Logo Search packages:      
Sourcecode: linux version File versions  Download package

zd_usb.c

/* zd_usb.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/usb.h>
#include <linux/workqueue.h>
#include <net/ieee80211.h>
#include <asm/unaligned.h>

#include "zd_def.h"
#include "zd_netdev.h"
#include "zd_mac.h"
#include "zd_usb.h"

static struct usb_device_id usb_ids[] = {
      /* ZD1211 */
      { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
      { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
      /* ZD1211B */
      { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
      { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
      /* "Driverless" devices that need ejecting */
      { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
      { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
      {}
};

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
MODULE_AUTHOR("Ulrich Kunitz");
MODULE_AUTHOR("Daniel Drake");
MODULE_VERSION("1.0");
MODULE_DEVICE_TABLE(usb, usb_ids);

#define FW_ZD1211_PREFIX      "zd1211/zd1211_"
#define FW_ZD1211B_PREFIX     "zd1211/zd1211b_"

/* USB device initialization */

static int request_fw_file(
      const struct firmware **fw, const char *name, struct device *device)
{
      int r;

      dev_dbg_f(device, "fw name %s\n", name);

      r = request_firmware(fw, name, device);
      if (r)
            dev_err(device,
                   "Could not load firmware file %s. Error number %d\n",
                   name, r);
      return r;
}

static inline u16 get_bcdDevice(const struct usb_device *udev)
{
      return le16_to_cpu(udev->descriptor.bcdDevice);
}

enum upload_code_flags {
      REBOOT = 1,
};

/* Ensures that MAX_TRANSFER_SIZE is even. */
#define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)

static int upload_code(struct usb_device *udev,
      const u8 *data, size_t size, u16 code_offset, int flags)
{
      u8 *p;
      int r;

      /* USB request blocks need "kmalloced" buffers.
       */
      p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
      if (!p) {
            dev_err(&udev->dev, "out of memory\n");
            r = -ENOMEM;
            goto error;
      }

      size &= ~1;
      while (size > 0) {
            size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
                  size : MAX_TRANSFER_SIZE;

            dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);

            memcpy(p, data, transfer_size);
            r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
                  USB_REQ_FIRMWARE_DOWNLOAD,
                  USB_DIR_OUT | USB_TYPE_VENDOR,
                  code_offset, 0, p, transfer_size, 1000 /* ms */);
            if (r < 0) {
                  dev_err(&udev->dev,
                         "USB control request for firmware upload"
                         " failed. Error number %d\n", r);
                  goto error;
            }
            transfer_size = r & ~1;

            size -= transfer_size;
            data += transfer_size;
            code_offset += transfer_size/sizeof(u16);
      }

      if (flags & REBOOT) {
            u8 ret;

            r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
                  USB_REQ_FIRMWARE_CONFIRM,
                  USB_DIR_IN | USB_TYPE_VENDOR,
                  0, 0, &ret, sizeof(ret), 5000 /* ms */);
            if (r != sizeof(ret)) {
                  dev_err(&udev->dev,
                        "control request firmeware confirmation failed."
                        " Return value %d\n", r);
                  if (r >= 0)
                        r = -ENODEV;
                  goto error;
            }
            if (ret & 0x80) {
                  dev_err(&udev->dev,
                        "Internal error while downloading."
                        " Firmware confirm return value %#04x\n",
                        (unsigned int)ret);
                  r = -ENODEV;
                  goto error;
            }
            dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
                  (unsigned int)ret);
      }

      r = 0;
error:
      kfree(p);
      return r;
}

static u16 get_word(const void *data, u16 offset)
{
      const __le16 *p = data;
      return le16_to_cpu(p[offset]);
}

static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
                     const char* postfix)
{
      scnprintf(buffer, size, "%s%s",
            usb->is_zd1211b ?
                  FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
            postfix);
      return buffer;
}

static int handle_version_mismatch(struct zd_usb *usb,
      const struct firmware *ub_fw)
{
      struct usb_device *udev = zd_usb_to_usbdev(usb);
      const struct firmware *ur_fw = NULL;
      int offset;
      int r = 0;
      char fw_name[128];

      r = request_fw_file(&ur_fw,
            get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
            &udev->dev);
      if (r)
            goto error;

      r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
      if (r)
            goto error;

      offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
      r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
            E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);

