Logo Search packages:      
Sourcecode: linux version File versions

visemul.c

/* visemul.c: Emulation of VIS instructions.
 *
 * Copyright (C) 2006 David S. Miller (davem@davemloft.net)
 */
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/thread_info.h>

#include <asm/ptrace.h>
#include <asm/pstate.h>
#include <asm/system.h>
#include <asm/fpumacro.h>
#include <asm/uaccess.h>

/* OPF field of various VIS instructions.  */

/* 000111011 - four 16-bit packs  */
#define FPACK16_OPF     0x03b

/* 000111010 - two 32-bit packs  */
#define FPACK32_OPF     0x03a

/* 000111101 - four 16-bit packs  */
#define FPACKFIX_OPF    0x03d

/* 001001101 - four 16-bit expands  */
#define FEXPAND_OPF     0x04d

/* 001001011 - two 32-bit merges */
#define FPMERGE_OPF     0x04b

/* 000110001 - 8-by-16-bit partitoned product  */
#define FMUL8x16_OPF    0x031

/* 000110011 - 8-by-16-bit upper alpha partitioned product  */
#define FMUL8x16AU_OPF  0x033

/* 000110101 - 8-by-16-bit lower alpha partitioned product  */
#define FMUL8x16AL_OPF  0x035

/* 000110110 - upper 8-by-16-bit partitioned product  */
#define FMUL8SUx16_OPF  0x036

/* 000110111 - lower 8-by-16-bit partitioned product  */
#define FMUL8ULx16_OPF  0x037

/* 000111000 - upper 8-by-16-bit partitioned product  */
#define FMULD8SUx16_OPF 0x038

/* 000111001 - lower unsigned 8-by-16-bit partitioned product  */
#define FMULD8ULx16_OPF 0x039

/* 000101000 - four 16-bit compare; set rd if src1 > src2  */
#define FCMPGT16_OPF    0x028

/* 000101100 - two 32-bit compare; set rd if src1 > src2  */
#define FCMPGT32_OPF    0x02c

/* 000100000 - four 16-bit compare; set rd if src1 <= src2  */
#define FCMPLE16_OPF    0x020

/* 000100100 - two 32-bit compare; set rd if src1 <= src2  */
#define FCMPLE32_OPF    0x024

/* 000100010 - four 16-bit compare; set rd if src1 != src2  */
#define FCMPNE16_OPF    0x022

/* 000100110 - two 32-bit compare; set rd if src1 != src2  */
#define FCMPNE32_OPF    0x026

/* 000101010 - four 16-bit compare; set rd if src1 == src2  */
#define FCMPEQ16_OPF    0x02a

/* 000101110 - two 32-bit compare; set rd if src1 == src2  */
#define FCMPEQ32_OPF    0x02e

/* 000000000 - Eight 8-bit edge boundary processing  */
#define EDGE8_OPF 0x000

/* 000000001 - Eight 8-bit edge boundary processing, no CC */
#define EDGE8N_OPF      0x001

/* 000000010 - Eight 8-bit edge boundary processing, little-endian  */
#define EDGE8L_OPF      0x002

/* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC  */
#define EDGE8LN_OPF     0x003

/* 000000100 - Four 16-bit edge boundary processing  */
#define EDGE16_OPF      0x004

/* 000000101 - Four 16-bit edge boundary processing, no CC  */
#define EDGE16N_OPF     0x005

/* 000000110 - Four 16-bit edge boundary processing, little-endian  */
#define EDGE16L_OPF     0x006

/* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC  */
#define EDGE16LN_OPF    0x007

/* 000001000 - Two 32-bit edge boundary processing  */
#define EDGE32_OPF      0x008

/* 000001001 - Two 32-bit edge boundary processing, no CC  */
#define EDGE32N_OPF     0x009

/* 000001010 - Two 32-bit edge boundary processing, little-endian  */
#define EDGE32L_OPF     0x00a

/* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC  */
#define EDGE32LN_OPF    0x00b

/* 000111110 - distance between 8 8-bit components  */
#define PDIST_OPF 0x03e

/* 000010000 - convert 8-bit 3-D address to blocked byte address  */
#define ARRAY8_OPF      0x010

/* 000010010 - convert 16-bit 3-D address to blocked byte address  */
#define ARRAY16_OPF     0x012

/* 000010100 - convert 32-bit 3-D address to blocked byte address  */
#define ARRAY32_OPF     0x014

/* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE  */
#define BMASK_OPF 0x019

