Logo Search packages:      
Sourcecode: linux version File versions

mm.c

/*
 *  PS3 address space management.
 *
 *  Copyright (C) 2006 Sony Computer Entertainment Inc.
 *  Copyright 2006 Sony Corp.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/memory_hotplug.h>
#include <linux/lmb.h>

#include <asm/firmware.h>
#include <asm/prom.h>
#include <asm/udbg.h>
#include <asm/lv1call.h>

#include "platform.h"

#if defined(DEBUG)
#define DBG udbg_printf
#else
#define DBG pr_debug
#endif

enum {
#if defined(CONFIG_PS3_DYNAMIC_DMA)
      USE_DYNAMIC_DMA = 1,
#else
      USE_DYNAMIC_DMA = 0,
#endif
};

enum {
      PAGE_SHIFT_4K = 12U,
      PAGE_SHIFT_64K = 16U,
      PAGE_SHIFT_16M = 24U,
};

static unsigned long make_page_sizes(unsigned long a, unsigned long b)
{
      return (a << 56) | (b << 48);
}

enum {
      ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
      ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
};

/* valid htab sizes are {18,19,20} = 256K, 512K, 1M */

enum {
      HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
      HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
};

/*============================================================================*/
/* virtual address space routines                                             */
/*============================================================================*/

/**
 * struct mem_region - memory region structure
 * @base: base address
 * @size: size in bytes
 * @offset: difference between base and rm.size
 */

00081 struct mem_region {
      unsigned long base;
      unsigned long size;
      unsigned long offset;
};

/**
 * struct map - address space state variables holder
 * @total: total memory available as reported by HV
 * @vas_id - HV virtual address space id
 * @htab_size: htab size in bytes
 *
 * The HV virtual address space (vas) allows for hotplug memory regions.
 * Memory regions can be created and destroyed in the vas at runtime.
 * @rm: real mode (bootmem) region
 * @r1: hotplug memory region(s)
 *
 * ps3 addresses
 * virt_addr: a cpu 'translated' effective address
 * phys_addr: an address in what Linux thinks is the physical address space
 * lpar_addr: an address in the HV virtual address space
 * bus_addr: an io controller 'translated' address on a device bus
 */

00105 struct map {
      unsigned long total;
      unsigned long vas_id;
      unsigned long htab_size;
      struct mem_region rm;
      struct mem_region r1;
};

#define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
static void __maybe_unused _debug_dump_map(const struct map *m,
      const char *func, int line)
{
      DBG("%s:%d: map.total     = %lxh\n", func, line, m->total);
      DBG("%s:%d: map.rm.size   = %lxh\n", func, line, m->rm.size);
      DBG("%s:%d: map.vas_id    = %lu\n", func, line, m->vas_id);
      DBG("%s:%d: map.htab_size = %lxh\n", func, line, m->htab_size);
      DBG("%s:%d: map.r1.base   = %lxh\n", func, line, m->r1.base);
      DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
      DBG("%s:%d: map.r1.size   = %lxh\n", func, line, m->r1.size);
}

static struct map map;

/**
 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
 * @phys_addr: linux physical address
 */

unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
{
      BUG_ON(is_kernel_addr(phys_addr));
      return (phys_addr < map.rm.size || phys_addr >= map.total)
            ? phys_addr : phys_addr + map.r1.offset;
}

EXPORT_SYMBOL(ps3_mm_phys_to_lpar);

/**
 * ps3_mm_vas_create - create the virtual address space
 */

void __init ps3_mm_vas_create(unsigned long* htab_size)
{
      int result;
      unsigned long start_address;
      unsigned long size;
      unsigned long access_right;
      unsigned long max_page_size;
      unsigned long flags;

      result = lv1_query_logical_partition_address_region_info(0,
            &start_address, &size, &access_right, &max_page_size,
            &flags);

      if (result) {
            DBG("%s:%d: lv1_query_logical_partition_address_region_info "
                  "failed: %s\n", __func__, __LINE__,
                  ps3_result(result));
            goto fail;
      }

      if (max_page_size < PAGE_SHIFT_16M) {
            DBG("%s:%d: bad max_page_size %lxh\n", __func__, __LINE__,
                  max_page_size);
            goto fail;
      }

      BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
      BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);

      result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
                  2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
                  &map.vas_id, &map.htab_size);

      if (result) {
            DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
                  __func__, __LINE__, ps3_result(result));
            goto fail;
      }

      result = lv1_select_virtual_address_space(map.vas_id);

      if (result) {
            DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
                  __func__, __LINE__, ps3_result(result));
            goto fail;
      }

      *htab_size = map.htab_size;

      debug_dump_map(&map);

      return;

fail:
      panic("ps3_mm_vas_create failed");
}

/**
 * ps3_mm_vas_destroy -
 */

void ps3_mm_vas_destroy(void)
{
      int result;

      DBG("%s:%d: map.vas_id    = %lu\n", __func__, __LINE__, map.vas_id);

      if (map.vas_id) {
            result = lv1_select_virtual_address_space(0);
            BUG_ON(result);
            result = lv1_destruct_virtual_address_space(map.vas_id);
            BUG_ON(result);
            map.vas_id = 0;
      }
}

/*============================================================================*/
/* memory hotplug routines                                                    */
/*============================================================================*/

/**
 * ps3_mm_region_create - create a memory region in the vas
 * @r: pointer to a struct mem_region to accept initialized values
 * @size: requested region size
 *
 * This implementation creates the region with the vas large page size.
 * @size is rounded down to a multiple of the vas large page size.
 */

static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
{
      int result;
      unsigned long muid;

      r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);

      DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
      DBG("%s:%d actual     %lxh\n", __func__, __LINE__, r->size);
      DBG("%s:%d difference %lxh (%luMB)\n", __func__, __LINE__,
            (unsigned long)(size - r->size),
            (size - r->size) / 1024 / 1024);

      if (r->size == 0) {
            DBG("%s:%d: size == 0\n", __func__, __LINE__);
            result = -1;
            goto zero_region;
      }

      result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
            ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);

      if (result || r->base < map.rm.size) {
            DBG("%s:%d: lv1_allocate_memory failed: %s\n",
                  __func__, __LINE__, ps3_result(result));
            goto zero_region;
      }

      r->offset = r->base - map.rm.size;
      return result;

zero_region:
      r->size = r->base = r->offset = 0;
      return result;
}

/**
 * ps3_mm_region_destroy - destroy a memory region
 * @r: pointer to struct mem_region
 */

static void ps3_mm_region_destroy(struct mem_region *r)
{
      int result;

      DBG("%s:%d: r->base = %lxh\n", __func__, __LINE__, r->base);
      if (r->base) {
            result = lv1_release_memory(r->base);
            BUG_ON(result);
            r->size = r->base = r->offset = 0;
            map.total = map.rm.size;
      }
}

/**
 * ps3_mm_add_memory - hot add memory
 */

static int __init ps3_mm_add_memory(void)
{
      int result;
      unsigned long start_addr;
      unsigned long start_pfn;
      unsigned long nr_pages;

      if (!firmware_has_feature(FW_FEATURE_PS3_LV1))
            return -ENODEV;

      BUG_ON(!mem_init_done);

      start_addr = map.rm.size;
      start_pfn = start_addr >> PAGE_SHIFT;
      nr_pages = (map.r1.size + PAGE_SIZE - 1) >> PAGE_SHIFT;

      DBG("%s:%d: start_addr %lxh, start_pfn %lxh, nr_pages %lxh\n",
            __func__, __LINE__, start_addr, start_pfn, nr_pages);

      result = add_memory(0, start_addr, map.r1.size);

      if (result) {
            DBG("%s:%d: add_memory failed: (%d)\n",
                  __func__, __LINE__, result);
            return result;
      }

      lmb_add(start_addr, map.r1.size);
      lmb_analyze();

      result = online_pages(start_pfn, nr_pages);

      if (result)
            DBG("%s:%d: online_pages failed: (%d)\n",
                  __func__, __LINE__, result);

      return result;
}

core_initcall(ps3_mm_add_memory);

