Logo Search packages:      
Sourcecode: linux version File versions

rtasd.c

/*
 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Communication to userspace based on kernel/printk.c
 */

#include <linux/types.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/delay.h>

#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/rtas.h>
#include <asm/prom.h>
#include <asm/nvram.h>
#include <asm/atomic.h>
#include <asm/machdep.h>


static DEFINE_SPINLOCK(rtasd_log_lock);

static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);

static char *rtas_log_buf;
static unsigned long rtas_log_start;
static unsigned long rtas_log_size;

static int surveillance_timeout = -1;
static unsigned int rtas_error_log_max;
static unsigned int rtas_error_log_buffer_max;

/* RTAS service tokens */
static unsigned int event_scan;
static unsigned int rtas_event_scan_rate;

static int full_rtas_msgs = 0;

/* Stop logging to nvram after first fatal error */
static int logging_enabled; /* Until we initialize everything,
                             * make sure we don't try logging
                             * anything */
static int error_log_cnt;

/*
 * Since we use 32 bit RTAS, the physical address of this must be below
 * 4G or else bad things happen. Allocate this in the kernel data and
 * make it big enough.
 */
static unsigned char logdata[RTAS_ERROR_LOG_MAX];

static char *rtas_type[] = {
      "Unknown", "Retry", "TCE Error", "Internal Device Failure",
      "Timeout", "Data Parity", "Address Parity", "Cache Parity",
      "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
};

static char *rtas_event_type(int type)
{
      if ((type > 0) && (type < 11))
            return rtas_type[type];

      switch (type) {
            case RTAS_TYPE_EPOW:
                  return "EPOW";
            case RTAS_TYPE_PLATFORM:
                  return "Platform Error";
            case RTAS_TYPE_IO:
                  return "I/O Event";
            case RTAS_TYPE_INFO:
                  return "Platform Information Event";
            case RTAS_TYPE_DEALLOC:
                  return "Resource Deallocation Event";
            case RTAS_TYPE_DUMP:
                  return "Dump Notification Event";
      }

      return rtas_type[0];
}

/* To see this info, grep RTAS /var/log/messages and each entry
 * will be collected together with obvious begin/end.
 * There will be a unique identifier on the begin and end lines.
 * This will persist across reboots.
 *
 * format of error logs returned from RTAS:
 * bytes    (size)      : contents
 * --------------------------------------------------------
 * 0-7            (8)   : rtas_error_log
 * 8-47           (40)  : extended info
 * 48-51    (4)   : vendor id
 * 52-1023 (vendor specific) : location code and debug data
 */
static void printk_log_rtas(char *buf, int len)
{

      int i,j,n = 0;
      int perline = 16;
      char buffer[64];
      char * str = "RTAS event";

      if (full_rtas_msgs) {
            printk(RTAS_DEBUG "%d -------- %s begin --------\n",
                   error_log_cnt, str);

            /*
             * Print perline bytes on each line, each line will start
             * with RTAS and a changing number, so syslogd will
             * print lines that are otherwise the same.  Separate every
             * 4 bytes with a space.
             */
            for (i = 0; i < len; i++) {
                  j = i % perline;
                  if (j == 0) {
                        memset(buffer, 0, sizeof(buffer));
                        n = sprintf(buffer, "RTAS %d:", i/perline);
                  }

                  if ((i % 4) == 0)
                        n += sprintf(buffer+n, " ");

                  n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);

                  if (j == (perline-1))
                        printk(KERN_DEBUG "%s\n", buffer);
            }
            if ((i % perline) != 0)
                  printk(KERN_DEBUG "%s\n", buffer);

            printk(RTAS_DEBUG "%d -------- %s end ----------\n",
                   error_log_cnt, str);
      } else {
            struct rtas_error_log *errlog = (struct rtas_error_log *)buf;

            printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
                   error_log_cnt, rtas_event_type(errlog->type),
                   errlog->severity);
      }
}

static int log_rtas_len(char * buf)
{
      int len;
      struct rtas_error_log *err;

      /* rtas fixed header */
      len = 8;
      err = (struct rtas_error_log *)buf;
      if (err->extended_log_length) {

