Logo Search packages:      
Sourcecode: linux version File versions

srmmu.c

/*
 * srmmu.c:  SRMMU specific routines for memory management.
 *
 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
 */

#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/kdebug.h>

#include <asm/bitext.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/vaddrs.h>
#include <asm/traps.h>
#include <asm/smp.h>
#include <asm/mbus.h>
#include <asm/cache.h>
#include <asm/oplib.h>
#include <asm/sbus.h>
#include <asm/asi.h>
#include <asm/msi.h>
#include <asm/mmu_context.h>
#include <asm/io-unit.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>

/* Now the cpu specific definitions. */
#include <asm/viking.h>
#include <asm/mxcc.h>
#include <asm/ross.h>
#include <asm/tsunami.h>
#include <asm/swift.h>
#include <asm/turbosparc.h>

#include <asm/btfixup.h>

enum mbus_module srmmu_modtype;
static unsigned int hwbug_bitmask;
int vac_cache_size;
int vac_line_size;

extern struct resource sparc_iomap;

extern unsigned long last_valid_pfn;

extern unsigned long page_kernel;

static pgd_t *srmmu_swapper_pg_dir;

#ifdef CONFIG_SMP
#define FLUSH_BEGIN(mm)
#define FLUSH_END
#else
#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
#define FLUSH_END }
#endif

BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)

int flush_page_for_dma_global = 1;

#ifdef CONFIG_SMP
BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
#endif

char *srmmu_name;

ctxd_t *srmmu_ctx_table_phys;
static ctxd_t *srmmu_context_table;

int viking_mxcc_present;
static DEFINE_SPINLOCK(srmmu_context_spinlock);

static int is_hypersparc;

/*
 * In general all page table modifications should use the V8 atomic
 * swap instruction.  This insures the mmu and the cpu are in sync
 * with respect to ref/mod bits in the page tables.
 */
static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
{
      __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
      return value;
}

static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
{
      srmmu_swap((unsigned long *)ptep, pte_val(pteval));
}

/* The very generic SRMMU page table operations. */
static inline int srmmu_device_memory(unsigned long x)
{
      return ((x & 0xF0000000) != 0);
}

static int srmmu_cache_pagetables;

/* these will be initialized in srmmu_nocache_calcsize() */
static unsigned long srmmu_nocache_size;
static unsigned long srmmu_nocache_end;

/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)

/* The context table is a nocache user with the biggest alignment needs. */
#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)

void *srmmu_nocache_pool;
void *srmmu_nocache_bitmap;
static struct bit_map srmmu_nocache_map;

static unsigned long srmmu_pte_pfn(pte_t pte)
{
      if (srmmu_device_memory(pte_val(pte))) {
            /* Just return something that will cause
             * pfn_valid() to return false.  This makes
             * copy_one_pte() to just directly copy to
             * PTE over.
             */
            return ~0UL;
      }
      return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
}

static struct page *srmmu_pmd_page(pmd_t pmd)
{

      if (srmmu_device_memory(pmd_val(pmd)))
            BUG();
      return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
}

static inline unsigned long srmmu_pgd_page(pgd_t pgd)
{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }


static inline int srmmu_pte_none(pte_t pte)
{ return !(pte_val(pte) & 0xFFFFFFF); }

static inline int srmmu_pte_present(pte_t pte)
{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }

static inline void srmmu_pte_clear(pte_t *ptep)
{ srmmu_set_pte(ptep, __pte(0)); }

static inline int srmmu_pmd_none(pmd_t pmd)
{ return !(pmd_val(pmd) & 0xFFFFFFF); }

static inline int srmmu_pmd_bad(pmd_t pmd)
{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }

static inline int srmmu_pmd_present(pmd_t pmd)
{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }

static inline void srmmu_pmd_clear(pmd_t *pmdp) {
      int i;
      for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
            srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
}

static inline int srmmu_pgd_none(pgd_t pgd)          
{ return !(pgd_val(pgd) & 0xFFFFFFF); }

static inline int srmmu_pgd_bad(pgd_t pgd)
{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }

static inline int srmmu_pgd_present(pgd_t pgd)
{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }

static inline void srmmu_pgd_clear(pgd_t * pgdp)
{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }

static inline pte_t srmmu_pte_wrprotect(pte_t pte)
{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}

static inline pte_t srmmu_pte_mkclean(pte_t pte)
{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}

static inline pte_t srmmu_pte_mkold(pte_t pte)
{ return __pte(pte_val(pte) & ~SRMMU_REF);}

static inline pte_t srmmu_pte_mkwrite(pte_t pte)
{ return __pte(pte_val(pte) | SRMMU_WRITE);}

static inline pte_t srmmu_pte_mkdirty(pte_t pte)
{ return __pte(pte_val(pte) | SRMMU_DIRTY);}

static inline pte_t srmmu_pte_mkyoung(pte_t pte)
{ return __pte(pte_val(pte) | SRMMU_REF);}

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }

static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }

static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }

/* XXX should we hyper_flush_whole_icache here - Anton */
static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }

static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }

static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
{
      unsigned long ptp;      /* Physical address, shifted right by 4 */
      int i;

      ptp = __nocache_pa((unsigned long) ptep) >> 4;
      for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
            srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
            ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
      }
}

static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
{
      unsigned long ptp;      /* Physical address, shifted right by 4 */
      int i;

      ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
      for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
            srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
            ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
      }
}

static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }

/* to find an entry in a top-level page table... */
static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }

/* Find an entry in the second-level page table.. */
static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
{
      return (pmd_t *) srmmu_pgd_page(*dir) +
          ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
}

/* Find an entry in the third-level page table.. */ 
static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
{
      void *pte;

      pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
      return (pte_t *) pte +
          ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}

static unsigned long srmmu_swp_type(swp_entry_t entry)
{
      return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
}

static unsigned long srmmu_swp_offset(swp_entry_t entry)
{
      return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
}

static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
{
      return (swp_entry_t) {
              (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
            | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
}