      /* At this point, the vendor driver downloads the whole firmware
       * image, hacks around with version IDs, and uploads it again,
       * completely overwriting the boot code. We do not do this here as
       * it is not required on any tested devices, and it is suspected to
       * cause problems. */
error:
      release_firmware(ur_fw);
      return r;
}

static int upload_firmware(struct zd_usb *usb)
{
      int r;
      u16 fw_bcdDevice;
      u16 bcdDevice;
      struct usb_device *udev = zd_usb_to_usbdev(usb);
      const struct firmware *ub_fw = NULL;
      const struct firmware *uph_fw = NULL;
      char fw_name[128];

      bcdDevice = get_bcdDevice(udev);

      r = request_fw_file(&ub_fw,
            get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
            &udev->dev);
      if (r)
            goto error;

      fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);

      if (fw_bcdDevice != bcdDevice) {
            dev_info(&udev->dev,
                  "firmware version %#06x and device bootcode version "
                  "%#06x differ\n", fw_bcdDevice, bcdDevice);
            if (bcdDevice <= 0x4313)
                  dev_warn(&udev->dev, "device has old bootcode, please "
                        "report success or failure\n");

            r = handle_version_mismatch(usb, ub_fw);
            if (r)
                  goto error;
      } else {
            dev_dbg_f(&udev->dev,
                  "firmware device id %#06x is equal to the "
                  "actual device id\n", fw_bcdDevice);
      }


      r = request_fw_file(&uph_fw,
            get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
            &udev->dev);
      if (r)
            goto error;

      r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
      if (r) {
            dev_err(&udev->dev,
                  "Could not upload firmware code uph. Error number %d\n",
                  r);
      }

      /* FALL-THROUGH */
error:
      release_firmware(ub_fw);
      release_firmware(uph_fw);
      return r;
}

/* Read data from device address space using "firmware interface" which does
 * not require firmware to be loaded. */
int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
{
      int r;
      struct usb_device *udev = zd_usb_to_usbdev(usb);

      r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
            USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
            data, len, 5000);
      if (r < 0) {
            dev_err(&udev->dev,
                  "read over firmware interface failed: %d\n", r);
            return r;
      } else if (r != len) {
            dev_err(&udev->dev,
                  "incomplete read over firmware interface: %d/%d\n",
                  r, len);
            return -EIO;
      }

      return 0;
}

#define urb_dev(urb) (&(urb)->dev->dev)

static inline void handle_regs_int(struct urb *urb)
{
      struct zd_usb *usb = urb->context;
      struct zd_usb_interrupt *intr = &usb->intr;
      int len;

      ZD_ASSERT(in_interrupt());
      spin_lock(&intr->lock);

      if (intr->read_regs_enabled) {
            intr->read_regs.length = len = urb->actual_length;

            if (len > sizeof(intr->read_regs.buffer))
                  len = sizeof(intr->read_regs.buffer);
            memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
            intr->read_regs_enabled = 0;
            complete(&intr->read_regs.completion);
            goto out;
      }

      dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
out:
      spin_unlock(&intr->lock);
}

static inline void handle_retry_failed_int(struct urb *urb)
{
      struct zd_usb *usb = urb->context;
      struct zd_mac *mac = zd_usb_to_mac(usb);
      struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);

      ieee->stats.tx_errors++;
      ieee->ieee_stats.tx_retry_limit_exceeded++;
      dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
}


static void int_urb_complete(struct urb *urb)
{
      int r;
      struct usb_int_header *hdr;

      switch (urb->status) {
      case 0:
            break;
      case -ESHUTDOWN:
      case -EINVAL:
      case -ENODEV:
      case -ENOENT:
      case -ECONNRESET:
      case -EPIPE:
            goto kfree;
      default:
            goto resubmit;
      }

      if (urb->actual_length < sizeof(hdr)) {
            dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
            goto resubmit;
      }

      hdr = urb->transfer_buffer;
      if (hdr->type != USB_INT_TYPE) {
            dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
            goto resubmit;
      }

      switch (hdr->id) {
      case USB_INT_ID_REGS:
            handle_regs_int(urb);
            break;
      case USB_INT_ID_RETRY_FAILED:
            handle_retry_failed_int(urb);
            break;
      default:
            dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
                  (unsigned int)hdr->id);
            goto resubmit;
      }

resubmit:
      r = usb_submit_urb(urb, GFP_ATOMIC);
      if (r) {
            dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
            goto kfree;
      }
      return;
kfree:
      kfree(urb->transfer_buffer);
}

