Logo Search packages:      
Sourcecode: linux version File versions

setup.c

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1995 Linus Torvalds
 * Copyright (C) 1995 Waldorf Electronics
 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
 * Copyright (C) 1996 Stoned Elipot
 * Copyright (C) 1999 Silicon Graphics, Inc.
 * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
 */
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/screen_info.h>
#include <linux/bootmem.h>
#include <linux/initrd.h>
#include <linux/root_dev.h>
#include <linux/highmem.h>
#include <linux/console.h>
#include <linux/pfn.h>
#include <linux/debugfs.h>

#include <asm/addrspace.h>
#include <asm/bootinfo.h>
#include <asm/bugs.h>
#include <asm/cache.h>
#include <asm/cpu.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp-ops.h>
#include <asm/system.h>

struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;

EXPORT_SYMBOL(cpu_data);

#ifdef CONFIG_VT
struct screen_info screen_info;
#endif

/*
 * Despite it's name this variable is even if we don't have PCI
 */
unsigned int PCI_DMA_BUS_IS_PHYS;

EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);

/*
 * Setup information
 *
 * These are initialized so they are in the .data section
 */
unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;

EXPORT_SYMBOL(mips_machtype);

struct boot_mem_map boot_mem_map;

static char command_line[CL_SIZE];
       char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;

/*
 * mips_io_port_base is the begin of the address space to which x86 style
 * I/O ports are mapped.
 */
const unsigned long mips_io_port_base __read_mostly = -1;
EXPORT_SYMBOL(mips_io_port_base);

static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };

void __init add_memory_region(phys_t start, phys_t size, long type)
{
      int x = boot_mem_map.nr_map;
      struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;

      /* Sanity check */
      if (start + size < start) {
            pr_warning("Trying to add an invalid memory region, skipped\n");
            return;
      }

      /*
       * Try to merge with previous entry if any.  This is far less than
       * perfect but is sufficient for most real world cases.
       */
      if (x && prev->addr + prev->size == start && prev->type == type) {
            prev->size += size;
            return;
      }

      if (x == BOOT_MEM_MAP_MAX) {
            pr_err("Ooops! Too many entries in the memory map!\n");
            return;
      }

      boot_mem_map.map[x].addr = start;
      boot_mem_map.map[x].size = size;
      boot_mem_map.map[x].type = type;
      boot_mem_map.nr_map++;
}

static void __init print_memory_map(void)
{
      int i;
      const int field = 2 * sizeof(unsigned long);

      for (i = 0; i < boot_mem_map.nr_map; i++) {
            printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
                   field, (unsigned long long) boot_mem_map.map[i].size,
                   field, (unsigned long long) boot_mem_map.map[i].addr);

            switch (boot_mem_map.map[i].type) {
            case BOOT_MEM_RAM:
                  printk(KERN_CONT "(usable)\n");
                  break;
            case BOOT_MEM_ROM_DATA:
                  printk(KERN_CONT "(ROM data)\n");
                  break;
            case BOOT_MEM_RESERVED:
                  printk(KERN_CONT "(reserved)\n");
                  break;
            default:
                  printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
                  break;
            }
      }
}

/*
 * Manage initrd
 */
#ifdef CONFIG_BLK_DEV_INITRD

static int __init rd_start_early(char *p)
{
      unsigned long start = memparse(p, &p);

#ifdef CONFIG_64BIT
      /* Guess if the sign extension was forgotten by bootloader */
      if (start < XKPHYS)
            start = (int)start;
#endif
      initrd_start = start;
      initrd_end += start;
      return 0;
}
early_param("rd_start", rd_start_early);

static int __init rd_size_early(char *p)
{
      initrd_end += memparse(p, &p);
      return 0;
}
early_param("rd_size", rd_size_early);

/* it returns the next free pfn after initrd */
static unsigned long __init init_initrd(void)
{
      unsigned long end;
      u32 *initrd_header;

      /*
       * Board specific code or command line parser should have
       * already set up initrd_start and initrd_end. In these cases
       * perfom sanity checks and use them if all looks good.
       */
      if (initrd_start && initrd_end > initrd_start)
            goto sanitize;

      /*
       * See if initrd has been added to the kernel image by
       * arch/mips/boot/addinitrd.c. In that case a header is
       * prepended to initrd and is made up by 8 bytes. The fisrt
       * word is a magic number and the second one is the size of
       * initrd.  Initrd start must be page aligned in any cases.
       */
      initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
      if (initrd_header[0] != 0x494E5244)
            goto disable;
      initrd_start = (unsigned long)(initrd_header + 2);
      initrd_end = initrd_start + initrd_header[1];

sanitize:
      if (initrd_start & ~PAGE_MASK) {
            pr_err("initrd start must be page aligned\n");
            goto disable;
      }
      if (initrd_start < PAGE_OFFSET) {
            pr_err("initrd start < PAGE_OFFSET\n");
            goto disable;
      }