/*
 * size: bytes to allocate in the nocache area.
 * align: bytes, number to align at.
 * Returns the virtual address of the allocated area.
 */
static unsigned long __srmmu_get_nocache(int size, int align)
{
      int offset;

      if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
            printk("Size 0x%x too small for nocache request\n", size);
            size = SRMMU_NOCACHE_BITMAP_SHIFT;
      }
      if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
            printk("Size 0x%x unaligned int nocache request\n", size);
            size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
      }
      BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);

      offset = bit_map_string_get(&srmmu_nocache_map,
                                    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
                              align >> SRMMU_NOCACHE_BITMAP_SHIFT);
      if (offset == -1) {
            printk("srmmu: out of nocache %d: %d/%d\n",
                size, (int) srmmu_nocache_size,
                srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
            return 0;
      }

      return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
}

static unsigned long srmmu_get_nocache(int size, int align)
{
      unsigned long tmp;

      tmp = __srmmu_get_nocache(size, align);

      if (tmp)
            memset((void *)tmp, 0, size);

      return tmp;
}

static void srmmu_free_nocache(unsigned long vaddr, int size)
{
      int offset;

      if (vaddr < SRMMU_NOCACHE_VADDR) {
            printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
                vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
            BUG();
      }
      if (vaddr+size > srmmu_nocache_end) {
            printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
                vaddr, srmmu_nocache_end);
            BUG();
      }
      if (size & (size-1)) {
            printk("Size 0x%x is not a power of 2\n", size);
            BUG();
      }
      if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
            printk("Size 0x%x is too small\n", size);
            BUG();
      }
      if (vaddr & (size-1)) {
            printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
            BUG();
      }

      offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
      size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;

      bit_map_clear(&srmmu_nocache_map, offset, size);
}

static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
                                     unsigned long end);

extern unsigned long probe_memory(void);  /* in fault.c */

/*
 * Reserve nocache dynamically proportionally to the amount of
 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 */
static void srmmu_nocache_calcsize(void)
{
      unsigned long sysmemavail = probe_memory() / 1024;
      int srmmu_nocache_npages;

      srmmu_nocache_npages =
            sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;

 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
      // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
      if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
            srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;

      /* anything above 1280 blows up */
      if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
            srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;

      srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
      srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
}

static void __init srmmu_nocache_init(void)
{
      unsigned int bitmap_bits;
      pgd_t *pgd;
      pmd_t *pmd;
      pte_t *pte;
      unsigned long paddr, vaddr;
      unsigned long pteval;

      bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;

      srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
            SRMMU_NOCACHE_ALIGN_MAX, 0UL);
      memset(srmmu_nocache_pool, 0, srmmu_nocache_size);

      srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
      bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);

      srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
      memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
      init_mm.pgd = srmmu_swapper_pg_dir;

      srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);

      paddr = __pa((unsigned long)srmmu_nocache_pool);
      vaddr = SRMMU_NOCACHE_VADDR;

      while (vaddr < srmmu_nocache_end) {
            pgd = pgd_offset_k(vaddr);
            pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
            pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);

            pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);

            if (srmmu_cache_pagetables)
                  pteval |= SRMMU_CACHE;

            srmmu_set_pte(__nocache_fix(pte), __pte(pteval));

            vaddr += PAGE_SIZE;
            paddr += PAGE_SIZE;
      }

      flush_cache_all();
      flush_tlb_all();
}

static inline pgd_t *srmmu_get_pgd_fast(void)
{
      pgd_t *pgd = NULL;

      pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
      if (pgd) {
            pgd_t *init = pgd_offset_k(0);
            memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
            memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
                                    (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
      }

      return pgd;
}

static void srmmu_free_pgd_fast(pgd_t *pgd)
{
      srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
}

static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
{
      return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
}

static void srmmu_pmd_free(pmd_t * pmd)
{
      srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
}

/*
 * Hardware needs alignment to 256 only, but we align to whole page size
 * to reduce fragmentation problems due to the buddy principle.
 * XXX Provide actual fragmentation statistics in /proc.
 *
 * Alignments up to the page size are the same for physical and virtual
 * addresses of the nocache area.
 */
static pte_t *
srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
      return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
}

static pgtable_t
srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
      unsigned long pte;
      struct page *page;

      if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
            return NULL;
      page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
      pgtable_page_ctor(page);
      return page;
}

static void srmmu_free_pte_fast(pte_t *pte)
{
      srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
}

static void srmmu_pte_free(pgtable_t pte)
{
      unsigned long p;

      pgtable_page_dtor(pte);
      p = (unsigned long)page_address(pte);     /* Cached address (for test) */
      if (p == 0)
            BUG();
      p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
      p = (unsigned long) __nocache_va(p);      /* Nocached virtual */
      srmmu_free_nocache(p, PTE_SIZE);
}

/*
 */
static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
{
      struct ctx_list *ctxp;

      ctxp = ctx_free.next;
      if(ctxp != &ctx_free) {
            remove_from_ctx_list(ctxp);
            add_to_used_ctxlist(ctxp);
            mm->context = ctxp->ctx_number;
            ctxp->ctx_mm = mm;
            return;
      }
      ctxp = ctx_used.next;
      if(ctxp->ctx_mm == old_mm)
            ctxp = ctxp->next;
      if(ctxp == &ctx_used)
            panic("out of mmu contexts");
      flush_cache_mm(ctxp->ctx_mm);
      flush_tlb_mm(ctxp->ctx_mm);
      remove_from_ctx_list(ctxp);
      add_to_used_ctxlist(ctxp);
      ctxp->ctx_mm->context = NO_CONTEXT;
      ctxp->ctx_mm = mm;
      mm->context = ctxp->ctx_number;
}

static inline void free_context(int context)
{
      struct ctx_list *ctx_old;

      ctx_old = ctx_list_pool + context;
      remove_from_ctx_list(ctx_old);
      add_to_free_ctxlist(ctx_old);
}


static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
    struct task_struct *tsk, int cpu)
{
      if(mm->context == NO_CONTEXT) {
            spin_lock(&srmmu_context_spinlock);
            alloc_context(old_mm, mm);
            spin_unlock(&srmmu_context_spinlock);
            srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
      }

      if (is_hypersparc)
            hyper_flush_whole_icache();

      srmmu_set_context(mm->context);
}

/* Low level IO area allocation on the SRMMU. */
static inline void srmmu_mapioaddr(unsigned long physaddr,
    unsigned long virt_addr, int bus_type)
{
      pgd_t *pgdp;
      pmd_t *pmdp;
      pte_t *ptep;
      unsigned long tmp;

      physaddr &= PAGE_MASK;
      pgdp = pgd_offset_k(virt_addr);
      pmdp = srmmu_pmd_offset(pgdp, virt_addr);
      ptep = srmmu_pte_offset(pmdp, virt_addr);
      tmp = (physaddr >> 4) | SRMMU_ET_PTE;

      /*
       * I need to test whether this is consistent over all
       * sun4m's.  The bus_type represents the upper 4 bits of
       * 36-bit physical address on the I/O space lines...
       */
      tmp |= (bus_type << 28);
      tmp |= SRMMU_PRIV;
      __flush_page_to_ram(virt_addr);
      srmmu_set_pte(ptep, __pte(tmp));
}

static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
    unsigned long xva, unsigned int len)
{
      while (len != 0) {
            len -= PAGE_SIZE;
            srmmu_mapioaddr(xpa, xva, bus);
            xva += PAGE_SIZE;
            xpa += PAGE_SIZE;
      }
      flush_tlb_all();
}

static inline void srmmu_unmapioaddr(unsigned long virt_addr)
{
      pgd_t *pgdp;
      pmd_t *pmdp;
      pte_t *ptep;

      pgdp = pgd_offset_k(virt_addr);
      pmdp = srmmu_pmd_offset(pgdp, virt_addr);
      ptep = srmmu_pte_offset(pmdp, virt_addr);