/*============================================================================*/
/* dma routines                                                               */
/*============================================================================*/

/**
 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
 * @r: pointer to dma region structure
 * @lpar_addr: HV lpar address
 */

static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
      unsigned long lpar_addr)
{
      if (lpar_addr >= map.rm.size)
            lpar_addr -= map.r1.offset;
      BUG_ON(lpar_addr < r->offset);
      BUG_ON(lpar_addr >= r->offset + r->len);
      return r->bus_addr + lpar_addr - r->offset;
}

#define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
      const char *func, int line)
{
      DBG("%s:%d: dev        %lu:%lu\n", func, line, r->dev->bus_id,
            r->dev->dev_id);
      DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
      DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
      DBG("%s:%d: len        %lxh\n", func, line, r->len);
      DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
}

  /**
 * dma_chunk - A chunk of dma pages mapped by the io controller.
 * @region - The dma region that owns this chunk.
 * @lpar_addr: Starting lpar address of the area to map.
 * @bus_addr: Starting ioc bus address of the area to map.
 * @len: Length in bytes of the area to map.
 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
 * list of all chuncks owned by the region.
 *
 * This implementation uses a very simple dma page manager
 * based on the dma_chunk structure.  This scheme assumes
 * that all drivers use very well behaved dma ops.
 */

00380 struct dma_chunk {
      struct ps3_dma_region *region;
      unsigned long lpar_addr;
      unsigned long bus_addr;
      unsigned long len;
      struct list_head link;
      unsigned int usage_count;
};

#define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
      int line)
{
      DBG("%s:%d: r.dev        %lu:%lu\n", func, line,
            c->region->dev->bus_id, c->region->dev->dev_id);
      DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
      DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
      DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
      DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
      DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
      DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
      DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
}

static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
      unsigned long bus_addr, unsigned long len)
{
      struct dma_chunk *c;
      unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size);
      unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus,
                                    1 << r->page_size);

      list_for_each_entry(c, &r->chunk_list.head, link) {
            /* intersection */
            if (aligned_bus >= c->bus_addr &&
                aligned_bus + aligned_len <= c->bus_addr + c->len)
                  return c;

            /* below */
            if (aligned_bus + aligned_len <= c->bus_addr)
                  continue;

            /* above */
            if (aligned_bus >= c->bus_addr + c->len)
                  continue;

            /* we don't handle the multi-chunk case for now */
            dma_dump_chunk(c);
            BUG();
      }
      return NULL;
}

static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
      unsigned long lpar_addr, unsigned long len)
{
      struct dma_chunk *c;
      unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size);
      unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar,
                                    1 << r->page_size);

      list_for_each_entry(c, &r->chunk_list.head, link) {
            /* intersection */
            if (c->lpar_addr <= aligned_lpar &&
                aligned_lpar < c->lpar_addr + c->len) {
                  if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
                        return c;
                  else {
                        dma_dump_chunk(c);
                        BUG();
                  }
            }
            /* below */
            if (aligned_lpar + aligned_len <= c->lpar_addr) {
                  continue;
            }
            /* above */
            if (c->lpar_addr + c->len <= aligned_lpar) {
                  continue;
            }
      }
      return NULL;
}

static int dma_sb_free_chunk(struct dma_chunk *c)
{
      int result = 0;

      if (c->bus_addr) {
            result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
                  c->region->dev->dev_id, c->bus_addr, c->len);
            BUG_ON(result);
      }

      kfree(c);
      return result;
}

static int dma_ioc0_free_chunk(struct dma_chunk *c)
{
      int result = 0;
      int iopage;
      unsigned long offset;
      struct ps3_dma_region *r = c->region;