      /*
       * Sanitize initrd addresses. For example firmware
       * can't guess if they need to pass them through
       * 64-bits values if the kernel has been built in pure
       * 32-bit. We need also to switch from KSEG0 to XKPHYS
       * addresses now, so the code can now safely use __pa().
       */
      end = __pa(initrd_end);
      initrd_end = (unsigned long)__va(end);
      initrd_start = (unsigned long)__va(__pa(initrd_start));

      ROOT_DEV = Root_RAM0;
      return PFN_UP(end);
disable:
      initrd_start = 0;
      initrd_end = 0;
      return 0;
}

static void __init finalize_initrd(void)
{
      unsigned long size = initrd_end - initrd_start;

      if (size == 0) {
            printk(KERN_INFO "Initrd not found or empty");
            goto disable;
      }
      if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
            printk(KERN_ERR "Initrd extends beyond end of memory");
            goto disable;
      }

      reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
      initrd_below_start_ok = 1;

      pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
            initrd_start, size);
      return;
disable:
      printk(KERN_CONT " - disabling initrd\n");
      initrd_start = 0;
      initrd_end = 0;
}

#else  /* !CONFIG_BLK_DEV_INITRD */

static unsigned long __init init_initrd(void)
{
      return 0;
}

#define finalize_initrd()     do {} while (0)

#endif

/*
 * Initialize the bootmem allocator. It also setup initrd related data
 * if needed.
 */
#ifdef CONFIG_SGI_IP27

static void __init bootmem_init(void)
{
      init_initrd();
      finalize_initrd();
}

#else  /* !CONFIG_SGI_IP27 */

static void __init bootmem_init(void)
{
      unsigned long reserved_end;
      unsigned long mapstart = ~0UL;
      unsigned long bootmap_size;
      int i;

      /*
       * Init any data related to initrd. It's a nop if INITRD is
       * not selected. Once that done we can determine the low bound
       * of usable memory.
       */
      reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));

      /*
       * max_low_pfn is not a number of pages. The number of pages
       * of the system is given by 'max_low_pfn - min_low_pfn'.
       */
      min_low_pfn = ~0UL;
      max_low_pfn = 0;

      /*
       * Find the highest page frame number we have available.
       */
      for (i = 0; i < boot_mem_map.nr_map; i++) {
            unsigned long start, end;

            if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
                  continue;

            start = PFN_UP(boot_mem_map.map[i].addr);
            end = PFN_DOWN(boot_mem_map.map[i].addr
                        + boot_mem_map.map[i].size);

            if (end > max_low_pfn)
                  max_low_pfn = end;
            if (start < min_low_pfn)
                  min_low_pfn = start;
            if (end <= reserved_end)
                  continue;
            if (start >= mapstart)
                  continue;
            mapstart = max(reserved_end, start);
      }

      if (min_low_pfn >= max_low_pfn)
            panic("Incorrect memory mapping !!!");
      if (min_low_pfn > ARCH_PFN_OFFSET) {
            pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
                  (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
                  min_low_pfn - ARCH_PFN_OFFSET);
      } else if (min_low_pfn < ARCH_PFN_OFFSET) {
            pr_info("%lu free pages won't be used\n",
                  ARCH_PFN_OFFSET - min_low_pfn);
      }
      min_low_pfn = ARCH_PFN_OFFSET;

      /*
       * Determine low and high memory ranges
       */
      max_pfn = max_low_pfn;
      if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
#ifdef CONFIG_HIGHMEM
            highstart_pfn = PFN_DOWN(HIGHMEM_START);
            highend_pfn = max_low_pfn;
#endif
            max_low_pfn = PFN_DOWN(HIGHMEM_START);
      }

      /*
       * Initialize the boot-time allocator with low memory only.
       */
      bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
                               min_low_pfn, max_low_pfn);


      for (i = 0; i < boot_mem_map.nr_map; i++) {
            unsigned long start, end;

            start = PFN_UP(boot_mem_map.map[i].addr);
            end = PFN_DOWN(boot_mem_map.map[i].addr
                        + boot_mem_map.map[i].size);

            if (start <= min_low_pfn)
                  start = min_low_pfn;
            if (start >= end)
                  continue;

#ifndef CONFIG_HIGHMEM
            if (end > max_low_pfn)
                  end = max_low_pfn;

            /*
             * ... finally, is the area going away?
             */
            if (end <= start)
                  continue;
#endif

            add_active_range(0, start, end);
      }

      /*
       * Register fully available low RAM pages with the bootmem allocator.
       */
      for (i = 0; i < boot_mem_map.nr_map; i++) {
            unsigned long start, end, size;

            /*
             * Reserve usable memory.
             */
            if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
                  continue;

            start = PFN_UP(boot_mem_map.map[i].addr);
            end   = PFN_DOWN(boot_mem_map.map[i].addr
                            + boot_mem_map.map[i].size);
            /*
             * We are rounding up the start address of usable memory
             * and at the end of the usable range downwards.
             */
            if (start >= max_low_pfn)
                  continue;
            if (start < reserved_end)
                  start = reserved_end;
            if (end > max_low_pfn)
                  end = max_low_pfn;