      /* No need to flush uncacheable page. */
      srmmu_pte_clear(ptep);
}

static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
{
      while (len != 0) {
            len -= PAGE_SIZE;
            srmmu_unmapioaddr(virt_addr);
            virt_addr += PAGE_SIZE;
      }
      flush_tlb_all();
}

/*
 * On the SRMMU we do not have the problems with limited tlb entries
 * for mapping kernel pages, so we just take things from the free page
 * pool.  As a side effect we are putting a little too much pressure
 * on the gfp() subsystem.  This setup also makes the logic of the
 * iommu mapping code a lot easier as we can transparently handle
 * mappings on the kernel stack without any special code as we did
 * need on the sun4c.
 */
static struct thread_info *srmmu_alloc_thread_info(void)
{
      struct thread_info *ret;

      ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
                                         THREAD_INFO_ORDER);
#ifdef CONFIG_DEBUG_STACK_USAGE
      if (ret)
            memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
#endif /* DEBUG_STACK_USAGE */

      return ret;
}

static void srmmu_free_thread_info(struct thread_info *ti)
{
      free_pages((unsigned long)ti, THREAD_INFO_ORDER);
}

/* tsunami.S */
extern void tsunami_flush_cache_all(void);
extern void tsunami_flush_cache_mm(struct mm_struct *mm);
extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void tsunami_flush_page_to_ram(unsigned long page);
extern void tsunami_flush_page_for_dma(unsigned long page);
extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void tsunami_flush_tlb_all(void);
extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
extern void tsunami_setup_blockops(void);

/*
 * Workaround, until we find what's going on with Swift. When low on memory,
 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
 * out it is already in page tables/ fault again on the same instruction.
 * I really don't understand it, have checked it and contexts
 * are right, flush_tlb_all is done as well, and it faults again...
 * Strange. -jj
 *
 * The following code is a deadwood that may be necessary when
 * we start to make precise page flushes again. --zaitcev
 */
static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
{
#if 0
      static unsigned long last;
      unsigned int val;
      /* unsigned int n; */

      if (address == last) {
            val = srmmu_hwprobe(address);
            if (val != 0 && pte_val(pte) != val) {
                  printk("swift_update_mmu_cache: "
                      "addr %lx put %08x probed %08x from %p\n",
                      address, pte_val(pte), val,
                      __builtin_return_address(0));
                  srmmu_flush_whole_tlb();
            }
      }
      last = address;
#endif
}

/* swift.S */
extern void swift_flush_cache_all(void);
extern void swift_flush_cache_mm(struct mm_struct *mm);
extern void swift_flush_cache_range(struct vm_area_struct *vma,
                            unsigned long start, unsigned long end);
extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void swift_flush_page_to_ram(unsigned long page);
extern void swift_flush_page_for_dma(unsigned long page);
extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void swift_flush_tlb_all(void);
extern void swift_flush_tlb_mm(struct mm_struct *mm);
extern void swift_flush_tlb_range(struct vm_area_struct *vma,
                          unsigned long start, unsigned long end);
extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);

#if 0  /* P3: deadwood to debug precise flushes on Swift. */
void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
      int cctx, ctx1;

      page &= PAGE_MASK;
      if ((ctx1 = vma->vm_mm->context) != -1) {
            cctx = srmmu_get_context();
/* Is context # ever different from current context? P3 */
            if (cctx != ctx1) {
                  printk("flush ctx %02x curr %02x\n", ctx1, cctx);
                  srmmu_set_context(ctx1);
                  swift_flush_page(page);
                  __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
                              "r" (page), "i" (ASI_M_FLUSH_PROBE));
                  srmmu_set_context(cctx);
            } else {
                   /* Rm. prot. bits from virt. c. */
                  /* swift_flush_cache_all(); */
                  /* swift_flush_cache_page(vma, page); */
                  swift_flush_page(page);

                  __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
                        "r" (page), "i" (ASI_M_FLUSH_PROBE));
                  /* same as above: srmmu_flush_tlb_page() */
            }
      }
}
#endif

/*
 * The following are all MBUS based SRMMU modules, and therefore could
 * be found in a multiprocessor configuration.  On the whole, these
 * chips seems to be much more touchy about DVMA and page tables
 * with respect to cache coherency.
 */

/* Cypress flushes. */
static void cypress_flush_cache_all(void)
{
      volatile unsigned long cypress_sucks;
      unsigned long faddr, tagval;

      flush_user_windows();
      for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
            __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
                             "=r" (tagval) :
                             "r" (faddr), "r" (0x40000),
                             "i" (ASI_M_DATAC_TAG));

            /* If modified and valid, kick it. */
            if((tagval & 0x60) == 0x60)
                  cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
      }
}

static void cypress_flush_cache_mm(struct mm_struct *mm)
{
      register unsigned long a, b, c, d, e, f, g;
      unsigned long flags, faddr;
      int octx;

      FLUSH_BEGIN(mm)
      flush_user_windows();
      local_irq_save(flags);
      octx = srmmu_get_context();
      srmmu_set_context(mm->context);
      a = 0x20; b = 0x40; c = 0x60;
      d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;

      faddr = (0x10000 - 0x100);
      goto inside;
      do {
            faddr -= 0x100;
      inside:
            __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
                             "sta %%g0, [%0 + %2] %1\n\t"
                             "sta %%g0, [%0 + %3] %1\n\t"
                             "sta %%g0, [%0 + %4] %1\n\t"
                             "sta %%g0, [%0 + %5] %1\n\t"
                             "sta %%g0, [%0 + %6] %1\n\t"
                             "sta %%g0, [%0 + %7] %1\n\t"
                             "sta %%g0, [%0 + %8] %1\n\t" : :
                             "r" (faddr), "i" (ASI_M_FLUSH_CTX),
                             "r" (a), "r" (b), "r" (c), "r" (d),
                             "r" (e), "r" (f), "r" (g));
      } while(faddr);
      srmmu_set_context(octx);
      local_irq_restore(flags);
      FLUSH_END
}

static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
      struct mm_struct *mm = vma->vm_mm;
      register unsigned long a, b, c, d, e, f, g;
      unsigned long flags, faddr;
      int octx;