/* 001001100 - Permute bytes as specified by GSR.MASK  */
#define BSHUFFLE_OPF    0x04c

#define VIS_OPF_SHIFT   5
#define VIS_OPF_MASK    (0x1ff << VIS_OPF_SHIFT)

#define RS1(INSN) (((INSN) >> 24) & 0x1f)
#define RS2(INSN) (((INSN) >>  0) & 0x1f)
#define RD(INSN)  (((INSN) >> 25) & 0x1f)

static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
                               unsigned int rd, int from_kernel)
{
      if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
            if (from_kernel != 0)
                  __asm__ __volatile__("flushw");
            else
                  flushw_user();
      }
}

static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
{
      unsigned long value;
      
      if (reg < 16)
            return (!reg ? 0 : regs->u_regs[reg]);
      if (regs->tstate & TSTATE_PRIV) {
            struct reg_window *win;
            win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
            value = win->locals[reg - 16];
      } else if (test_thread_flag(TIF_32BIT)) {
            struct reg_window32 __user *win32;
            win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
            get_user(value, &win32->locals[reg - 16]);
      } else {
            struct reg_window __user *win;
            win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
            get_user(value, &win->locals[reg - 16]);
      }
      return value;
}

static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg,
                                            struct pt_regs *regs)
{
      BUG_ON(reg < 16);
      BUG_ON(regs->tstate & TSTATE_PRIV);

      if (test_thread_flag(TIF_32BIT)) {
            struct reg_window32 __user *win32;
            win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
            return (unsigned long __user *)&win32->locals[reg - 16];
      } else {
            struct reg_window __user *win;
            win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
            return &win->locals[reg - 16];
      }
}

static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg,
                                       struct pt_regs *regs)
{
      BUG_ON(reg >= 16);
      BUG_ON(regs->tstate & TSTATE_PRIV);

      return &regs->u_regs[reg];
}

static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd)
{
      if (rd < 16) {
            unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs);

            *rd_kern = val;
      } else {
            unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs);

            if (test_thread_flag(TIF_32BIT))
                  __put_user((u32)val, (u32 __user *)rd_user);
            else
                  __put_user(val, rd_user);
      }
}

static inline unsigned long fpd_regval(struct fpustate *f,
                               unsigned int insn_regnum)
{
      insn_regnum = (((insn_regnum & 1) << 5) |
                   (insn_regnum & 0x1e));

      return *(unsigned long *) &f->regs[insn_regnum];
}

static inline unsigned long *fpd_regaddr(struct fpustate *f,
                               unsigned int insn_regnum)
{
      insn_regnum = (((insn_regnum & 1) << 5) |
                   (insn_regnum & 0x1e));

      return (unsigned long *) &f->regs[insn_regnum];
}

static inline unsigned int fps_regval(struct fpustate *f,
                              unsigned int insn_regnum)
{
      return f->regs[insn_regnum];
}

static inline unsigned int *fps_regaddr(struct fpustate *f,
                              unsigned int insn_regnum)
{
      return &f->regs[insn_regnum];
}

struct edge_tab {
      u16 left, right;
};
struct edge_tab edge8_tab[8] = {
      { 0xff, 0x80 },
      { 0x7f, 0xc0 },
      { 0x3f, 0xe0 },
      { 0x1f, 0xf0 },
      { 0x0f, 0xf8 },
      { 0x07, 0xfc },
      { 0x03, 0xfe },
      { 0x01, 0xff },
};
struct edge_tab edge8_tab_l[8] = {
      { 0xff, 0x01 },
      { 0xfe, 0x03 },
      { 0xfc, 0x07 },
      { 0xf8, 0x0f },
      { 0xf0, 0x1f },
      { 0xe0, 0x3f },
      { 0xc0, 0x7f },
      { 0x80, 0xff },
};
struct edge_tab edge16_tab[4] = {
      { 0xf, 0x8 },
      { 0x7, 0xc },
      { 0x3, 0xe },
      { 0x1, 0xf },
};
struct edge_tab edge16_tab_l[4] = {
      { 0xf, 0x1 },
      { 0xe, 0x3 },
      { 0xc, 0x7 },
      { 0x8, 0xf },
};
struct edge_tab edge32_tab[2] = {
      { 0x3, 0x2 },
      { 0x1, 0x3 },
};
struct edge_tab edge32_tab_l[2] = {
      { 0x3, 0x1 },
      { 0x2, 0x3 },
};

static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf)
{
      unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val;
      u16 left, right;

      maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
      orig_rs1 = rs1 = fetch_reg(RS1(insn), regs);
      orig_rs2 = rs2 = fetch_reg(RS2(insn), regs);

      if (test_thread_flag(TIF_32BIT)) {
            rs1 = rs1 & 0xffffffff;
            rs2 = rs2 & 0xffffffff;
      }
      switch (opf) {
      default:
      case EDGE8_OPF:
      case EDGE8N_OPF:
            left = edge8_tab[rs1 & 0x7].left;
            right = edge8_tab[rs2 & 0x7].right;
            break;
      case EDGE8L_OPF:
      case EDGE8LN_OPF:
            left = edge8_tab_l[rs1 & 0x7].left;
            right = edge8_tab_l[rs2 & 0x7].right;
            break;

      case EDGE16_OPF:
      case EDGE16N_OPF:
            left = edge16_tab[(rs1 >> 1) & 0x3].left;
            right = edge16_tab[(rs2 >> 1) & 0x3].right;
            break;

      case EDGE16L_OPF:
      case EDGE16LN_OPF:
            left = edge16_tab_l[(rs1 >> 1) & 0x3].left;
            right = edge16_tab_l[(rs2 >> 1) & 0x3].right;
            break;

      case EDGE32_OPF:
      case EDGE32N_OPF:
            left = edge32_tab[(rs1 >> 2) & 0x1].left;
            right = edge32_tab[(rs2 >> 2) & 0x1].right;
            break;

      case EDGE32L_OPF:
      case EDGE32LN_OPF:
            left = edge32_tab_l[(rs1 >> 2) & 0x1].left;
            right = edge32_tab_l[(rs2 >> 2) & 0x1].right;
            break;
      };

      if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL))
            rd_val = right & left;
      else
            rd_val = left;

      store_reg(regs, rd_val, RD(insn));

      switch (opf) {
      case EDGE8_OPF:
      case EDGE8L_OPF:
      case EDGE16_OPF:
      case EDGE16L_OPF:
      case EDGE32_OPF:
      case EDGE32L_OPF: {
            unsigned long ccr, tstate;

            __asm__ __volatile__("subcc   %1, %2, %%g0\n\t"
                             "rd    %%ccr, %0"
                             : "=r" (ccr)
                             : "r" (orig_rs1), "r" (orig_rs2)
                             : "cc");
            tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC);
            regs->tstate = tstate | (ccr << 32UL);
      }
      };
}

static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf)
{
      unsigned long rs1, rs2, rd_val;
      unsigned int bits, bits_mask;

      maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
      rs1 = fetch_reg(RS1(insn), regs);
      rs2 = fetch_reg(RS2(insn), regs);

      bits = (rs2 > 5 ? 5 : rs2);
      bits_mask = (1UL << bits) - 1UL;

      rd_val = ((((rs1 >> 11) & 0x3) <<  0) |
              (((rs1 >> 33) & 0x3) <<  2) |
              (((rs1 >> 55) & 0x1) <<  4) |
              (((rs1 >> 13) & 0xf) <<  5) |
              (((rs1 >> 35) & 0xf) <<  9) |
              (((rs1 >> 56) & 0xf) << 13) |
              (((rs1 >> 17) & bits_mask) << 17) |
              (((rs1 >> 39) & bits_mask) << (17 + bits)) |
              (((rs1 >> 60) & 0xf)       << (17 + (2*bits))));

      switch (opf) {
      case ARRAY16_OPF:
            rd_val <<= 1;
            break;

      case ARRAY32_OPF:
            rd_val <<= 2;
      };

      store_reg(regs, rd_val, RD(insn));
}

static void bmask(struct pt_regs *regs, unsigned int insn)
{
      unsigned long rs1, rs2, rd_val, gsr;

      maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
      rs1 = fetch_reg(RS1(insn), regs);
      rs2 = fetch_reg(RS2(insn), regs);
      rd_val = rs1 + rs2;

      store_reg(regs, rd_val, RD(insn));

      gsr = current_thread_info()->gsr[0] & 0xffffffff;
      gsr |= rd_val << 32UL;
      current_thread_info()->gsr[0] = gsr;
}

static void bshuffle(struct pt_regs *regs, unsigned int insn)
{
      struct fpustate *f = FPUSTATE;
      unsigned long rs1, rs2, rd_val;
      unsigned long bmask, i;

      bmask = current_thread_info()->gsr[0] >> 32UL;

      rs1 = fpd_regval(f, RS1(insn));
      rs2 = fpd_regval(f, RS2(insn));

      rd_val = 0UL;
      for (i = 0; i < 8; i++) {
            unsigned long which = (bmask >> (i * 4)) & 0xf;
            unsigned long byte;

            if (which < 8)
                  byte = (rs1 >> (which * 8)) & 0xff;
            else
                  byte = (rs2 >> ((which-8)*8)) & 0xff;
            rd_val |= (byte << (i * 8));
      }