            /*
             * ... finally, is the area going away?
             */
            if (end <= start)
                  continue;
            size = end - start;

            /* Register lowmem ranges */
            free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
            memory_present(0, start, end);
      }

      /*
       * Reserve the bootmap memory.
       */
      reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);

      /*
       * Reserve initrd memory if needed.
       */
      finalize_initrd();
}

#endif      /* CONFIG_SGI_IP27 */

/*
 * arch_mem_init - initialize memory management subsystem
 *
 *  o plat_mem_setup() detects the memory configuration and will record detected
 *    memory areas using add_memory_region.
 *
 * At this stage the memory configuration of the system is known to the
 * kernel but generic memory management system is still entirely uninitialized.
 *
 *  o bootmem_init()
 *  o sparse_init()
 *  o paging_init()
 *
 * At this stage the bootmem allocator is ready to use.
 *
 * NOTE: historically plat_mem_setup did the entire platform initialization.
 *       This was rather impractical because it meant plat_mem_setup had to
 * get away without any kind of memory allocator.  To keep old code from
 * breaking plat_setup was just renamed to plat_setup and a second platform
 * initialization hook for anything else was introduced.
 */

static int usermem __initdata = 0;

static int __init early_parse_mem(char *p)
{
      unsigned long start, size;

      /*
       * If a user specifies memory size, we
       * blow away any automatically generated
       * size.
       */
      if (usermem == 0) {
            boot_mem_map.nr_map = 0;
            usermem = 1;
      }
      start = 0;
      size = memparse(p, &p);
      if (*p == '@')
            start = memparse(p + 1, &p);

      add_memory_region(start, size, BOOT_MEM_RAM);
      return 0;
}
early_param("mem", early_parse_mem);

static void __init arch_mem_init(char **cmdline_p)
{
      extern void plat_mem_setup(void);

      /* call board setup routine */
      plat_mem_setup();

      pr_info("Determined physical RAM map:\n");
      print_memory_map();

      strlcpy(command_line, arcs_cmdline, sizeof(command_line));
      strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);

      *cmdline_p = command_line;

      parse_early_param();

      if (usermem) {
            pr_info("User-defined physical RAM map:\n");
            print_memory_map();
      }

      bootmem_init();
      sparse_init();
      paging_init();
}

static void __init resource_init(void)
{
      int i;

      if (UNCAC_BASE != IO_BASE)
            return;

      code_resource.start = __pa_symbol(&_text);
      code_resource.end = __pa_symbol(&_etext) - 1;
      data_resource.start = __pa_symbol(&_etext);
      data_resource.end = __pa_symbol(&_edata) - 1;

      /*
       * Request address space for all standard RAM.
       */
      for (i = 0; i < boot_mem_map.nr_map; i++) {
            struct resource *res;
            unsigned long start, end;

            start = boot_mem_map.map[i].addr;
            end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
            if (start >= HIGHMEM_START)
                  continue;
            if (end >= HIGHMEM_START)
                  end = HIGHMEM_START - 1;

            res = alloc_bootmem(sizeof(struct resource));
            switch (boot_mem_map.map[i].type) {
            case BOOT_MEM_RAM:
            case BOOT_MEM_ROM_DATA:
                  res->name = "System RAM";
                  break;
            case BOOT_MEM_RESERVED:
            default:
                  res->name = "reserved";
            }

            res->start = start;
            res->end = end;

            res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
            request_resource(&iomem_resource, res);

            /*
             *  We don't know which RAM region contains kernel data,
             *  so we try it repeatedly and let the resource manager
             *  test it.
             */
            request_resource(res, &code_resource);
            request_resource(res, &data_resource);
      }
}

void __init setup_arch(char **cmdline_p)
{
      cpu_probe();
      prom_init();

#ifdef CONFIG_EARLY_PRINTK
      setup_early_printk();
#endif
      cpu_report();
      check_bugs_early();

#if defined(CONFIG_VT)
#if defined(CONFIG_VGA_CONSOLE)
      conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
      conswitchp = &dummy_con;
#endif
#endif

      arch_mem_init(cmdline_p);

      resource_init();
      plat_smp_setup();
}

static int __init fpu_disable(char *s)
{
      int i;

      for (i = 0; i < NR_CPUS; i++)
            cpu_data[i].options &= ~MIPS_CPU_FPU;

      return 1;
}

__setup("nofpu", fpu_disable);

static int __init dsp_disable(char *s)
{
      cpu_data[0].ases &= ~MIPS_ASE_DSP;

      return 1;
}

__setup("nodsp", dsp_disable);

unsigned long kernelsp[NR_CPUS];
unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;

#ifdef CONFIG_DEBUG_FS
struct dentry *mips_debugfs_dir;
static int __init debugfs_mips(void)
{
      struct dentry *d;

      d = debugfs_create_dir("mips", NULL);
      if (IS_ERR(d))
            return PTR_ERR(d);
      mips_debugfs_dir = d;
      return 0;
}
arch_initcall(debugfs_mips);
#endif

Generated by  Doxygen 1.6.0   Back to index