      FLUSH_BEGIN(mm)
      flush_user_windows();
      local_irq_save(flags);
      octx = srmmu_get_context();
      srmmu_set_context(mm->context);
      a = 0x20; b = 0x40; c = 0x60;
      d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;

      start &= SRMMU_REAL_PMD_MASK;
      while(start < end) {
            faddr = (start + (0x10000 - 0x100));
            goto inside;
            do {
                  faddr -= 0x100;
            inside:
                  __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
                                   "sta %%g0, [%0 + %2] %1\n\t"
                                   "sta %%g0, [%0 + %3] %1\n\t"
                                   "sta %%g0, [%0 + %4] %1\n\t"
                                   "sta %%g0, [%0 + %5] %1\n\t"
                                   "sta %%g0, [%0 + %6] %1\n\t"
                                   "sta %%g0, [%0 + %7] %1\n\t"
                                   "sta %%g0, [%0 + %8] %1\n\t" : :
                                   "r" (faddr),
                                   "i" (ASI_M_FLUSH_SEG),
                                   "r" (a), "r" (b), "r" (c), "r" (d),
                                   "r" (e), "r" (f), "r" (g));
            } while (faddr != start);
            start += SRMMU_REAL_PMD_SIZE;
      }
      srmmu_set_context(octx);
      local_irq_restore(flags);
      FLUSH_END
}

static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
      register unsigned long a, b, c, d, e, f, g;
      struct mm_struct *mm = vma->vm_mm;
      unsigned long flags, line;
      int octx;

      FLUSH_BEGIN(mm)
      flush_user_windows();
      local_irq_save(flags);
      octx = srmmu_get_context();
      srmmu_set_context(mm->context);
      a = 0x20; b = 0x40; c = 0x60;
      d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;

      page &= PAGE_MASK;
      line = (page + PAGE_SIZE) - 0x100;
      goto inside;
      do {
            line -= 0x100;
      inside:
                  __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
                                   "sta %%g0, [%0 + %2] %1\n\t"
                                   "sta %%g0, [%0 + %3] %1\n\t"
                                   "sta %%g0, [%0 + %4] %1\n\t"
                                   "sta %%g0, [%0 + %5] %1\n\t"
                                   "sta %%g0, [%0 + %6] %1\n\t"
                                   "sta %%g0, [%0 + %7] %1\n\t"
                                   "sta %%g0, [%0 + %8] %1\n\t" : :
                                   "r" (line),
                                   "i" (ASI_M_FLUSH_PAGE),
                                   "r" (a), "r" (b), "r" (c), "r" (d),
                                   "r" (e), "r" (f), "r" (g));
      } while(line != page);
      srmmu_set_context(octx);
      local_irq_restore(flags);
      FLUSH_END
}

/* Cypress is copy-back, at least that is how we configure it. */
static void cypress_flush_page_to_ram(unsigned long page)
{
      register unsigned long a, b, c, d, e, f, g;
      unsigned long line;

      a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
      page &= PAGE_MASK;
      line = (page + PAGE_SIZE) - 0x100;
      goto inside;
      do {
            line -= 0x100;
      inside:
            __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
                             "sta %%g0, [%0 + %2] %1\n\t"
                             "sta %%g0, [%0 + %3] %1\n\t"
                             "sta %%g0, [%0 + %4] %1\n\t"
                             "sta %%g0, [%0 + %5] %1\n\t"
                             "sta %%g0, [%0 + %6] %1\n\t"
                             "sta %%g0, [%0 + %7] %1\n\t"
                             "sta %%g0, [%0 + %8] %1\n\t" : :
                             "r" (line),
                             "i" (ASI_M_FLUSH_PAGE),
                             "r" (a), "r" (b), "r" (c), "r" (d),
                             "r" (e), "r" (f), "r" (g));
      } while(line != page);
}

/* Cypress is also IO cache coherent. */
static void cypress_flush_page_for_dma(unsigned long page)
{
}

/* Cypress has unified L2 VIPT, from which both instructions and data
 * are stored.  It does not have an onboard icache of any sort, therefore
 * no flush is necessary.
 */
static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
}

static void cypress_flush_tlb_all(void)
{
      srmmu_flush_whole_tlb();
}

static void cypress_flush_tlb_mm(struct mm_struct *mm)
{
      FLUSH_BEGIN(mm)
      __asm__ __volatile__(
      "lda  [%0] %3, %%g5\n\t"
      "sta  %2, [%0] %3\n\t"
      "sta  %%g0, [%1] %4\n\t"
      "sta  %%g5, [%0] %3\n"
      : /* no outputs */
      : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
        "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
      : "g5");
      FLUSH_END
}

static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
      struct mm_struct *mm = vma->vm_mm;
      unsigned long size;

      FLUSH_BEGIN(mm)
      start &= SRMMU_PGDIR_MASK;
      size = SRMMU_PGDIR_ALIGN(end) - start;
      __asm__ __volatile__(
            "lda  [%0] %5, %%g5\n\t"
            "sta  %1, [%0] %5\n"
            "1:\n\t"
            "subcc      %3, %4, %3\n\t"
            "bne  1b\n\t"
            " sta %%g0, [%2 + %3] %6\n\t"
            "sta  %%g5, [%0] %5\n"
      : /* no outputs */
      : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
        "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
        "i" (ASI_M_FLUSH_PROBE)
      : "g5", "cc");
      FLUSH_END
}

static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
      struct mm_struct *mm = vma->vm_mm;

      FLUSH_BEGIN(mm)
      __asm__ __volatile__(
      "lda  [%0] %3, %%g5\n\t"
      "sta  %1, [%0] %3\n\t"
      "sta  %%g0, [%2] %4\n\t"
      "sta  %%g5, [%0] %3\n"
      : /* no outputs */
      : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
        "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
      : "g5");
      FLUSH_END
}

/* viking.S */
extern void viking_flush_cache_all(void);
extern void viking_flush_cache_mm(struct mm_struct *mm);
extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
                             unsigned long end);
extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void viking_flush_page_to_ram(unsigned long page);
extern void viking_flush_page_for_dma(unsigned long page);
extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
extern void viking_flush_page(unsigned long page);
extern void viking_mxcc_flush_page(unsigned long page);
extern void viking_flush_tlb_all(void);
extern void viking_flush_tlb_mm(struct mm_struct *mm);
extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
                           unsigned long end);
extern void viking_flush_tlb_page(struct vm_area_struct *vma,
                          unsigned long page);
extern void sun4dsmp_flush_tlb_all(void);
extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
                           unsigned long end);
extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
                          unsigned long page);

/* hypersparc.S */
extern void hypersparc_flush_cache_all(void);
extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void hypersparc_flush_page_to_ram(unsigned long page);
extern void hypersparc_flush_page_for_dma(unsigned long page);
extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void hypersparc_flush_tlb_all(void);
extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
extern void hypersparc_setup_blockops(void);