static inline int int_urb_interval(struct usb_device *udev)
{
      switch (udev->speed) {
      case USB_SPEED_HIGH:
            return 4;
      case USB_SPEED_LOW:
            return 10;
      case USB_SPEED_FULL:
      default:
            return 1;
      }
}

static inline int usb_int_enabled(struct zd_usb *usb)
{
      unsigned long flags;
      struct zd_usb_interrupt *intr = &usb->intr;
      struct urb *urb;

      spin_lock_irqsave(&intr->lock, flags);
      urb = intr->urb;
      spin_unlock_irqrestore(&intr->lock, flags);
      return urb != NULL;
}

int zd_usb_enable_int(struct zd_usb *usb)
{
      int r;
      struct usb_device *udev;
      struct zd_usb_interrupt *intr = &usb->intr;
      void *transfer_buffer = NULL;
      struct urb *urb;

      dev_dbg_f(zd_usb_dev(usb), "\n");

      urb = usb_alloc_urb(0, GFP_KERNEL);
      if (!urb) {
            r = -ENOMEM;
            goto out;
      }

      ZD_ASSERT(!irqs_disabled());
      spin_lock_irq(&intr->lock);
      if (intr->urb) {
            spin_unlock_irq(&intr->lock);
            r = 0;
            goto error_free_urb;
      }
      intr->urb = urb;
      spin_unlock_irq(&intr->lock);

      /* TODO: make it a DMA buffer */
      r = -ENOMEM;
      transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
      if (!transfer_buffer) {
            dev_dbg_f(zd_usb_dev(usb),
                  "couldn't allocate transfer_buffer\n");
            goto error_set_urb_null;
      }

      udev = zd_usb_to_usbdev(usb);
      usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
                   transfer_buffer, USB_MAX_EP_INT_BUFFER,
                   int_urb_complete, usb,
                   intr->interval);

      dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
      r = usb_submit_urb(urb, GFP_KERNEL);
      if (r) {
            dev_dbg_f(zd_usb_dev(usb),
                   "Couldn't submit urb. Error number %d\n", r);
            goto error;
      }

      return 0;
error:
      kfree(transfer_buffer);
error_set_urb_null:
      spin_lock_irq(&intr->lock);
      intr->urb = NULL;
      spin_unlock_irq(&intr->lock);
error_free_urb:
      usb_free_urb(urb);
out:
      return r;
}

void zd_usb_disable_int(struct zd_usb *usb)
{
      unsigned long flags;
      struct zd_usb_interrupt *intr = &usb->intr;
      struct urb *urb;

      spin_lock_irqsave(&intr->lock, flags);
      urb = intr->urb;
      if (!urb) {
            spin_unlock_irqrestore(&intr->lock, flags);
            return;
      }
      intr->urb = NULL;
      spin_unlock_irqrestore(&intr->lock, flags);

      usb_kill_urb(urb);
      dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
      usb_free_urb(urb);
}

static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
                       unsigned int length)
{
      int i;
      struct zd_mac *mac = zd_usb_to_mac(usb);
      const struct rx_length_info *length_info;

      if (length < sizeof(struct rx_length_info)) {
            /* It's not a complete packet anyhow. */
            struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
            ieee->stats.rx_errors++;
            ieee->stats.rx_length_errors++;
            return;
      }
      length_info = (struct rx_length_info *)
            (buffer + length - sizeof(struct rx_length_info));

      /* It might be that three frames are merged into a single URB
       * transaction. We have to check for the length info tag.
       *
       * While testing we discovered that length_info might be unaligned,
       * because if USB transactions are merged, the last packet will not
       * be padded. Unaligned access might also happen if the length_info
       * structure is not present.
       */
      if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
      {
            unsigned int l, k, n;
            for (i = 0, l = 0;; i++) {
                  k = le16_to_cpu(get_unaligned(&length_info->length[i]));
                  if (k == 0)
                        return;
                  n = l+k;
                  if (n > length)
                        return;
                  zd_mac_rx_irq(mac, buffer+l, k);
                  if (i >= 2)
                        return;
                  l = (n+3) & ~3;
            }
      } else {
            zd_mac_rx_irq(mac, buffer, length);
      }
}

static void rx_urb_complete(struct urb *urb)
{
      struct zd_usb *usb;
      struct zd_usb_rx *rx;
      const u8 *buffer;
      unsigned int length;