      DBG("%s:start\n", __func__);
      for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
            offset = (1 << r->page_size) * iopage;
            /* put INVALID entry */
            result = lv1_put_iopte(0,
                               c->bus_addr + offset,
                               c->lpar_addr + offset,
                               r->ioid,
                               0);
            DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
                c->bus_addr + offset,
                c->lpar_addr + offset,
                r->ioid);

            if (result) {
                  DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
                      __LINE__, ps3_result(result));
            }
      }
      kfree(c);
      DBG("%s:end\n", __func__);
      return result;
}

/**
 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
 * @r: Pointer to a struct ps3_dma_region.
 * @phys_addr: Starting physical address of the area to map.
 * @len: Length in bytes of the area to map.
 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
 *
 * This is the lowest level dma mapping routine, and is the one that will
 * make the HV call to add the pages into the io controller address space.
 */

static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
          unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
{
      int result;
      struct dma_chunk *c;

      c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);

      if (!c) {
            result = -ENOMEM;
            goto fail_alloc;
      }

      c->region = r;
      c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
      c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
      c->len = len;

      BUG_ON(iopte_flag != 0xf800000000000000UL);
      result = lv1_map_device_dma_region(c->region->dev->bus_id,
                                 c->region->dev->dev_id, c->lpar_addr,
                                 c->bus_addr, c->len, iopte_flag);
      if (result) {
            DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
                  __func__, __LINE__, ps3_result(result));
            goto fail_map;
      }

      list_add(&c->link, &r->chunk_list.head);

      *c_out = c;
      return 0;

fail_map:
      kfree(c);
fail_alloc:
      *c_out = NULL;
      DBG(" <- %s:%d\n", __func__, __LINE__);
      return result;
}

static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
                        unsigned long len, struct dma_chunk **c_out,
                        u64 iopte_flag)
{
      int result;
      struct dma_chunk *c, *last;
      int iopage, pages;
      unsigned long offset;

      DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
          phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
      c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);

      if (!c) {
            result = -ENOMEM;
            goto fail_alloc;
      }

      c->region = r;
      c->len = len;
      c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
      /* allocate IO address */
      if (list_empty(&r->chunk_list.head)) {
            /* first one */
            c->bus_addr = r->bus_addr;
      } else {
            /* derive from last bus addr*/
            last  = list_entry(r->chunk_list.head.next,
                           struct dma_chunk, link);
            c->bus_addr = last->bus_addr + last->len;
            DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
                last->bus_addr, last->len);
      }

      /* FIXME: check whether length exceeds region size */

      /* build ioptes for the area */
      pages = len >> r->page_size;
      DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#lx\n", __func__,
          r->page_size, r->len, pages, iopte_flag);
      for (iopage = 0; iopage < pages; iopage++) {
            offset = (1 << r->page_size) * iopage;
            result = lv1_put_iopte(0,
                               c->bus_addr + offset,
                               c->lpar_addr + offset,
                               r->ioid,
                               iopte_flag);
            if (result) {
                  printk(KERN_WARNING "%s:%d: lv1_map_device_dma_region "
                        "failed: %s\n", __func__, __LINE__,
                        ps3_result(result));
                  goto fail_map;
            }
            DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
                iopage, c->bus_addr + offset, c->lpar_addr + offset,
                r->ioid);
      }

      /* be sure that last allocated one is inserted at head */
      list_add(&c->link, &r->chunk_list.head);

      *c_out = c;
      DBG("%s: end\n", __func__);
      return 0;

fail_map:
      for (iopage--; 0 <= iopage; iopage--) {
            lv1_put_iopte(0,
                        c->bus_addr + offset,
                        c->lpar_addr + offset,
                        r->ioid,
                        0);
      }
      kfree(c);
fail_alloc:
      *c_out = NULL;
      return result;
}

/**
 * dma_sb_region_create - Create a device dma region.
 * @r: Pointer to a struct ps3_dma_region.
 *
 * This is the lowest level dma region create routine, and is the one that
 * will make the HV call to create the region.
 */

static int dma_sb_region_create(struct ps3_dma_region *r)
{
      int result;

      pr_info(" -> %s:%d:\n", __func__, __LINE__);

