota,
      .set_xquota       = xfs_fs_setxquota,
};

static struct file_system_type xfs_fs_type = {
      .owner                  = THIS_MODULE,
      .name             = "xfs",
      .get_sb                 = xfs_fs_get_sb,
      .kill_sb          = kill_block_super,
      .fs_flags         = FS_REQUIRES_DEV,
};


STATIC int __init
init_xfs_fs( void )
{
      int               error;
      static char       message[] __initdata = KERN_INFO \
            XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";

      printk(message);

      ktrace_init(64);

      error = xfs_init_zones();
      if (error < 0)
            goto undo_zones;

      error = xfs_buf_init();
      if (error < 0)
            goto undo_buffers;

      vn_init();
      xfs_init();
      uuid_init();
      vfs_initquota();

      error = register_filesystem(&xfs_fs_type);
      if (error)
            goto undo_register;
      return 0;

undo_register:
      xfs_buf_terminate();

undo_buffers:
      xfs_destroy_zones();

undo_zones:
      return error;
}

STATIC void __exit
exit_xfs_fs( void )
{
      vfs_exitquota();
      unregister_filesystem(&xfs_fs_type);
      xfs_cleanup();
      xfs_buf_terminate();
      xfs_destroy_zones();
      ktrace_uninit();
}

module_init(init_xfs_fs);
module_exit(exit_xfs_fs);

MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index