Logo Search packages:      
Sourcecode: linux version File versions

dma_lib.c

/*
 * Copyright (C) 2006-2007 PA Semi, Inc
 *
 * Common functions for DMA access on PA Semi PWRficient
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/of.h>

#include <asm/pasemi_dma.h>

#define MAX_TXCH 64
#define MAX_RXCH 64
#define MAX_FLAGS 64
#define MAX_FUN 8

static struct pasdma_status *dma_status;

static void __iomem *iob_regs;
static void __iomem *mac_regs[6];
static void __iomem *dma_regs;

static int base_hw_irq;

static int num_txch, num_rxch;

static struct pci_dev *dma_pdev;

/* Bitmaps to handle allocation of channels */

static DECLARE_BITMAP(txch_free, MAX_TXCH);
static DECLARE_BITMAP(rxch_free, MAX_RXCH);
static DECLARE_BITMAP(flags_free, MAX_FLAGS);
static DECLARE_BITMAP(fun_free, MAX_FUN);

/* pasemi_read_iob_reg - read IOB register
 * @reg: Register to read (offset into PCI CFG space)
 */
unsigned int pasemi_read_iob_reg(unsigned int reg)
{
      return in_le32(iob_regs+reg);
}
EXPORT_SYMBOL(pasemi_read_iob_reg);

/* pasemi_write_iob_reg - write IOB register
 * @reg: Register to write to (offset into PCI CFG space)
 * @val: Value to write
 */
void pasemi_write_iob_reg(unsigned int reg, unsigned int val)
{
      out_le32(iob_regs+reg, val);
}
EXPORT_SYMBOL(pasemi_write_iob_reg);

/* pasemi_read_mac_reg - read MAC register
 * @intf: MAC interface
 * @reg: Register to read (offset into PCI CFG space)
 */
unsigned int pasemi_read_mac_reg(int intf, unsigned int reg)
{
      return in_le32(mac_regs[intf]+reg);
}
EXPORT_SYMBOL(pasemi_read_mac_reg);

/* pasemi_write_mac_reg - write MAC register
 * @intf: MAC interface
 * @reg: Register to write to (offset into PCI CFG space)
 * @val: Value to write
 */
void pasemi_write_mac_reg(int intf, unsigned int reg, unsigned int val)
{
      out_le32(mac_regs[intf]+reg, val);
}
EXPORT_SYMBOL(pasemi_write_mac_reg);

/* pasemi_read_dma_reg - read DMA register
 * @reg: Register to read (offset into PCI CFG space)
 */
unsigned int pasemi_read_dma_reg(unsigned int reg)
{
      return in_le32(dma_regs+reg);
}
EXPORT_SYMBOL(pasemi_read_dma_reg);

/* pasemi_write_dma_reg - write DMA register
 * @reg: Register to write to (offset into PCI CFG space)
 * @val: Value to write
 */
void pasemi_write_dma_reg(unsigned int reg, unsigned int val)
{
      out_le32(dma_regs+reg, val);
}
EXPORT_SYMBOL(pasemi_write_dma_reg);

static int pasemi_alloc_tx_chan(enum pasemi_dmachan_type type)
{
      int bit;
      int start, limit;

      switch (type & (TXCHAN_EVT0|TXCHAN_EVT1)) {
      case TXCHAN_EVT0:
            start = 0;
            limit = 10;
            break;
      case TXCHAN_EVT1:
            start = 10;
            limit = MAX_TXCH;
            break;
      default:
            start = 0;
            limit = MAX_TXCH;
            break;
      }
retry:
      bit = find_next_bit(txch_free, MAX_TXCH, start);
      if (bit >= limit)
            return -ENOSPC;
      if (!test_and_clear_bit(bit, txch_free))
            goto retry;

      return bit;
}

static void pasemi_free_tx_chan(int chan)
{
      BUG_ON(test_bit(chan, txch_free));
      set_bit(chan, txch_free);
}

static int pasemi_alloc_rx_chan(void)
{
      int bit;
retry:
      bit = find_first_bit(rxch_free, MAX_RXCH);
      if (bit >= MAX_TXCH)
            return -ENOSPC;
      if (!test_and_clear_bit(bit, rxch_free))
            goto retry;

      return bit;
}

static void pasemi_free_rx_chan(int chan)
{
      BUG_ON(test_bit(chan, rxch_free));
      set_bit(chan, rxch_free);
}