      BUG_ON(!r);

      if (!r->dev->bus_id) {
            pr_info("%s:%d: %lu:%lu no dma\n", __func__, __LINE__,
                  r->dev->bus_id, r->dev->dev_id);
            return 0;
      }

      DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
          __LINE__, r->len, r->page_size, r->offset);

      BUG_ON(!r->len);
      BUG_ON(!r->page_size);
      BUG_ON(!r->region_ops);

      INIT_LIST_HEAD(&r->chunk_list.head);
      spin_lock_init(&r->chunk_list.lock);

      result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
            roundup_pow_of_two(r->len), r->page_size, r->region_type,
            &r->bus_addr);

      if (result) {
            DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
                  __func__, __LINE__, ps3_result(result));
            r->len = r->bus_addr = 0;
      }

      return result;
}

static int dma_ioc0_region_create(struct ps3_dma_region *r)
{
      int result;

      INIT_LIST_HEAD(&r->chunk_list.head);
      spin_lock_init(&r->chunk_list.lock);

      result = lv1_allocate_io_segment(0,
                               r->len,
                               r->page_size,
                               &r->bus_addr);
      if (result) {
            DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
                  __func__, __LINE__, ps3_result(result));
            r->len = r->bus_addr = 0;
      }
      DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
          r->len, r->page_size, r->bus_addr);
      return result;
}

/**
 * dma_region_free - Free a device dma region.
 * @r: Pointer to a struct ps3_dma_region.
 *
 * This is the lowest level dma region free routine, and is the one that
 * will make the HV call to free the region.
 */

static int dma_sb_region_free(struct ps3_dma_region *r)
{
      int result;
      struct dma_chunk *c;
      struct dma_chunk *tmp;

      BUG_ON(!r);

      if (!r->dev->bus_id) {
            pr_info("%s:%d: %lu:%lu no dma\n", __func__, __LINE__,
                  r->dev->bus_id, r->dev->dev_id);
            return 0;
      }

      list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
            list_del(&c->link);
            dma_sb_free_chunk(c);
      }

      result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
            r->bus_addr);

      if (result)
            DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
                  __func__, __LINE__, ps3_result(result));

      r->bus_addr = 0;

      return result;
}

static int dma_ioc0_region_free(struct ps3_dma_region *r)
{
      int result;
      struct dma_chunk *c, *n;

      DBG("%s: start\n", __func__);
      list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
            list_del(&c->link);
            dma_ioc0_free_chunk(c);
      }

      result = lv1_release_io_segment(0, r->bus_addr);

      if (result)
            DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
                  __func__, __LINE__, ps3_result(result));

      r->bus_addr = 0;
      DBG("%s: end\n", __func__);

      return result;
}

/**
 * dma_sb_map_area - Map an area of memory into a device dma region.
 * @r: Pointer to a struct ps3_dma_region.
 * @virt_addr: Starting virtual address of the area to map.
 * @len: Length in bytes of the area to map.
 * @bus_addr: A pointer to return the starting ioc bus address of the area to
 * map.
 *
 * This is the common dma mapping routine.
 */

static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
         unsigned long len, unsigned long *bus_addr,
         u64 iopte_flag)
{
      int result;
      unsigned long flags;
      struct dma_chunk *c;
      unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
            : virt_addr;
      unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
      unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
                                    1 << r->page_size);
      *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));

      if (!USE_DYNAMIC_DMA) {
            unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
            DBG(" -> %s:%d\n", __func__, __LINE__);
            DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
                  virt_addr);
            DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
                  phys_addr);
            DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
                  lpar_addr);
            DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
            DBG("%s:%d bus_addr  %lxh (%lxh)\n", __func__, __LINE__,
            *bus_addr, len);
      }