      switch (urb->status) {
      case 0:
            break;
      case -ESHUTDOWN:
      case -EINVAL:
      case -ENODEV:
      case -ENOENT:
      case -ECONNRESET:
      case -EPIPE:
            return;
      default:
            dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
            goto resubmit;
      }

      buffer = urb->transfer_buffer;
      length = urb->actual_length;
      usb = urb->context;
      rx = &usb->rx;

      if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
            /* If there is an old first fragment, we don't care. */
            dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
            ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
            spin_lock(&rx->lock);
            memcpy(rx->fragment, buffer, length);
            rx->fragment_length = length;
            spin_unlock(&rx->lock);
            goto resubmit;
      }

      spin_lock(&rx->lock);
      if (rx->fragment_length > 0) {
            /* We are on a second fragment, we believe */
            ZD_ASSERT(length + rx->fragment_length <=
                    ARRAY_SIZE(rx->fragment));
            dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
            memcpy(rx->fragment+rx->fragment_length, buffer, length);
            handle_rx_packet(usb, rx->fragment,
                           rx->fragment_length + length);
            rx->fragment_length = 0;
            spin_unlock(&rx->lock);
      } else {
            spin_unlock(&rx->lock);
            handle_rx_packet(usb, buffer, length);
      }

resubmit:
      usb_submit_urb(urb, GFP_ATOMIC);
}

static struct urb *alloc_urb(struct zd_usb *usb)
{
      struct usb_device *udev = zd_usb_to_usbdev(usb);
      struct urb *urb;
      void *buffer;

      urb = usb_alloc_urb(0, GFP_KERNEL);
      if (!urb)
            return NULL;
      buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
                              &urb->transfer_dma);
      if (!buffer) {
            usb_free_urb(urb);
            return NULL;
      }

      usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
                      buffer, USB_MAX_RX_SIZE,
                    rx_urb_complete, usb);
      urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

      return urb;
}

static void free_urb(struct urb *urb)
{
      if (!urb)
            return;
      usb_buffer_free(urb->dev, urb->transfer_buffer_length,
                    urb->transfer_buffer, urb->transfer_dma);
      usb_free_urb(urb);
}

int zd_usb_enable_rx(struct zd_usb *usb)
{
      int i, r;
      struct zd_usb_rx *rx = &usb->rx;
      struct urb **urbs;

      dev_dbg_f(zd_usb_dev(usb), "\n");

      r = -ENOMEM;
      urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
      if (!urbs)
            goto error;
      for (i = 0; i < URBS_COUNT; i++) {
            urbs[i] = alloc_urb(usb);
            if (!urbs[i])
                  goto error;
      }

      ZD_ASSERT(!irqs_disabled());
      spin_lock_irq(&rx->lock);
      if (rx->urbs) {
            spin_unlock_irq(&rx->lock);
            r = 0;
            goto error;
      }
      rx->urbs = urbs;
      rx->urbs_count = URBS_COUNT;
      spin_unlock_irq(&rx->lock);

      for (i = 0; i < URBS_COUNT; i++) {
            r = usb_submit_urb(urbs[i], GFP_KERNEL);
            if (r)
                  goto error_submit;
      }

      return 0;
error_submit:
      for (i = 0; i < URBS_COUNT; i++) {
            usb_kill_urb(urbs[i]);
      }
      spin_lock_irq(&rx->lock);
      rx->urbs = NULL;
      rx->urbs_count = 0;
      spin_unlock_irq(&rx->lock);
error:
      if (urbs) {
            for (i = 0; i < URBS_COUNT; i++)
                  free_urb(urbs[i]);
      }
      return r;
}

void zd_usb_disable_rx(struct zd_usb *usb)
{
      int i;
      unsigned long flags;
      struct urb **urbs;
      unsigned int count;
      struct zd_usb_rx *rx = &usb->rx;

      spin_lock_irqsave(&rx->lock, flags);
      urbs = rx->urbs;
      count = rx->urbs_count;
      spin_unlock_irqrestore(&rx->lock, flags);
      if (!urbs)
            return;

      for (i = 0; i < count; i++) {
            usb_kill_urb(urbs[i]);
            free_urb(urbs[i]);
      }
      kfree(urbs);

      spin_lock_irqsave(&rx->lock, flags);
      rx->urbs = NULL;
      rx->urbs_count = 0;
      spin_unlock_irqrestore(&rx->lock, flags);
}

static void tx_urb_complete(struct urb *urb)
{
      int r;

      switch (urb->status) {
      case 0:
            break;
      case -ESHUTDOWN:
      case -EINVAL:
      case -ENODEV:
      case -ENOENT:
      case -ECONNRESET:
      case -EPIPE:
            dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
            break;
      default:
            dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
            goto resubmit;
      }
free_urb:
      usb_buffer_free(urb->dev, urb->transfer_buffer_length,
                    urb->transfer_buffer, urb->transfer_dma);
      usb_free_urb(urb);
      return;
resubmit:
      r = usb_submit_urb(urb, GFP_ATOMIC);
      if (r) {
            dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
            goto free_urb;
      }
}