/* pasemi_dma_alloc_chan - Allocate a DMA channel
 * @type: Type of channel to allocate
 * @total_size: Total size of structure to allocate (to allow for more
 *          room behind the structure to be used by the client)
 * @offset: Offset in bytes from start of the total structure to the beginning
 *        of struct pasemi_dmachan. Needed when struct pasemi_dmachan is
 *        not the first member of the client structure.
 *
 * pasemi_dma_alloc_chan allocates a DMA channel for use by a client. The
 * type argument specifies whether it's a RX or TX channel, and in the case
 * of TX channels which group it needs to belong to (if any).
 *
 * Returns a pointer to the total structure allocated on success, NULL
 * on failure.
 */
void *pasemi_dma_alloc_chan(enum pasemi_dmachan_type type,
                      int total_size, int offset)
{
      void *buf;
      struct pasemi_dmachan *chan;
      int chno;

      BUG_ON(total_size < sizeof(struct pasemi_dmachan));

      buf = kzalloc(total_size, GFP_KERNEL);

      if (!buf)
            return NULL;
      chan = buf + offset;

      chan->priv = buf;

      switch (type & (TXCHAN|RXCHAN)) {
      case RXCHAN:
            chno = pasemi_alloc_rx_chan();
            chan->chno = chno;
            chan->irq = irq_create_mapping(NULL,
                                     base_hw_irq + num_txch + chno);
            chan->status = &dma_status->rx_sta[chno];
            break;
      case TXCHAN:
            chno = pasemi_alloc_tx_chan(type);
            chan->chno = chno;
            chan->irq = irq_create_mapping(NULL, base_hw_irq + chno);
            chan->status = &dma_status->tx_sta[chno];
            break;
      }

      chan->chan_type = type;

      return chan;
}
EXPORT_SYMBOL(pasemi_dma_alloc_chan);

/* pasemi_dma_free_chan - Free a previously allocated channel
 * @chan: Channel to free
 *
 * Frees a previously allocated channel. It will also deallocate any
 * descriptor ring associated with the channel, if allocated.
 */
void pasemi_dma_free_chan(struct pasemi_dmachan *chan)
{
      if (chan->ring_virt)
            pasemi_dma_free_ring(chan);

      switch (chan->chan_type & (RXCHAN|TXCHAN)) {
      case RXCHAN:
            pasemi_free_rx_chan(chan->chno);
            break;
      case TXCHAN:
            pasemi_free_tx_chan(chan->chno);
            break;
      }

      kfree(chan->priv);
}
EXPORT_SYMBOL(pasemi_dma_free_chan);

/* pasemi_dma_alloc_ring - Allocate descriptor ring for a channel
 * @chan: Channel for which to allocate
 * @ring_size: Ring size in 64-bit (8-byte) words
 *
 * Allocate a descriptor ring for a channel. Returns 0 on success, errno
 * on failure. The passed in struct pasemi_dmachan is updated with the
 * virtual and DMA addresses of the ring.
 */
int pasemi_dma_alloc_ring(struct pasemi_dmachan *chan, int ring_size)
{
      BUG_ON(chan->ring_virt);

      chan->ring_size = ring_size;

      chan->ring_virt = dma_alloc_coherent(&dma_pdev->dev,
                                   ring_size * sizeof(u64),
                                   &chan->ring_dma, GFP_KERNEL);

      if (!chan->ring_virt)
            return -ENOMEM;

      memset(chan->ring_virt, 0, ring_size * sizeof(u64));

      return 0;
}
EXPORT_SYMBOL(pasemi_dma_alloc_ring);