      spin_lock_irqsave(&r->chunk_list.lock, flags);
      c = dma_find_chunk(r, *bus_addr, len);

      if (c) {
            DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
            dma_dump_chunk(c);
            c->usage_count++;
            spin_unlock_irqrestore(&r->chunk_list.lock, flags);
            return 0;
      }

      result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);

      if (result) {
            *bus_addr = 0;
            DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
                  __func__, __LINE__, result);
            spin_unlock_irqrestore(&r->chunk_list.lock, flags);
            return result;
      }

      c->usage_count = 1;

      spin_unlock_irqrestore(&r->chunk_list.lock, flags);
      return result;
}

static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
           unsigned long len, unsigned long *bus_addr,
           u64 iopte_flag)
{
      int result;
      unsigned long flags;
      struct dma_chunk *c;
      unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
            : virt_addr;
      unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
      unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
                                    1 << r->page_size);

      DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
          virt_addr, len);
      DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
          phys_addr, aligned_phys, aligned_len);

      spin_lock_irqsave(&r->chunk_list.lock, flags);
      c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);

      if (c) {
            /* FIXME */
            BUG();
            *bus_addr = c->bus_addr + phys_addr - aligned_phys;
            c->usage_count++;
            spin_unlock_irqrestore(&r->chunk_list.lock, flags);
            return 0;
      }

      result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
                            iopte_flag);

      if (result) {
            *bus_addr = 0;
            DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
                  __func__, __LINE__, result);
            spin_unlock_irqrestore(&r->chunk_list.lock, flags);
            return result;
      }
      *bus_addr = c->bus_addr + phys_addr - aligned_phys;
      DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#lx\n", __func__,
          virt_addr, phys_addr, aligned_phys, *bus_addr);
      c->usage_count = 1;

      spin_unlock_irqrestore(&r->chunk_list.lock, flags);
      return result;
}

/**
 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
 * @r: Pointer to a struct ps3_dma_region.
 * @bus_addr: The starting ioc bus address of the area to unmap.
 * @len: Length in bytes of the area to unmap.
 *
 * This is the common dma unmap routine.
 */

static int dma_sb_unmap_area(struct ps3_dma_region *r, unsigned long bus_addr,
      unsigned long len)
{
      unsigned long flags;
      struct dma_chunk *c;

      spin_lock_irqsave(&r->chunk_list.lock, flags);
      c = dma_find_chunk(r, bus_addr, len);

      if (!c) {
            unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
                  1 << r->page_size);
            unsigned long aligned_len = _ALIGN_UP(len + bus_addr
                  - aligned_bus, 1 << r->page_size);
            DBG("%s:%d: not found: bus_addr %lxh\n",
                  __func__, __LINE__, bus_addr);
            DBG("%s:%d: not found: len %lxh\n",
                  __func__, __LINE__, len);
            DBG("%s:%d: not found: aligned_bus %lxh\n",
                  __func__, __LINE__, aligned_bus);
            DBG("%s:%d: not found: aligned_len %lxh\n",
                  __func__, __LINE__, aligned_len);
            BUG();
      }

      c->usage_count--;

      if (!c->usage_count) {
            list_del(&c->link);
            dma_sb_free_chunk(c);
      }

      spin_unlock_irqrestore(&r->chunk_list.lock, flags);
      return 0;
}

static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
                  unsigned long bus_addr, unsigned long len)
{
      unsigned long flags;
      struct dma_chunk *c;