/*
 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 *       kernel mappings are done with one single contiguous chunk of
 *       ram.  On small ram machines (classics mainly) we only get
 *       around 8mb mapped for us.
 */

static void __init early_pgtable_allocfail(char *type)
{
      prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
      prom_halt();
}

static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
                                          unsigned long end)
{
      pgd_t *pgdp;
      pmd_t *pmdp;
      pte_t *ptep;

      while(start < end) {
            pgdp = pgd_offset_k(start);
            if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
                  pmdp = (pmd_t *) __srmmu_get_nocache(
                      SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
                  if (pmdp == NULL)
                        early_pgtable_allocfail("pmd");
                  memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
                  srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
            }
            pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
            if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
                  ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
                  if (ptep == NULL)
                        early_pgtable_allocfail("pte");
                  memset(__nocache_fix(ptep), 0, PTE_SIZE);
                  srmmu_pmd_set(__nocache_fix(pmdp), ptep);
            }
            if (start > (0xffffffffUL - PMD_SIZE))
                  break;
            start = (start + PMD_SIZE) & PMD_MASK;
      }
}

static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
                                      unsigned long end)
{
      pgd_t *pgdp;
      pmd_t *pmdp;
      pte_t *ptep;

      while(start < end) {
            pgdp = pgd_offset_k(start);
            if(srmmu_pgd_none(*pgdp)) {
                  pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
                  if (pmdp == NULL)
                        early_pgtable_allocfail("pmd");
                  memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
                  srmmu_pgd_set(pgdp, pmdp);
            }
            pmdp = srmmu_pmd_offset(pgdp, start);
            if(srmmu_pmd_none(*pmdp)) {
                  ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
                                               PTE_SIZE);
                  if (ptep == NULL)
                        early_pgtable_allocfail("pte");
                  memset(ptep, 0, PTE_SIZE);
                  srmmu_pmd_set(pmdp, ptep);
            }
            if (start > (0xffffffffUL - PMD_SIZE))
                  break;
            start = (start + PMD_SIZE) & PMD_MASK;
      }
}

/*
 * This is much cleaner than poking around physical address space
 * looking at the prom's page table directly which is what most
 * other OS's do.  Yuck... this is much better.
 */
static void __init srmmu_inherit_prom_mappings(unsigned long start,
                                     unsigned long end)
{
      pgd_t *pgdp;
      pmd_t *pmdp;
      pte_t *ptep;
      int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
      unsigned long prompte;

      while(start <= end) {
            if (start == 0)
                  break; /* probably wrap around */
            if(start == 0xfef00000)
                  start = KADB_DEBUGGER_BEGVM;
            if(!(prompte = srmmu_hwprobe(start))) {
                  start += PAGE_SIZE;
                  continue;
            }
    
            /* A red snapper, see what it really is. */
            what = 0;
    
            if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
                  if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
                        what = 1;
            }
    
            if(!(start & ~(SRMMU_PGDIR_MASK))) {
                  if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
                     prompte)
                        what = 2;
            }
    
            pgdp = pgd_offset_k(start);
            if(what == 2) {
                  *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
                  start += SRMMU_PGDIR_SIZE;
                  continue;
            }
            if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
                  pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
                  if (pmdp == NULL)
                        early_pgtable_allocfail("pmd");
                  memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
                  srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
            }
            pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
            if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
                  ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
                                               PTE_SIZE);
                  if (ptep == NULL)
                        early_pgtable_allocfail("pte");
                  memset(__nocache_fix(ptep), 0, PTE_SIZE);
                  srmmu_pmd_set(__nocache_fix(pmdp), ptep);
            }
            if(what == 1) {
                  /*
                   * We bend the rule where all 16 PTPs in a pmd_t point
                   * inside the same PTE page, and we leak a perfectly
                   * good hardware PTE piece. Alternatives seem worse.
                   */
                  unsigned int x;   /* Index of HW PMD in soft cluster */
                  x = (start >> PMD_SHIFT) & 15;
                  *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
                  start += SRMMU_REAL_PMD_SIZE;
                  continue;
            }
            ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
            *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
            start += PAGE_SIZE;
      }
}

#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)

/* Create a third-level SRMMU 16MB page mapping. */
static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
{
      pgd_t *pgdp = pgd_offset_k(vaddr);
      unsigned long big_pte;

      big_pte = KERNEL_PTE(phys_base >> 4);
      *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
}

/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
{
      unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
      unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
      unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
      /* Map "low" memory only */
      const unsigned long min_vaddr = PAGE_OFFSET;
      const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;

      if (vstart < min_vaddr || vstart >= max_vaddr)
            return vstart;
      
      if (vend > max_vaddr || vend < min_vaddr)
            vend = max_vaddr;

      while(vstart < vend) {
            do_large_mapping(vstart, pstart);
            vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
      }
      return vstart;
}

static inline void memprobe_error(char *msg)
{
      prom_printf(msg);
      prom_printf("Halting now...\n");
      prom_halt();
}

static inline void map_kernel(void)
{
      int i;

      if (phys_base > 0) {
            do_large_mapping(PAGE_OFFSET, phys_base);
      }

      for (i = 0; sp_banks[i].num_bytes != 0; i++) {
            map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
      }

      BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
}

/* Paging initialization on the Sparc Reference MMU. */
extern void sparc_context_init(int);

void (*poke_srmmu)(void) __initdata = NULL;

extern unsigned long bootmem_init(unsigned long *pages_avail);

void __init srmmu_paging_init(void)
{
      int i, cpunode;
      char node_str[128];
      pgd_t *pgd;
      pmd_t *pmd;
      pte_t *pte;
      unsigned long pages_avail;

      sparc_iomap.start = SUN4M_IOBASE_VADDR;   /* 16MB of IOSPACE on all sun4m's. */

      if (sparc_cpu_model == sun4d)
            num_contexts = 65536; /* We know it is Viking */
      else {
            /* Find the number of contexts on the srmmu. */
            cpunode = prom_getchild(prom_root_node);
            num_contexts = 0;
            while(cpunode != 0) {
                  prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
                  if(!strcmp(node_str, "cpu")) {
                        num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
                        break;
                  }
                  cpunode = prom_getsibling(cpunode);
            }
      }

      if(!num_contexts) {
            prom_printf("Something wrong, can't find cpu node in paging_init.\n");
            prom_halt();
      }

      pages_avail = 0;
      last_valid_pfn = bootmem_init(&pages_avail);

      srmmu_nocache_calcsize();
      srmmu_nocache_init();
        srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
      map_kernel();

      /* ctx table has to be physically aligned to its size */
      srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
      srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);

      for(i = 0; i < num_contexts; i++)
            srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);

      flush_cache_all();
      srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
#ifdef CONFIG_SMP
      /* Stop from hanging here... */
      local_flush_tlb_all();
#else
      flush_tlb_all();
#endif
      poke_srmmu();