            /* extended header */
            len += err->extended_log_length;
      }

      if (rtas_error_log_max == 0)
            rtas_error_log_max = rtas_get_error_log_max();

      if (len > rtas_error_log_max)
            len = rtas_error_log_max;

      return len;
}

/*
 * First write to nvram, if fatal error, that is the only
 * place we log the info.  The error will be picked up
 * on the next reboot by rtasd.  If not fatal, run the
 * method for the type of error.  Currently, only RTAS
 * errors have methods implemented, but in the future
 * there might be a need to store data in nvram before a
 * call to panic().
 *
 * XXX We write to nvram periodically, to indicate error has
 * been written and sync'd, but there is a possibility
 * that if we don't shutdown correctly, a duplicate error
 * record will be created on next reboot.
 */
void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
{
      unsigned long offset;
      unsigned long s;
      int len = 0;

      pr_debug("rtasd: logging event\n");
      if (buf == NULL)
            return;

      spin_lock_irqsave(&rtasd_log_lock, s);

      /* get length and increase count */
      switch (err_type & ERR_TYPE_MASK) {
      case ERR_TYPE_RTAS_LOG:
            len = log_rtas_len(buf);
            if (!(err_type & ERR_FLAG_BOOT))
                  error_log_cnt++;
            break;
      case ERR_TYPE_KERNEL_PANIC:
      default:
            spin_unlock_irqrestore(&rtasd_log_lock, s);
            return;
      }

      /* Write error to NVRAM */
      if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
            nvram_write_error_log(buf, len, err_type, error_log_cnt);

      /*
       * rtas errors can occur during boot, and we do want to capture
       * those somewhere, even if nvram isn't ready (why not?), and even
       * if rtasd isn't ready. Put them into the boot log, at least.
       */
      if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
            printk_log_rtas(buf, len);

      /* Check to see if we need to or have stopped logging */
      if (fatal || !logging_enabled) {
            logging_enabled = 0;
            spin_unlock_irqrestore(&rtasd_log_lock, s);
            return;
      }

      /* call type specific method for error */
      switch (err_type & ERR_TYPE_MASK) {
      case ERR_TYPE_RTAS_LOG:
            offset = rtas_error_log_buffer_max *
                  ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);

            /* First copy over sequence number */
            memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));

            /* Second copy over error log data */
            offset += sizeof(int);
            memcpy(&rtas_log_buf[offset], buf, len);

            if (rtas_log_size < LOG_NUMBER)
                  rtas_log_size += 1;
            else
                  rtas_log_start += 1;

            spin_unlock_irqrestore(&rtasd_log_lock, s);
            wake_up_interruptible(&rtas_log_wait);
            break;
      case ERR_TYPE_KERNEL_PANIC:
      default:
            spin_unlock_irqrestore(&rtasd_log_lock, s);
            return;
      }

}


static int rtas_log_open(struct inode * inode, struct file * file)
{
      return 0;
}

static int rtas_log_release(struct inode * inode, struct file * file)
{
      return 0;
}

/* This will check if all events are logged, if they are then, we
 * know that we can safely clear the events in NVRAM.
 * Next we'll sit and wait for something else to log.
 */
static ssize_t rtas_log_read(struct file * file, char __user * buf,
                   size_t count, loff_t *ppos)
{
      int error;
      char *tmp;
      unsigned long s;
      unsigned long offset;

      if (!buf || count < rtas_error_log_buffer_max)
            return -EINVAL;

      count = rtas_error_log_buffer_max;

      if (!access_ok(VERIFY_WRITE, buf, count))
            return -EFAULT;

      tmp = kmalloc(count, GFP_KERNEL);
      if (!tmp)
            return -ENOMEM;


      spin_lock_irqsave(&rtasd_log_lock, s);
      /* if it's 0, then we know we got the last one (the one in NVRAM) */
      if (rtas_log_size == 0 && logging_enabled)
            nvram_clear_error_log();
      spin_unlock_irqrestore(&rtasd_log_lock, s);


      error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
      if (error)
            goto out;

      spin_lock_irqsave(&rtasd_log_lock, s);
      offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
      memcpy(tmp, &rtas_log_buf[offset], count);

      rtas_log_start += 1;
      rtas_log_size -= 1;
      spin_unlock_irqrestore(&rtasd_log_lock, s);

      error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
out:
      kfree(tmp);
      return error;
}

static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
{
      poll_wait(file, &rtas_log_wait, wait);
      if (rtas_log_size)
            return POLLIN | POLLRDNORM;
      return 0;
}

static const struct file_operations proc_rtas_log_operations = {
      .read =           rtas_log_read,
      .poll =           rtas_log_poll,
      .open =           rtas_log_open,
      .release =  rtas_log_release,
};