      *fpd_regaddr(f, RD(insn)) = rd_val;
}

static void pdist(struct pt_regs *regs, unsigned int insn)
{
      struct fpustate *f = FPUSTATE;
      unsigned long rs1, rs2, *rd, rd_val;
      unsigned long i;

      rs1 = fpd_regval(f, RS1(insn));
      rs2 = fpd_regval(f, RS1(insn));
      rd = fpd_regaddr(f, RD(insn));

      rd_val = *rd;

      for (i = 0; i < 8; i++) {
            s16 s1, s2;

            s1 = (rs1 >> (56 - (i * 8))) & 0xff;
            s2 = (rs2 >> (56 - (i * 8))) & 0xff;

            /* Absolute value of difference. */
            s1 -= s2;
            if (s1 < 0)
                  s1 = ~s1 + 1;

            rd_val += s1;
      }

      *rd = rd_val;
}

static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf)
{
      struct fpustate *f = FPUSTATE;
      unsigned long rs1, rs2, gsr, scale, rd_val;

      gsr = current_thread_info()->gsr[0];
      scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f);
      switch (opf) {
      case FPACK16_OPF: {
            unsigned long byte;

            rs2 = fpd_regval(f, RS2(insn));
            rd_val = 0;
            for (byte = 0; byte < 4; byte++) {
                  unsigned int val;
                  s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL;
                  int scaled = src << scale;
                  int from_fixed = scaled >> 7;

                  val = ((from_fixed < 0) ?
                         0 :
                         (from_fixed > 255) ?
                         255 : from_fixed);

                  rd_val |= (val << (8 * byte));
            }
            *fps_regaddr(f, RD(insn)) = rd_val;
            break;
      }

      case FPACK32_OPF: {
            unsigned long word;

            rs1 = fpd_regval(f, RS1(insn));
            rs2 = fpd_regval(f, RS2(insn));
            rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL);
            for (word = 0; word < 2; word++) {
                  unsigned long val;
                  s32 src = (rs2 >> (word * 32UL));
                  s64 scaled = src << scale;
                  s64 from_fixed = scaled >> 23;

                  val = ((from_fixed < 0) ?
                         0 :
                         (from_fixed > 255) ?
                         255 : from_fixed);

                  rd_val |= (val << (32 * word));
            }
            *fpd_regaddr(f, RD(insn)) = rd_val;
            break;
      }

      case FPACKFIX_OPF: {
            unsigned long word;

            rs2 = fpd_regval(f, RS2(insn));

            rd_val = 0;
            for (word = 0; word < 2; word++) {
                  long val;
                  s32 src = (rs2 >> (word * 32UL));
                  s64 scaled = src << scale;
                  s64 from_fixed = scaled >> 16;

                  val = ((from_fixed < -32768) ?
                         -32768 :
                         (from_fixed > 32767) ?
                         32767 : from_fixed);

                  rd_val |= ((val & 0xffff) << (word * 16));
            }
            *fps_regaddr(f, RD(insn)) = rd_val;
            break;
      }

      case FEXPAND_OPF: {
            unsigned long byte;

            rs2 = fps_regval(f, RS2(insn));

            rd_val = 0;
            for (byte = 0; byte < 4; byte++) {
                  unsigned long val;
                  u8 src = (rs2 >> (byte * 8)) & 0xff;

                  val = src << 4;

                  rd_val |= (val << (byte * 16));
            }
            *fpd_regaddr(f, RD(insn)) = rd_val;
            break;
      }

      case FPMERGE_OPF: {
            rs1 = fps_regval(f, RS1(insn));
            rs2 = fps_regval(f, RS2(insn));

            rd_val = (((rs2 & 0x000000ff) <<  0) |
                    ((rs1 & 0x000000ff) <<  8) |
                    ((rs2 & 0x0000ff00) <<  8) |
                    ((rs1 & 0x0000ff00) << 16) |
                    ((rs2 & 0x00ff0000) << 16) |
                    ((rs1 & 0x00ff0000) << 24) |
                    ((rs2 & 0xff000000) << 24) |
                    ((rs1 & 0xff000000) << 32));
            *fpd_regaddr(f, RD(insn)) = rd_val;
            break;
      }
      };
}