#ifdef CONFIG_SUN_IO
      srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
      srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
#endif

      srmmu_allocate_ptable_skeleton(
            __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
      srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);

      pgd = pgd_offset_k(PKMAP_BASE);
      pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
      pte = srmmu_pte_offset(pmd, PKMAP_BASE);
      pkmap_page_table = pte;

      flush_cache_all();
      flush_tlb_all();

      sparc_context_init(num_contexts);

      kmap_init();

      {
            unsigned long zones_size[MAX_NR_ZONES];
            unsigned long zholes_size[MAX_NR_ZONES];
            unsigned long npages;
            int znum;

            for (znum = 0; znum < MAX_NR_ZONES; znum++)
                  zones_size[znum] = zholes_size[znum] = 0;

            npages = max_low_pfn - pfn_base;

            zones_size[ZONE_DMA] = npages;
            zholes_size[ZONE_DMA] = npages - pages_avail;

            npages = highend_pfn - max_low_pfn;
            zones_size[ZONE_HIGHMEM] = npages;
            zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();

            free_area_init_node(0, zones_size, pfn_base, zholes_size);
      }
}

static void srmmu_mmu_info(struct seq_file *m)
{
      seq_printf(m, 
               "MMU type\t: %s\n"
               "contexts\t: %d\n"
               "nocache total\t: %ld\n"
               "nocache used\t: %d\n",
               srmmu_name,
               num_contexts,
               srmmu_nocache_size,
               srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
}

static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
{
}

static void srmmu_destroy_context(struct mm_struct *mm)
{

      if(mm->context != NO_CONTEXT) {
            flush_cache_mm(mm);
            srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
            flush_tlb_mm(mm);
            spin_lock(&srmmu_context_spinlock);
            free_context(mm->context);
            spin_unlock(&srmmu_context_spinlock);
            mm->context = NO_CONTEXT;
      }
}

/* Init various srmmu chip types. */
static void __init srmmu_is_bad(void)
{
      prom_printf("Could not determine SRMMU chip type.\n");
      prom_halt();
}

static void __init init_vac_layout(void)
{
      int nd, cache_lines;
      char node_str[128];
#ifdef CONFIG_SMP
      int cpu = 0;
      unsigned long max_size = 0;
      unsigned long min_line_size = 0x10000000;
#endif

      nd = prom_getchild(prom_root_node);
      while((nd = prom_getsibling(nd)) != 0) {
            prom_getstring(nd, "device_type", node_str, sizeof(node_str));
            if(!strcmp(node_str, "cpu")) {
                  vac_line_size = prom_getint(nd, "cache-line-size");
                  if (vac_line_size == -1) {
                        prom_printf("can't determine cache-line-size, "
                                  "halting.\n");
                        prom_halt();
                  }
                  cache_lines = prom_getint(nd, "cache-nlines");
                  if (cache_lines == -1) {
                        prom_printf("can't determine cache-nlines, halting.\n");
                        prom_halt();
                  }

                  vac_cache_size = cache_lines * vac_line_size;
#ifdef CONFIG_SMP
                  if(vac_cache_size > max_size)
                        max_size = vac_cache_size;
                  if(vac_line_size < min_line_size)
                        min_line_size = vac_line_size;
                  //FIXME: cpus not contiguous!!
                  cpu++;
                  if (cpu >= NR_CPUS || !cpu_online(cpu))
                        break;
#else
                  break;
#endif
            }
      }
      if(nd == 0) {
            prom_printf("No CPU nodes found, halting.\n");
            prom_halt();
      }
#ifdef CONFIG_SMP
      vac_cache_size = max_size;
      vac_line_size = min_line_size;
#endif
      printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
             (int)vac_cache_size, (int)vac_line_size);
}

static void __init poke_hypersparc(void)
{
      volatile unsigned long clear;
      unsigned long mreg = srmmu_get_mmureg();

      hyper_flush_unconditional_combined();

      mreg &= ~(HYPERSPARC_CWENABLE);
      mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
      mreg |= (HYPERSPARC_CMODE);

      srmmu_set_mmureg(mreg);

#if 0 /* XXX I think this is bad news... -DaveM */
      hyper_clear_all_tags();
#endif

      put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
      hyper_flush_whole_icache();
      clear = srmmu_get_faddr();
      clear = srmmu_get_fstatus();
}

static void __init init_hypersparc(void)
{
      srmmu_name = "ROSS HyperSparc";
      srmmu_modtype = HyperSparc;

      init_vac_layout();

      is_hypersparc = 1;

      BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);


      poke_srmmu = poke_hypersparc;

      hypersparc_setup_blockops();
}

static void __init poke_cypress(void)
{
      unsigned long mreg = srmmu_get_mmureg();
      unsigned long faddr, tagval;
      volatile unsigned long cypress_sucks;
      volatile unsigned long clear;

      clear = srmmu_get_faddr();
      clear = srmmu_get_fstatus();

      if (!(mreg & CYPRESS_CENABLE)) {
            for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
                  __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
                                   "sta %%g0, [%0] %2\n\t" : :
                                   "r" (faddr), "r" (0x40000),
                                   "i" (ASI_M_DATAC_TAG));
            }
      } else {
            for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
                  __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
                                   "=r" (tagval) :
                                   "r" (faddr), "r" (0x40000),
                                   "i" (ASI_M_DATAC_TAG));

                  /* If modified and valid, kick it. */
                  if((tagval & 0x60) == 0x60)
                        cypress_sucks = *(unsigned long *)
                                          (0xf0020000 + faddr);
            }
      }

      /* And one more, for our good neighbor, Mr. Broken Cypress. */
      clear = srmmu_get_faddr();
      clear = srmmu_get_fstatus();

      mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
      srmmu_set_mmureg(mreg);
}

static void __init init_cypress_common(void)
{
      init_vac_layout();

      BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);


      BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
      BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);

      poke_srmmu = poke_cypress;
}

static void __init init_cypress_604(void)
{
      srmmu_name = "ROSS Cypress-604(UP)";
      srmmu_modtype = Cypress;
      init_cypress_common();
}

static void __init init_cypress_605(unsigned long mrev)
{
      srmmu_name = "ROSS Cypress-605(MP)";
      if(mrev == 0xe) {
            srmmu_modtype = Cypress_vE;
            hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
      } else {
            if(mrev == 0xd) {
                  srmmu_modtype = Cypress_vD;
                  hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
            } else {
                  srmmu_modtype = Cypress;
            }
      }
      init_cypress_common();
}

static void __init poke_swift(void)
{
      unsigned long mreg;

      /* Clear any crap from the cache or else... */
      swift_flush_cache_all();

      /* Enable I & D caches */
      mreg = srmmu_get_mmureg();
      mreg |= (SWIFT_IE | SWIFT_DE);
      /*
       * The Swift branch folding logic is completely broken.  At
       * trap time, if things are just right, if can mistakenly
       * think that a trap is coming from kernel mode when in fact
       * it is coming from user mode (it mis-executes the branch in
       * the trap code).  So you see things like crashme completely
       * hosing your machine which is completely unacceptable.  Turn
       * this shit off... nice job Fujitsu.
       */
      mreg &= ~(SWIFT_BF);
      srmmu_set_mmureg(mreg);
}