      DBG("%s: start a=%#lx l=%#lx\n", __func__, bus_addr, len);
      spin_lock_irqsave(&r->chunk_list.lock, flags);
      c = dma_find_chunk(r, bus_addr, len);

      if (!c) {
            unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
                                          1 << r->page_size);
            unsigned long aligned_len = _ALIGN_UP(len + bus_addr
                                          - aligned_bus,
                                          1 << r->page_size);
            DBG("%s:%d: not found: bus_addr %lxh\n",
                __func__, __LINE__, bus_addr);
            DBG("%s:%d: not found: len %lxh\n",
                __func__, __LINE__, len);
            DBG("%s:%d: not found: aligned_bus %lxh\n",
                __func__, __LINE__, aligned_bus);
            DBG("%s:%d: not found: aligned_len %lxh\n",
                __func__, __LINE__, aligned_len);
            BUG();
      }

      c->usage_count--;

      if (!c->usage_count) {
            list_del(&c->link);
            dma_ioc0_free_chunk(c);
      }

      spin_unlock_irqrestore(&r->chunk_list.lock, flags);
      DBG("%s: end\n", __func__);
      return 0;
}

/**
 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
 * @r: Pointer to a struct ps3_dma_region.
 *
 * This routine creates an HV dma region for the device and maps all available
 * ram into the io controller bus address space.
 */

static int dma_sb_region_create_linear(struct ps3_dma_region *r)
{
      int result;
      unsigned long virt_addr, len, tmp;

      if (r->len > 16*1024*1024) {  /* FIXME: need proper fix */
            /* force 16M dma pages for linear mapping */
            if (r->page_size != PS3_DMA_16M) {
                  pr_info("%s:%d: forcing 16M pages for linear map\n",
                        __func__, __LINE__);
                  r->page_size = PS3_DMA_16M;
                  r->len = _ALIGN_UP(r->len, 1 << r->page_size);
            }
      }

      result = dma_sb_region_create(r);
      BUG_ON(result);

      if (r->offset < map.rm.size) {
            /* Map (part of) 1st RAM chunk */
            virt_addr = map.rm.base + r->offset;
            len = map.rm.size - r->offset;
            if (len > r->len)
                  len = r->len;
            result = dma_sb_map_area(r, virt_addr, len, &tmp,
                  IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M);
            BUG_ON(result);
      }

      if (r->offset + r->len > map.rm.size) {
            /* Map (part of) 2nd RAM chunk */
            virt_addr = map.rm.size;
            len = r->len;
            if (r->offset >= map.rm.size)
                  virt_addr += r->offset - map.rm.size;
            else
                  len -= map.rm.size - r->offset;
            result = dma_sb_map_area(r, virt_addr, len, &tmp,
                  IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M);
            BUG_ON(result);
      }

      return result;
}

/**
 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
 * @r: Pointer to a struct ps3_dma_region.
 *
 * This routine will unmap all mapped areas and free the HV dma region.
 */

static int dma_sb_region_free_linear(struct ps3_dma_region *r)
{
      int result;
      unsigned long bus_addr, len, lpar_addr;

      if (r->offset < map.rm.size) {
            /* Unmap (part of) 1st RAM chunk */
            lpar_addr = map.rm.base + r->offset;
            len = map.rm.size - r->offset;
            if (len > r->len)
                  len = r->len;
            bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
            result = dma_sb_unmap_area(r, bus_addr, len);
            BUG_ON(result);
      }

      if (r->offset + r->len > map.rm.size) {
            /* Unmap (part of) 2nd RAM chunk */
            lpar_addr = map.r1.base;
            len = r->len;
            if (r->offset >= map.rm.size)
                  lpar_addr += r->offset - map.rm.size;
            else
                  len -= map.rm.size - r->offset;
            bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
            result = dma_sb_unmap_area(r, bus_addr, len);
            BUG_ON(result);
      }

      result = dma_sb_region_free(r);
      BUG_ON(result);

      return result;
}

/**
 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
 * @r: Pointer to a struct ps3_dma_region.
 * @virt_addr: Starting virtual address of the area to map.
 * @len: Length in bytes of the area to map.
 * @bus_addr: A pointer to return the starting ioc bus address of the area to
 * map.
 *
 * This routine just returns the corresponding bus address.  Actual mapping
 * occurs in dma_region_create_linear().
 */

static int dma_sb_map_area_linear(struct ps3_dma_region *r,
      unsigned long virt_addr, unsigned long len, unsigned long *bus_addr,
      u64 iopte_flag)
{
      unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
            : virt_addr;
      *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
      return 0;
}