/* pasemi_dma_free_ring - Free an allocated descriptor ring for a channel
 * @chan: Channel for which to free the descriptor ring
 *
 * Frees a previously allocated descriptor ring for a channel.
 */
void pasemi_dma_free_ring(struct pasemi_dmachan *chan)
{
      BUG_ON(!chan->ring_virt);

      dma_free_coherent(&dma_pdev->dev, chan->ring_size * sizeof(u64),
                    chan->ring_virt, chan->ring_dma);
      chan->ring_virt = NULL;
      chan->ring_size = 0;
      chan->ring_dma = 0;
}
EXPORT_SYMBOL(pasemi_dma_free_ring);

/* pasemi_dma_start_chan - Start a DMA channel
 * @chan: Channel to start
 * @cmdsta: Additional CCMDSTA/TCMDSTA bits to write
 *
 * Enables (starts) a DMA channel with optional additional arguments.
 */
void pasemi_dma_start_chan(const struct pasemi_dmachan *chan, const u32 cmdsta)
{
      if (chan->chan_type == RXCHAN)
            pasemi_write_dma_reg(PAS_DMA_RXCHAN_CCMDSTA(chan->chno),
                             cmdsta | PAS_DMA_RXCHAN_CCMDSTA_EN);
      else
            pasemi_write_dma_reg(PAS_DMA_TXCHAN_TCMDSTA(chan->chno),
                             cmdsta | PAS_DMA_TXCHAN_TCMDSTA_EN);
}
EXPORT_SYMBOL(pasemi_dma_start_chan);

/* pasemi_dma_stop_chan - Stop a DMA channel
 * @chan: Channel to stop
 *
 * Stops (disables) a DMA channel. This is done by setting the ST bit in the
 * CMDSTA register and waiting on the ACT (active) bit to clear, then
 * finally disabling the whole channel.
 *
 * This function will only try for a short while for the channel to stop, if
 * it doesn't it will return failure.
 *
 * Returns 1 on success, 0 on failure.
 */
#define MAX_RETRIES 5000
int pasemi_dma_stop_chan(const struct pasemi_dmachan *chan)
{
      int reg, retries;
      u32 sta;

      if (chan->chan_type == RXCHAN) {
            reg = PAS_DMA_RXCHAN_CCMDSTA(chan->chno);
            pasemi_write_dma_reg(reg, PAS_DMA_RXCHAN_CCMDSTA_ST);
            for (retries = 0; retries < MAX_RETRIES; retries++) {
                  sta = pasemi_read_dma_reg(reg);
                  if (!(sta & PAS_DMA_RXCHAN_CCMDSTA_ACT)) {
                        pasemi_write_dma_reg(reg, 0);
                        return 1;
                  }
                  cond_resched();
            }
      } else {
            reg = PAS_DMA_TXCHAN_TCMDSTA(chan->chno);
            pasemi_write_dma_reg(reg, PAS_DMA_TXCHAN_TCMDSTA_ST);
            for (retries = 0; retries < MAX_RETRIES; retries++) {
                  sta = pasemi_read_dma_reg(reg);
                  if (!(sta & PAS_DMA_TXCHAN_TCMDSTA_ACT)) {
                        pasemi_write_dma_reg(reg, 0);
                        return 1;
                  }
                  cond_resched();
            }
      }

      return 0;
}
EXPORT_SYMBOL(pasemi_dma_stop_chan);

/* pasemi_dma_alloc_buf - Allocate a buffer to use for DMA
 * @chan: Channel to allocate for
 * @size: Size of buffer in bytes
 * @handle: DMA handle
 *
 * Allocate a buffer to be used by the DMA engine for read/write,
 * similar to dma_alloc_coherent().
 *
 * Returns the virtual address of the buffer, or NULL in case of failure.
 */
void *pasemi_dma_alloc_buf(struct pasemi_dmachan *chan, int size,
                     dma_addr_t *handle)
{
      return dma_alloc_coherent(&dma_pdev->dev, size, handle, GFP_KERNEL);
}
EXPORT_SYMBOL(pasemi_dma_alloc_buf);