/* Puts the frame on the USB endpoint. It doesn't wait for
 * completion. The frame must contain the control set.
 */
int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
{
      int r;
      struct usb_device *udev = zd_usb_to_usbdev(usb);
      struct urb *urb;
      void *buffer;

      urb = usb_alloc_urb(0, GFP_ATOMIC);
      if (!urb) {
            r = -ENOMEM;
            goto out;
      }

      buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
                              &urb->transfer_dma);
      if (!buffer) {
            r = -ENOMEM;
            goto error_free_urb;
      }
      memcpy(buffer, frame, length);

      usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
                      buffer, length, tx_urb_complete, NULL);
      urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

      r = usb_submit_urb(urb, GFP_ATOMIC);
      if (r)
            goto error;
      return 0;
error:
      usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
                    urb->transfer_dma);
error_free_urb:
      usb_free_urb(urb);
out:
      return r;
}

static inline void init_usb_interrupt(struct zd_usb *usb)
{
      struct zd_usb_interrupt *intr = &usb->intr;

      spin_lock_init(&intr->lock);
      intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
      init_completion(&intr->read_regs.completion);
      intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
}

static inline void init_usb_rx(struct zd_usb *usb)
{
      struct zd_usb_rx *rx = &usb->rx;
      spin_lock_init(&rx->lock);
      if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
            rx->usb_packet_size = 512;
      } else {
            rx->usb_packet_size = 64;
      }
      ZD_ASSERT(rx->fragment_length == 0);
}

static inline void init_usb_tx(struct zd_usb *usb)
{
      /* FIXME: at this point we will allocate a fixed number of urb's for
       * use in a cyclic scheme */
}

void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
               struct usb_interface *intf)
{
      memset(usb, 0, sizeof(*usb));
      usb->intf = usb_get_intf(intf);
      usb_set_intfdata(usb->intf, netdev);
      init_usb_interrupt(usb);
      init_usb_tx(usb);
      init_usb_rx(usb);
}

void zd_usb_clear(struct zd_usb *usb)
{
      usb_set_intfdata(usb->intf, NULL);
      usb_put_intf(usb->intf);
      ZD_MEMCLEAR(usb, sizeof(*usb));
      /* FIXME: usb_interrupt, usb_tx, usb_rx? */
}

static const char *speed(enum usb_device_speed speed)
{
      switch (speed) {
      case USB_SPEED_LOW:
            return "low";
      case USB_SPEED_FULL:
            return "full";
      case USB_SPEED_HIGH:
            return "high";
      default:
            return "unknown speed";
      }
}

static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
{
      return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
            le16_to_cpu(udev->descriptor.idVendor),
            le16_to_cpu(udev->descriptor.idProduct),
            get_bcdDevice(udev),
            speed(udev->speed));
}

int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
{
      struct usb_device *udev = interface_to_usbdev(usb->intf);
      return scnprint_id(udev, buffer, size);
}

#ifdef DEBUG
static void print_id(struct usb_device *udev)
{
      char buffer[40];

      scnprint_id(udev, buffer, sizeof(buffer));
      buffer[sizeof(buffer)-1] = 0;
      dev_dbg_f(&udev->dev, "%s\n", buffer);
}
#else
#define print_id(udev) do { } while (0)
#endif

static int eject_installer(struct usb_interface *intf)
{
      struct usb_device *udev = interface_to_usbdev(intf);
      struct usb_host_interface *iface_desc = &intf->altsetting[0];
      struct usb_endpoint_descriptor *endpoint;
      unsigned char *cmd;
      u8 bulk_out_ep;
      int r;

      /* Find bulk out endpoint */
      endpoint = &iface_desc->endpoint[1].desc;
      if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
          (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
          USB_ENDPOINT_XFER_BULK) {
            bulk_out_ep = endpoint->bEndpointAddress;
      } else {
            dev_err(&udev->dev,
                  "zd1211rw: Could not find bulk out endpoint\n");
            return -ENODEV;
      }

      cmd = kzalloc(31, GFP_KERNEL);
      if (cmd == NULL)
            return -ENODEV;