/**
 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
 * @r: Pointer to a struct ps3_dma_region.
 * @bus_addr: The starting ioc bus address of the area to unmap.
 * @len: Length in bytes of the area to unmap.
 *
 * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
 */

static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
      unsigned long bus_addr, unsigned long len)
{
      return 0;
};

static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
      .create = dma_sb_region_create,
      .free = dma_sb_region_free,
      .map = dma_sb_map_area,
      .unmap = dma_sb_unmap_area
};

static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
      .create = dma_sb_region_create_linear,
      .free = dma_sb_region_free_linear,
      .map = dma_sb_map_area_linear,
      .unmap = dma_sb_unmap_area_linear
};

static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
      .create = dma_ioc0_region_create,
      .free = dma_ioc0_region_free,
      .map = dma_ioc0_map_area,
      .unmap = dma_ioc0_unmap_area
};

int ps3_dma_region_init(struct ps3_system_bus_device *dev,
      struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
      enum ps3_dma_region_type region_type, void *addr, unsigned long len)
{
      unsigned long lpar_addr;

      lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;

      r->dev = dev;
      r->page_size = page_size;
      r->region_type = region_type;
      r->offset = lpar_addr;
      if (r->offset >= map.rm.size)
            r->offset -= map.r1.offset;
      r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size);

      switch (dev->dev_type) {
      case PS3_DEVICE_TYPE_SB:
            r->region_ops =  (USE_DYNAMIC_DMA)
                  ? &ps3_dma_sb_region_ops
                  : &ps3_dma_sb_region_linear_ops;
            break;
      case PS3_DEVICE_TYPE_IOC0:
            r->region_ops = &ps3_dma_ioc0_region_ops;
            break;
      default:
            BUG();
            return -EINVAL;
      }
      return 0;
}
EXPORT_SYMBOL(ps3_dma_region_init);

int ps3_dma_region_create(struct ps3_dma_region *r)
{
      BUG_ON(!r);
      BUG_ON(!r->region_ops);
      BUG_ON(!r->region_ops->create);
      return r->region_ops->create(r);
}
EXPORT_SYMBOL(ps3_dma_region_create);

int ps3_dma_region_free(struct ps3_dma_region *r)
{
      BUG_ON(!r);
      BUG_ON(!r->region_ops);
      BUG_ON(!r->region_ops->free);
      return r->region_ops->free(r);
}
EXPORT_SYMBOL(ps3_dma_region_free);

int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
      unsigned long len, unsigned long *bus_addr,
      u64 iopte_flag)
{
      return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
}

int ps3_dma_unmap(struct ps3_dma_region *r, unsigned long bus_addr,
      unsigned long len)
{
      return r->region_ops->unmap(r, bus_addr, len);
}

/*============================================================================*/
/* system startup routines                                                    */
/*============================================================================*/

/**
 * ps3_mm_init - initialize the address space state variables
 */

void __init ps3_mm_init(void)
{
      int result;

      DBG(" -> %s:%d\n", __func__, __LINE__);

      result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
            &map.total);

      if (result)
            panic("ps3_repository_read_mm_info() failed");

      map.rm.offset = map.rm.base;
      map.vas_id = map.htab_size = 0;

      /* this implementation assumes map.rm.base is zero */

      BUG_ON(map.rm.base);
      BUG_ON(!map.rm.size);


      /* arrange to do this in ps3_mm_add_memory */
      ps3_mm_region_create(&map.r1, map.total - map.rm.size);

      /* correct map.total for the real total amount of memory we use */
      map.total = map.rm.size + map.r1.size;

      DBG(" <- %s:%d\n", __func__, __LINE__);
}

/**
 * ps3_mm_shutdown - final cleanup of address space
 */

void ps3_mm_shutdown(void)
{
      ps3_mm_region_destroy(&map.r1);
}

Generated by  Doxygen 1.6.0   Back to index