#define SWIFT_MASKID_ADDR  0x10003018
static void __init init_swift(void)
{
      unsigned long swift_rev;

      __asm__ __volatile__("lda [%1] %2, %0\n\t"
                       "srl %0, 0x18, %0\n\t" :
                       "=r" (swift_rev) :
                       "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
      srmmu_name = "Fujitsu Swift";
      switch(swift_rev) {
      case 0x11:
      case 0x20:
      case 0x23:
      case 0x30:
            srmmu_modtype = Swift_lots_o_bugs;
            hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
            /*
             * Gee george, I wonder why Sun is so hush hush about
             * this hardware bug... really braindamage stuff going
             * on here.  However I think we can find a way to avoid
             * all of the workaround overhead under Linux.  Basically,
             * any page fault can cause kernel pages to become user
             * accessible (the mmu gets confused and clears some of
             * the ACC bits in kernel ptes).  Aha, sounds pretty
             * horrible eh?  But wait, after extensive testing it appears
             * that if you use pgd_t level large kernel pte's (like the
             * 4MB pages on the Pentium) the bug does not get tripped
             * at all.  This avoids almost all of the major overhead.
             * Welcome to a world where your vendor tells you to,
             * "apply this kernel patch" instead of "sorry for the
             * broken hardware, send it back and we'll give you
             * properly functioning parts"
             */
            break;
      case 0x25:
      case 0x31:
            srmmu_modtype = Swift_bad_c;
            hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
            /*
             * You see Sun allude to this hardware bug but never
             * admit things directly, they'll say things like,
             * "the Swift chip cache problems" or similar.
             */
            break;
      default:
            srmmu_modtype = Swift_ok;
            break;
      };

      BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);


      BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);

      flush_page_for_dma_global = 0;

      /*
       * Are you now convinced that the Swift is one of the
       * biggest VLSI abortions of all time?  Bravo Fujitsu!
       * Fujitsu, the !#?!%$'d up processor people.  I bet if
       * you examined the microcode of the Swift you'd find
       * XXX's all over the place.
       */
      poke_srmmu = poke_swift;
}

static void turbosparc_flush_cache_all(void)
{
      flush_user_windows();
      turbosparc_idflash_clear();
}

static void turbosparc_flush_cache_mm(struct mm_struct *mm)
{
      FLUSH_BEGIN(mm)
      flush_user_windows();
      turbosparc_idflash_clear();
      FLUSH_END
}

static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
      FLUSH_BEGIN(vma->vm_mm)
      flush_user_windows();
      turbosparc_idflash_clear();
      FLUSH_END
}

static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
      FLUSH_BEGIN(vma->vm_mm)
      flush_user_windows();
      if (vma->vm_flags & VM_EXEC)
            turbosparc_flush_icache();
      turbosparc_flush_dcache();
      FLUSH_END
}

/* TurboSparc is copy-back, if we turn it on, but this does not work. */
static void turbosparc_flush_page_to_ram(unsigned long page)
{
#ifdef TURBOSPARC_WRITEBACK
      volatile unsigned long clear;

      if (srmmu_hwprobe(page))
            turbosparc_flush_page_cache(page);
      clear = srmmu_get_fstatus();
#endif
}

static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
}

static void turbosparc_flush_page_for_dma(unsigned long page)
{
      turbosparc_flush_dcache();
}

static void turbosparc_flush_tlb_all(void)
{
      srmmu_flush_whole_tlb();
}

static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
{
      FLUSH_BEGIN(mm)
      srmmu_flush_whole_tlb();
      FLUSH_END
}

static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
      FLUSH_BEGIN(vma->vm_mm)
      srmmu_flush_whole_tlb();
      FLUSH_END
}

static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
      FLUSH_BEGIN(vma->vm_mm)
      srmmu_flush_whole_tlb();
      FLUSH_END
}


static void __init poke_turbosparc(void)
{
      unsigned long mreg = srmmu_get_mmureg();
      unsigned long ccreg;

      /* Clear any crap from the cache or else... */
      turbosparc_flush_cache_all();
      mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
      mreg &= ~(TURBOSPARC_PCENABLE);           /* Don't check parity */
      srmmu_set_mmureg(mreg);
      
      ccreg = turbosparc_get_ccreg();

#ifdef TURBOSPARC_WRITEBACK
      ccreg |= (TURBOSPARC_SNENABLE);           /* Do DVMA snooping in Dcache */
      ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
                  /* Write-back D-cache, emulate VLSI
                   * abortion number three, not number one */
#else
      /* For now let's play safe, optimize later */
      ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
                  /* Do DVMA snooping in Dcache, Write-thru D-cache */
      ccreg &= ~(TURBOSPARC_uS2);
                  /* Emulate VLSI abortion number three, not number one */
#endif

      switch (ccreg & 7) {
      case 0: /* No SE cache */
      case 7: /* Test mode */
            break;
      default:
            ccreg |= (TURBOSPARC_SCENABLE);
      }
      turbosparc_set_ccreg (ccreg);

      mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
      mreg |= (TURBOSPARC_ICSNOOP);       /* Icache snooping on */
      srmmu_set_mmureg(mreg);
}

static void __init init_turbosparc(void)
{
      srmmu_name = "Fujitsu TurboSparc";
      srmmu_modtype = TurboSparc;

      BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
      BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);

      poke_srmmu = poke_turbosparc;
}

static void __init poke_tsunami(void)
{
      unsigned long mreg = srmmu_get_mmureg();

      tsunami_flush_icache();
      tsunami_flush_dcache();
      mreg &= ~TSUNAMI_ITD;
      mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
      srmmu_set_mmureg(mreg);
}

static void __init init_tsunami(void)
{
      /*
       * Tsunami's pretty sane, Sun and TI actually got it
       * somewhat right this time.  Fujitsu should have
       * taken some lessons from them.
       */

      srmmu_name = "TI Tsunami";
      srmmu_modtype = Tsunami;

      BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);


      BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
      BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);

      poke_srmmu = poke_tsunami;

      tsunami_setup_blockops();
}

static void __init poke_viking(void)
{
      unsigned long mreg = srmmu_get_mmureg();
      static int smp_catch;

      if(viking_mxcc_present) {
            unsigned long mxcc_control = mxcc_get_creg();

            mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
            mxcc_control &= ~(MXCC_CTL_RRC);
            mxcc_set_creg(mxcc_control);

            /*
             * We don't need memory parity checks.
             * XXX This is a mess, have to dig out later. ecd.
            viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
             */