      /* USB bulk command block */
      cmd[0] = 0x55;    /* bulk command signature */
      cmd[1] = 0x53;    /* bulk command signature */
      cmd[2] = 0x42;    /* bulk command signature */
      cmd[3] = 0x43;    /* bulk command signature */
      cmd[14] = 6;      /* command length */

      cmd[15] = 0x1b;   /* SCSI command: START STOP UNIT */
      cmd[19] = 0x2;    /* eject disc */

      dev_info(&udev->dev, "Ejecting virtual installer media...\n");
      r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
            cmd, 31, NULL, 2000);
      kfree(cmd);
      if (r)
            return r;

      /* At this point, the device disconnects and reconnects with the real
       * ID numbers. */

      usb_set_intfdata(intf, NULL);
      return 0;
}

int zd_usb_init_hw(struct zd_usb *usb)
{
      int r;
      struct zd_mac *mac = zd_usb_to_mac(usb);

      dev_dbg_f(zd_usb_dev(usb), "\n");

      r = upload_firmware(usb);
      if (r) {
            dev_err(zd_usb_dev(usb),
                   "couldn't load firmware. Error number %d\n", r);
            return r;
      }

      r = usb_reset_configuration(zd_usb_to_usbdev(usb));
      if (r) {
            dev_dbg_f(zd_usb_dev(usb),
                  "couldn't reset configuration. Error number %d\n", r);
            return r;
      }

      r = zd_mac_init_hw(mac);
      if (r) {
            dev_dbg_f(zd_usb_dev(usb),
                     "couldn't initialize mac. Error number %d\n", r);
            return r;
      }

      usb->initialized = 1;
      return 0;
}

static int probe(struct usb_interface *intf, const struct usb_device_id *id)
{
      int r;
      struct zd_usb *usb;
      struct usb_device *udev = interface_to_usbdev(intf);
      struct net_device *netdev = NULL;

      print_id(udev);

      if (id->driver_info & DEVICE_INSTALLER)
            return eject_installer(intf);

      switch (udev->speed) {
      case USB_SPEED_LOW:
      case USB_SPEED_FULL:
      case USB_SPEED_HIGH:
            break;
      default:
            dev_dbg_f(&intf->dev, "Unknown USB speed\n");
            r = -ENODEV;
            goto error;
      }

      usb_reset_device(interface_to_usbdev(intf));

      netdev = zd_netdev_alloc(intf);
      if (netdev == NULL) {
            r = -ENOMEM;
            goto error;
      }

      usb = &zd_netdev_mac(netdev)->chip.usb;
      usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;

      r = zd_mac_preinit_hw(zd_netdev_mac(netdev));
      if (r) {
            dev_dbg_f(&intf->dev,
                     "couldn't initialize mac. Error number %d\n", r);
            goto error;
      }

      r = register_netdev(netdev);
      if (r) {
            dev_dbg_f(&intf->dev,
                   "couldn't register netdev. Error number %d\n", r);
            goto error;
      }

      dev_dbg_f(&intf->dev, "successful\n");
      dev_info(&intf->dev,"%s\n", netdev->name);
      return 0;
error:
      usb_reset_device(interface_to_usbdev(intf));
      zd_netdev_free(netdev);
      return r;
}

static void disconnect(struct usb_interface *intf)
{
      struct net_device *netdev = zd_intf_to_netdev(intf);
      struct zd_mac *mac;
      struct zd_usb *usb;

      /* Either something really bad happened, or we're just dealing with
       * a DEVICE_INSTALLER. */
      if (netdev == NULL)
            return;

      mac = zd_netdev_mac(netdev);
      usb = &mac->chip.usb;

      dev_dbg_f(zd_usb_dev(usb), "\n");

      zd_netdev_disconnect(netdev);

      /* Just in case something has gone wrong! */
      zd_usb_disable_rx(usb);
      zd_usb_disable_int(usb);