static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf)
{
      struct fpustate *f = FPUSTATE;
      unsigned long rs1, rs2, rd_val;

      switch (opf) {
      case FMUL8x16_OPF: {
            unsigned long byte;

            rs1 = fps_regval(f, RS1(insn));
            rs2 = fpd_regval(f, RS2(insn));

            rd_val = 0;
            for (byte = 0; byte < 4; byte++) {
                  u16 src1 = (rs1 >> (byte *  8)) & 0x00ff;
                  s16 src2 = (rs2 >> (byte * 16)) & 0xffff;
                  u32 prod = src1 * src2;
                  u16 scaled = ((prod & 0x00ffff00) >> 8);

                  /* Round up.  */
                  if (prod & 0x80)
                        scaled++;
                  rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
            }

            *fpd_regaddr(f, RD(insn)) = rd_val;
            break;
      }

      case FMUL8x16AU_OPF:
      case FMUL8x16AL_OPF: {
            unsigned long byte;
            s16 src2;

            rs1 = fps_regval(f, RS1(insn));
            rs2 = fps_regval(f, RS2(insn));

            rd_val = 0;
            src2 = (rs2 >> (opf == FMUL8x16AU_OPF) ? 16 : 0);
            for (byte = 0; byte < 4; byte++) {
                  u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
                  u32 prod = src1 * src2;
                  u16 scaled = ((prod & 0x00ffff00) >> 8);

                  /* Round up.  */
                  if (prod & 0x80)
                        scaled++;
                  rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
            }

            *fpd_regaddr(f, RD(insn)) = rd_val;
            break;
      }

      case FMUL8SUx16_OPF:
      case FMUL8ULx16_OPF: {
            unsigned long byte, ushift;

            rs1 = fpd_regval(f, RS1(insn));
            rs2 = fpd_regval(f, RS2(insn));

            rd_val = 0;
            ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0;
            for (byte = 0; byte < 4; byte++) {
                  u16 src1;
                  s16 src2;
                  u32 prod;
                  u16 scaled;

                  src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
                  src2 = ((rs2 >> (16 * byte)) & 0xffff);
                  prod = src1 * src2;
                  scaled = ((prod & 0x00ffff00) >> 8);

                  /* Round up.  */
                  if (prod & 0x80)
                        scaled++;
                  rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
            }

            *fpd_regaddr(f, RD(insn)) = rd_val;
            break;
      }

      case FMULD8SUx16_OPF:
      case FMULD8ULx16_OPF: {
            unsigned long byte, ushift;

            rs1 = fps_regval(f, RS1(insn));
            rs2 = fps_regval(f, RS2(insn));

            rd_val = 0;
            ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0;
            for (byte = 0; byte < 2; byte++) {
                  u16 src1;
                  s16 src2;
                  u32 prod;
                  u16 scaled;

                  src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
                  src2 = ((rs2 >> (16 * byte)) & 0xffff);
                  prod = src1 * src2;
                  scaled = ((prod & 0x00ffff00) >> 8);

                  /* Round up.  */
                  if (prod & 0x80)
                        scaled++;
                  rd_val |= ((scaled & 0xffffUL) <<
                           ((byte * 32UL) + 7UL));
            }
            *fpd_regaddr(f, RD(insn)) = rd_val;
            break;
      }
      };
}

static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf)
{
      struct fpustate *f = FPUSTATE;
      unsigned long rs1, rs2, rd_val, i;

      rs1 = fpd_regval(f, RS1(insn));
      rs2 = fpd_regval(f, RS2(insn));

      rd_val = 0;

      switch (opf) {
      case FCMPGT16_OPF:
            for (i = 0; i < 4; i++) {
                  s16 a = (rs1 >> (i * 16)) & 0xffff;
                  s16 b = (rs2 >> (i * 16)) & 0xffff;

                  if (a > b)
                        rd_val |= 1 << i;
            }
            break;

      case FCMPGT32_OPF:
            for (i = 0; i < 2; i++) {
                  s32 a = (rs1 >> (i * 32)) & 0xffff;
                  s32 b = (rs2 >> (i * 32)) & 0xffff;

                  if (a > b)
                        rd_val |= 1 << i;
            }
            break;

      case FCMPLE16_OPF:
            for (i = 0; i < 4; i++) {
                  s16 a = (rs1 >> (i * 16)) & 0xffff;
                  s16 b = (rs2 >> (i * 16)) & 0xffff;