            /* We do cache ptables on MXCC. */
            mreg |= VIKING_TCENABLE;
      } else {
            unsigned long bpreg;

            mreg &= ~(VIKING_TCENABLE);
            if(smp_catch++) {
                  /* Must disable mixed-cmd mode here for other cpu's. */
                  bpreg = viking_get_bpreg();
                  bpreg &= ~(VIKING_ACTION_MIX);
                  viking_set_bpreg(bpreg);

                  /* Just in case PROM does something funny. */
                  msi_set_sync();
            }
      }

      mreg |= VIKING_SPENABLE;
      mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
      mreg |= VIKING_SBENABLE;
      mreg &= ~(VIKING_ACENABLE);
      srmmu_set_mmureg(mreg);

#ifdef CONFIG_SMP
      /* Avoid unnecessary cross calls. */
      BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
      BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
      BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
      BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
      BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
      BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
      BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
      btfixup();
#endif
}

static void __init init_viking(void)
{
      unsigned long mreg = srmmu_get_mmureg();

      /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
      if(mreg & VIKING_MMODE) {
            srmmu_name = "TI Viking";
            viking_mxcc_present = 0;
            msi_set_sync();

            BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);

            /*
             * We need this to make sure old viking takes no hits
             * on it's cache for dma snoops to workaround the
             * "load from non-cacheable memory" interrupt bug.
             * This is only necessary because of the new way in
             * which we use the IOMMU.
             */
            BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);

            flush_page_for_dma_global = 0;
      } else {
            srmmu_name = "TI Viking/MXCC";
            viking_mxcc_present = 1;

            srmmu_cache_pagetables = 1;

            /* MXCC vikings lack the DMA snooping bug. */
            BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
      }

      BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);

#ifdef CONFIG_SMP
      if (sparc_cpu_model == sun4d) {
            BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
      } else
#endif
      {
            BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
      }

      BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
      BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);

      poke_srmmu = poke_viking;
}

/* Probe for the srmmu chip version. */
static void __init get_srmmu_type(void)
{
      unsigned long mreg, psr;
      unsigned long mod_typ, mod_rev, psr_typ, psr_vers;

      srmmu_modtype = SRMMU_INVAL_MOD;
      hwbug_bitmask = 0;

      mreg = srmmu_get_mmureg(); psr = get_psr();
      mod_typ = (mreg & 0xf0000000) >> 28;
      mod_rev = (mreg & 0x0f000000) >> 24;
      psr_typ = (psr >> 28) & 0xf;
      psr_vers = (psr >> 24) & 0xf;

      /* First, check for HyperSparc or Cypress. */
      if(mod_typ == 1) {
            switch(mod_rev) {
            case 7:
                  /* UP or MP Hypersparc */
                  init_hypersparc();
                  break;
            case 0:
            case 2:
                  /* Uniprocessor Cypress */
                  init_cypress_604();
                  break;
            case 10:
            case 11:
            case 12:
                  /* _REALLY OLD_ Cypress MP chips... */
            case 13:
            case 14:
            case 15:
                  /* MP Cypress mmu/cache-controller */
                  init_cypress_605(mod_rev);
                  break;
            default:
                  /* Some other Cypress revision, assume a 605. */
                  init_cypress_605(mod_rev);
                  break;
            };
            return;
      }
      
      /*
       * Now Fujitsu TurboSparc. It might happen that it is
       * in Swift emulation mode, so we will check later...
       */
      if (psr_typ == 0 && psr_vers == 5) {
            init_turbosparc();
            return;
      }

      /* Next check for Fujitsu Swift. */
      if(psr_typ == 0 && psr_vers == 4) {
            int cpunode;
            char node_str[128];

            /* Look if it is not a TurboSparc emulating Swift... */
            cpunode = prom_getchild(prom_root_node);
            while((cpunode = prom_getsibling(cpunode)) != 0) {
                  prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
                  if(!strcmp(node_str, "cpu")) {
                        if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
                            prom_getintdefault(cpunode, "psr-version", 1) == 5) {
                              init_turbosparc();
                              return;
                        }
                        break;
                  }
            }
            
            init_swift();
            return;
      }

      /* Now the Viking family of srmmu. */
      if(psr_typ == 4 &&
         ((psr_vers == 0) ||
          ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
            init_viking();
            return;
      }

      /* Finally the Tsunami. */
      if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
            init_tsunami();
            return;
      }

      /* Oh well */
      srmmu_is_bad();
}

/* don't laugh, static pagetables */
static void srmmu_check_pgt_cache(int low, int high)
{
}

extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
      tsetup_mmu_patchme, rtrap_mmu_patchme;

extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
      tsetup_srmmu_stackchk, srmmu_rett_stackchk;

extern unsigned long srmmu_fault;

#define PATCH_BRANCH(insn, dest) do { \
            iaddr = &(insn); \
            daddr = &(dest); \
            *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
      } while(0)

static void __init patch_window_trap_handlers(void)
{
      unsigned long *iaddr, *daddr;
      
      PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
      PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
      PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
      PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
      PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
      PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
      PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
}

#ifdef CONFIG_SMP
/* Local cross-calls. */
static void smp_flush_page_for_dma(unsigned long page)
{
      xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
      local_flush_page_for_dma(page);
}

#endif

static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
{
      return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
}

static unsigned long srmmu_pte_to_pgoff(pte_t pte)
{
      return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
}

static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
{
      prot &= ~__pgprot(SRMMU_CACHE);

      return prot;
}

/* Load up routines and constants for sun4m and sun4d mmu */
void __init ld_mmu_srmmu(void)
{
      extern void ld_mmu_iommu(void);
      extern void ld_mmu_iounit(void);
      extern void ___xchg32_sun4md(void);

      BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
      BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
      BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);

      BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
      BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);

      BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
      PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
      BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
      BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
      BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
      page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);

      /* Functions */
      BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
#ifndef CONFIG_SMP      
      BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
#endif
      BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);

      BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
      BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);

      BTFIXUPSET_SETHI(none_mask, 0xF0000000);

      BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);

      BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);

      BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);

      BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
      
      BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
      BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);

      BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
      BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
      BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
      BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
      BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
      BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
      BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
      BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
      BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
      BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
      BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
      BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);

      BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);

      get_srmmu_type();
      patch_window_trap_handlers();

#ifdef CONFIG_SMP
      /* El switcheroo... */

      BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
      BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
      BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
      BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
      BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
      BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
      BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
      BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
      BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
      BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
      BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);

      BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
      if (sparc_cpu_model != sun4d) {
            BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
            BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
      }
      BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
      BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
#endif

      if (sparc_cpu_model == sun4d)
            ld_mmu_iounit();
      else
            ld_mmu_iommu();
#ifdef CONFIG_SMP
      if (sparc_cpu_model == sun4d)
            sun4d_init_smp();
      else
            sun4m_init_smp();
#endif
}

Generated by  Doxygen 1.6.0   Back to index