      /* If the disconnect has been caused by a removal of the
       * driver module, the reset allows reloading of the driver. If the
       * reset will not be executed here, the upload of the firmware in the
       * probe function caused by the reloading of the driver will fail.
       */
      usb_reset_device(interface_to_usbdev(intf));

      zd_netdev_free(netdev);
      dev_dbg(&intf->dev, "disconnected\n");
}

static struct usb_driver driver = {
      .name       = "zd1211rw",
      .id_table   = usb_ids,
      .probe            = probe,
      .disconnect = disconnect,
};

struct workqueue_struct *zd_workqueue;

static int __init usb_init(void)
{
      int r;

      pr_debug("%s usb_init()\n", driver.name);

      zd_workqueue = create_singlethread_workqueue(driver.name);
      if (zd_workqueue == NULL) {
            printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
            return -ENOMEM;
      }

      r = usb_register(&driver);
      if (r) {
            destroy_workqueue(zd_workqueue);
            printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
                   driver.name, r);
            return r;
      }

      pr_debug("%s initialized\n", driver.name);
      return 0;
}

static void __exit usb_exit(void)
{
      pr_debug("%s usb_exit()\n", driver.name);
      usb_deregister(&driver);
      destroy_workqueue(zd_workqueue);
}

module_init(usb_init);
module_exit(usb_exit);

static int usb_int_regs_length(unsigned int count)
{
      return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
}

static void prepare_read_regs_int(struct zd_usb *usb)
{
      struct zd_usb_interrupt *intr = &usb->intr;

      spin_lock_irq(&intr->lock);
      intr->read_regs_enabled = 1;
      INIT_COMPLETION(intr->read_regs.completion);
      spin_unlock_irq(&intr->lock);
}

static void disable_read_regs_int(struct zd_usb *usb)
{
      struct zd_usb_interrupt *intr = &usb->intr;

      spin_lock_irq(&intr->lock);
      intr->read_regs_enabled = 0;
      spin_unlock_irq(&intr->lock);
}

static int get_results(struct zd_usb *usb, u16 *values,
                     struct usb_req_read_regs *req, unsigned int count)
{
      int r;
      int i;
      struct zd_usb_interrupt *intr = &usb->intr;
      struct read_regs_int *rr = &intr->read_regs;
      struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;

      spin_lock_irq(&intr->lock);

      r = -EIO;
      /* The created block size seems to be larger than expected.
       * However results appear to be correct.
       */
      if (rr->length < usb_int_regs_length(count)) {
            dev_dbg_f(zd_usb_dev(usb),
                   "error: actual length %d less than expected %d\n",
                   rr->length, usb_int_regs_length(count));
            goto error_unlock;
      }
      if (rr->length > sizeof(rr->buffer)) {
            dev_dbg_f(zd_usb_dev(usb),
                   "error: actual length %d exceeds buffer size %zu\n",
                   rr->length, sizeof(rr->buffer));
            goto error_unlock;
      }

      for (i = 0; i < count; i++) {
            struct reg_data *rd = &regs->regs[i];
            if (rd->addr != req->addr[i]) {
                  dev_dbg_f(zd_usb_dev(usb),
                         "rd[%d] addr %#06hx expected %#06hx\n", i,
                         le16_to_cpu(rd->addr),
                         le16_to_cpu(req->addr[i]));
                  goto error_unlock;
            }
            values[i] = le16_to_cpu(rd->value);
      }

      r = 0;
error_unlock:
      spin_unlock_irq(&intr->lock);
      return r;
}

int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
                   const zd_addr_t *addresses, unsigned int count)
{
      int r;
      int i, req_len, actual_req_len;
      struct usb_device *udev;
      struct usb_req_read_regs *req = NULL;
      unsigned long timeout;

      if (count < 1) {
            dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
            return -EINVAL;
      }
      if (count > USB_MAX_IOREAD16_COUNT) {
            dev_dbg_f(zd_usb_dev(usb),
                   "error: count %u exceeds possible max %u\n",
                   count, USB_MAX_IOREAD16_COUNT);
            return -EINVAL;
      }
      if (in_atomic()) {
            dev_dbg_f(zd_usb_dev(usb),
                   "error: io in atomic context not supported\n");
            return -EWOULDBLOCK;
      }
      if (!usb_int_enabled(usb)) {
             dev_dbg_f(zd_usb_dev(usb),
                    "error: usb interrupt not enabled\n");
            return -EWOULDBLOCK;
      }

      req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
      req = kmalloc(req_len, GFP_KERNEL);
      if (!req)
            return -ENOMEM;
      req->id = cpu_to_le16(USB_REQ_READ_REGS);
      for (i = 0; i < count; i++)
            req->addr[i] = cpu_to_le16((u16)addresses[i]);