static int enable_surveillance(int timeout)
{
      int error;

      error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);

      if (error == 0)
            return 0;

      if (error == -EINVAL) {
            printk(KERN_DEBUG "rtasd: surveillance not supported\n");
            return 0;
      }

      printk(KERN_ERR "rtasd: could not update surveillance\n");
      return -1;
}

static void do_event_scan(void)
{
      int error;
      do {
            memset(logdata, 0, rtas_error_log_max);
            error = rtas_call(event_scan, 4, 1, NULL,
                          RTAS_EVENT_SCAN_ALL_EVENTS, 0,
                          __pa(logdata), rtas_error_log_max);
            if (error == -1) {
                  printk(KERN_ERR "event-scan failed\n");
                  break;
            }

            if (error == 0)
                  pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);

      } while(error == 0);
}

static void do_event_scan_all_cpus(long delay)
{
      int cpu;

      get_online_cpus();
      cpu = first_cpu(cpu_online_map);
      for (;;) {
            set_cpus_allowed(current, cpumask_of_cpu(cpu));
            do_event_scan();
            set_cpus_allowed(current, CPU_MASK_ALL);

            /* Drop hotplug lock, and sleep for the specified delay */
            put_online_cpus();
            msleep_interruptible(delay);
            get_online_cpus();

            cpu = next_cpu(cpu, cpu_online_map);
            if (cpu == NR_CPUS)
                  break;
      }
      put_online_cpus();
}

static int rtasd(void *unused)
{
      unsigned int err_type;
      int rc;

      daemonize("rtasd");

      printk(KERN_DEBUG "RTAS daemon started\n");
      pr_debug("rtasd: will sleep for %d milliseconds\n",
             (30000 / rtas_event_scan_rate));

      /* See if we have any error stored in NVRAM */
      memset(logdata, 0, rtas_error_log_max);
      rc = nvram_read_error_log(logdata, rtas_error_log_max,
                                &err_type, &error_log_cnt);
      /* We can use rtas_log_buf now */
      logging_enabled = 1;

      if (!rc) {
            if (err_type != ERR_FLAG_ALREADY_LOGGED) {
                  pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
            }
      }

      /* First pass. */
      do_event_scan_all_cpus(1000);

      if (surveillance_timeout != -1) {
            pr_debug("rtasd: enabling surveillance\n");
            enable_surveillance(surveillance_timeout);
            pr_debug("rtasd: surveillance enabled\n");
      }

      /* Delay should be at least one second since some
       * machines have problems if we call event-scan too
       * quickly. */
      for (;;)
            do_event_scan_all_cpus(30000/rtas_event_scan_rate);

      return -EINVAL;
}

static int __init rtas_init(void)
{
      struct proc_dir_entry *entry;

      if (!machine_is(pseries))
            return 0;

      /* No RTAS */
      event_scan = rtas_token("event-scan");
      if (event_scan == RTAS_UNKNOWN_SERVICE) {
            printk(KERN_DEBUG "rtasd: no event-scan on system\n");
            return -ENODEV;
      }

      rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
      if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
            printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
            return -ENODEV;
      }

      /* Make room for the sequence number */
      rtas_error_log_max = rtas_get_error_log_max();
      rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);

      rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
      if (!rtas_log_buf) {
            printk(KERN_ERR "rtasd: no memory\n");
            return -ENOMEM;
      }

      entry = proc_create("ppc64/rtas/error_log", S_IRUSR, NULL,
                      &proc_rtas_log_operations);
      if (!entry)
            printk(KERN_ERR "Failed to create error_log proc entry\n");

      if (kernel_thread(rtasd, NULL, CLONE_FS) < 0)
            printk(KERN_ERR "Failed to start RTAS daemon\n");

      return 0;
}

static int __init surveillance_setup(char *str)
{
      int i;

      if (get_option(&str,&i)) {
            if (i >= 0 && i <= 255)
                  surveillance_timeout = i;
      }

      return 1;
}

static int __init rtasmsgs_setup(char *str)
{
      if (strcmp(str, "on") == 0)
            full_rtas_msgs = 1;
      else if (strcmp(str, "off") == 0)
            full_rtas_msgs = 0;

      return 1;
}
__initcall(rtas_init);
__setup("surveillance=", surveillance_setup);
__setup("rtasmsgs=", rtasmsgs_setup);

Generated by  Doxygen 1.6.0   Back to index