                  if (a <= b)
                        rd_val |= 1 << i;
            }
            break;

      case FCMPLE32_OPF:
            for (i = 0; i < 2; i++) {
                  s32 a = (rs1 >> (i * 32)) & 0xffff;
                  s32 b = (rs2 >> (i * 32)) & 0xffff;

                  if (a <= b)
                        rd_val |= 1 << i;
            }
            break;

      case FCMPNE16_OPF:
            for (i = 0; i < 4; i++) {
                  s16 a = (rs1 >> (i * 16)) & 0xffff;
                  s16 b = (rs2 >> (i * 16)) & 0xffff;

                  if (a != b)
                        rd_val |= 1 << i;
            }
            break;

      case FCMPNE32_OPF:
            for (i = 0; i < 2; i++) {
                  s32 a = (rs1 >> (i * 32)) & 0xffff;
                  s32 b = (rs2 >> (i * 32)) & 0xffff;

                  if (a != b)
                        rd_val |= 1 << i;
            }
            break;

      case FCMPEQ16_OPF:
            for (i = 0; i < 4; i++) {
                  s16 a = (rs1 >> (i * 16)) & 0xffff;
                  s16 b = (rs2 >> (i * 16)) & 0xffff;

                  if (a == b)
                        rd_val |= 1 << i;
            }
            break;

      case FCMPEQ32_OPF:
            for (i = 0; i < 2; i++) {
                  s32 a = (rs1 >> (i * 32)) & 0xffff;
                  s32 b = (rs2 >> (i * 32)) & 0xffff;

                  if (a == b)
                        rd_val |= 1 << i;
            }
            break;
      };

      maybe_flush_windows(0, 0, RD(insn), 0);
      store_reg(regs, rd_val, RD(insn));
}

/* Emulate the VIS instructions which are not implemented in
 * hardware on Niagara.
 */
int vis_emul(struct pt_regs *regs, unsigned int insn)
{
      unsigned long pc = regs->tpc;
      unsigned int opf;

      BUG_ON(regs->tstate & TSTATE_PRIV);

      if (test_thread_flag(TIF_32BIT))
            pc = (u32)pc;

      if (get_user(insn, (u32 __user *) pc))
            return -EFAULT;

      opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT;
      switch (opf) {
      default:
            return -EINVAL;

      /* Pixel Formatting Instructions.  */
      case FPACK16_OPF:
      case FPACK32_OPF:
      case FPACKFIX_OPF:
      case FEXPAND_OPF:
      case FPMERGE_OPF:
            pformat(regs, insn, opf);
            break;

      /* Partitioned Multiply Instructions  */
      case FMUL8x16_OPF:
      case FMUL8x16AU_OPF:
      case FMUL8x16AL_OPF:
      case FMUL8SUx16_OPF:
      case FMUL8ULx16_OPF:
      case FMULD8SUx16_OPF:
      case FMULD8ULx16_OPF:
            pmul(regs, insn, opf);
            break;

      /* Pixel Compare Instructions  */
      case FCMPGT16_OPF:
      case FCMPGT32_OPF:
      case FCMPLE16_OPF:
      case FCMPLE32_OPF:
      case FCMPNE16_OPF:
      case FCMPNE32_OPF:
      case FCMPEQ16_OPF:
      case FCMPEQ32_OPF:
            pcmp(regs, insn, opf);
            break;

      /* Edge Handling Instructions  */
      case EDGE8_OPF:
      case EDGE8N_OPF:
      case EDGE8L_OPF:
      case EDGE8LN_OPF:
      case EDGE16_OPF:
      case EDGE16N_OPF:
      case EDGE16L_OPF:
      case EDGE16LN_OPF:
      case EDGE32_OPF:
      case EDGE32N_OPF:
      case EDGE32L_OPF:
      case EDGE32LN_OPF:
            edge(regs, insn, opf);
            break;

      /* Pixel Component Distance  */
      case PDIST_OPF:
            pdist(regs, insn);
            break;

      /* Three-Dimensional Array Addressing Instructions  */
      case ARRAY8_OPF:
      case ARRAY16_OPF:
      case ARRAY32_OPF:
            array(regs, insn, opf);
            break;

      /* Byte Mask and Shuffle Instructions  */
      case BMASK_OPF:
            bmask(regs, insn);
            break;

      case BSHUFFLE_OPF:
            bshuffle(regs, insn);
            break;
      };

      regs->tpc = regs->tnpc;
      regs->tnpc += 4;
      return 0;
}

Generated by  Doxygen 1.6.0   Back to index