      udev = zd_usb_to_usbdev(usb);
      prepare_read_regs_int(usb);
      r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
                     req, req_len, &actual_req_len, 1000 /* ms */);
      if (r) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error in usb_bulk_msg(). Error number %d\n", r);
            goto error;
      }
      if (req_len != actual_req_len) {
            dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
                  " req_len %d != actual_req_len %d\n",
                  req_len, actual_req_len);
            r = -EIO;
            goto error;
      }

      timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
                                            msecs_to_jiffies(1000));
      if (!timeout) {
            disable_read_regs_int(usb);
            dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
            r = -ETIMEDOUT;
            goto error;
      }

      r = get_results(usb, values, req, count);
error:
      kfree(req);
      return r;
}

int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
                    unsigned int count)
{
      int r;
      struct usb_device *udev;
      struct usb_req_write_regs *req = NULL;
      int i, req_len, actual_req_len;

      if (count == 0)
            return 0;
      if (count > USB_MAX_IOWRITE16_COUNT) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error: count %u exceeds possible max %u\n",
                  count, USB_MAX_IOWRITE16_COUNT);
            return -EINVAL;
      }
      if (in_atomic()) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error: io in atomic context not supported\n");
            return -EWOULDBLOCK;
      }

      req_len = sizeof(struct usb_req_write_regs) +
              count * sizeof(struct reg_data);
      req = kmalloc(req_len, GFP_KERNEL);
      if (!req)
            return -ENOMEM;

      req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
      for (i = 0; i < count; i++) {
            struct reg_data *rw  = &req->reg_writes[i];
            rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
            rw->value = cpu_to_le16(ioreqs[i].value);
      }

      udev = zd_usb_to_usbdev(usb);
      r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
                     req, req_len, &actual_req_len, 1000 /* ms */);
      if (r) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error in usb_bulk_msg(). Error number %d\n", r);
            goto error;
      }
      if (req_len != actual_req_len) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error in usb_bulk_msg()"
                  " req_len %d != actual_req_len %d\n",
                  req_len, actual_req_len);
            r = -EIO;
            goto error;
      }

      /* FALL-THROUGH with r == 0 */
error:
      kfree(req);
      return r;
}

int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
{
      int r;
      struct usb_device *udev;
      struct usb_req_rfwrite *req = NULL;
      int i, req_len, actual_req_len;
      u16 bit_value_template;

      if (in_atomic()) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error: io in atomic context not supported\n");
            return -EWOULDBLOCK;
      }
      if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error: bits %d are smaller than"
                  " USB_MIN_RFWRITE_BIT_COUNT %d\n",
                  bits, USB_MIN_RFWRITE_BIT_COUNT);
            return -EINVAL;
      }
      if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
                  bits, USB_MAX_RFWRITE_BIT_COUNT);
            return -EINVAL;
      }
#ifdef DEBUG
      if (value & (~0UL << bits)) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error: value %#09x has bits >= %d set\n",
                  value, bits);
            return -EINVAL;
      }
#endif /* DEBUG */

      dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);

      r = zd_usb_ioread16(usb, &bit_value_template, CR203);
      if (r) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error %d: Couldn't read CR203\n", r);
            goto out;
      }
      bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);

      req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
      req = kmalloc(req_len, GFP_KERNEL);
      if (!req)
            return -ENOMEM;

      req->id = cpu_to_le16(USB_REQ_WRITE_RF);
      /* 1: 3683a, but not used in ZYDAS driver */
      req->value = cpu_to_le16(2);
      req->bits = cpu_to_le16(bits);

      for (i = 0; i < bits; i++) {
            u16 bv = bit_value_template;
            if (value & (1 << (bits-1-i)))
                  bv |= RF_DATA;
            req->bit_values[i] = cpu_to_le16(bv);
      }

      udev = zd_usb_to_usbdev(usb);
      r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
                     req, req_len, &actual_req_len, 1000 /* ms */);
      if (r) {
            dev_dbg_f(zd_usb_dev(usb),
                  "error in usb_bulk_msg(). Error number %d\n", r);
            goto out;
      }
      if (req_len != actual_req_len) {
            dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
                  " req_len %d != actual_req_len %d\n",
                  req_len, actual_req_len);
            r = -EIO;
            goto out;
      }

      /* FALL-THROUGH with r == 0 */
out:
      kfree(req);
      return r;
}

Generated by  Doxygen 1.6.0   Back to index