/* pasemi_dma_free_buf - Free a buffer used for DMA
 * @chan: Channel the buffer was allocated for
 * @size: Size of buffer in bytes
 * @handle: DMA handle
 *
 * Frees a previously allocated buffer.
 */
void pasemi_dma_free_buf(struct pasemi_dmachan *chan, int size,
                   dma_addr_t *handle)
{
      dma_free_coherent(&dma_pdev->dev, size, handle, GFP_KERNEL);
}
EXPORT_SYMBOL(pasemi_dma_free_buf);

/* pasemi_dma_alloc_flag - Allocate a flag (event) for channel syncronization
 *
 * Allocates a flag for use with channel syncronization (event descriptors).
 * Returns allocated flag (0-63), < 0 on error.
 */
int pasemi_dma_alloc_flag(void)
{
      int bit;

retry:
      bit = find_next_bit(flags_free, MAX_FLAGS, 0);
      if (bit >= MAX_FLAGS)
            return -ENOSPC;
      if (!test_and_clear_bit(bit, flags_free))
            goto retry;

      return bit;
}
EXPORT_SYMBOL(pasemi_dma_alloc_flag);


/* pasemi_dma_free_flag - Deallocates a flag (event)
 * @flag: Flag number to deallocate
 *
 * Frees up a flag so it can be reused for other purposes.
 */
void pasemi_dma_free_flag(int flag)
{
      BUG_ON(test_bit(flag, flags_free));
      BUG_ON(flag >= MAX_FLAGS);
      set_bit(flag, flags_free);
}
EXPORT_SYMBOL(pasemi_dma_free_flag);


/* pasemi_dma_set_flag - Sets a flag (event) to 1
 * @flag: Flag number to set active
 *
 * Sets the flag provided to 1.
 */
void pasemi_dma_set_flag(int flag)
{
      BUG_ON(flag >= MAX_FLAGS);
      if (flag < 32)
            pasemi_write_dma_reg(PAS_DMA_TXF_SFLG0, 1 << flag);
      else
            pasemi_write_dma_reg(PAS_DMA_TXF_SFLG1, 1 << flag);
}
EXPORT_SYMBOL(pasemi_dma_set_flag);

/* pasemi_dma_clear_flag - Sets a flag (event) to 0
 * @flag: Flag number to set inactive
 *
 * Sets the flag provided to 0.
 */
void pasemi_dma_clear_flag(int flag)
{
      BUG_ON(flag >= MAX_FLAGS);
      if (flag < 32)
            pasemi_write_dma_reg(PAS_DMA_TXF_CFLG0, 1 << flag);
      else
            pasemi_write_dma_reg(PAS_DMA_TXF_CFLG1, 1 << flag);
}
EXPORT_SYMBOL(pasemi_dma_clear_flag);

/* pasemi_dma_alloc_fun - Allocate a function engine
 *
 * Allocates a function engine to use for crypto/checksum offload
 * Returns allocated engine (0-8), < 0 on error.
 */
int pasemi_dma_alloc_fun(void)
{
      int bit;

retry:
      bit = find_next_bit(fun_free, MAX_FLAGS, 0);
      if (bit >= MAX_FLAGS)
            return -ENOSPC;
      if (!test_and_clear_bit(bit, fun_free))
            goto retry;

      return bit;
}
EXPORT_SYMBOL(pasemi_dma_alloc_fun);


/* pasemi_dma_free_fun - Deallocates a function engine
 * @flag: Engine number to deallocate
 *
 * Frees up a function engine so it can be used for other purposes.
 */
void pasemi_dma_free_fun(int fun)
{
      BUG_ON(test_bit(fun, fun_free));
      BUG_ON(fun >= MAX_FLAGS);
      set_bit(fun, fun_free);
}
EXPORT_SYMBOL(pasemi_dma_free_fun);


static void *map_onedev(struct pci_dev *p, int index)
{
      struct device_node *dn;
      void __iomem *ret;

      dn = pci_device_to_OF_node(p);
      if (!dn)
            goto fallback;

      ret = of_iomap(dn, index);
      if (!ret)
            goto fallback;

      return ret;
fallback:
      /* This is hardcoded and ugly, but we have some firmware versions
       * that don't provide the register space in the device tree. Luckily
       * they are at well-known locations so we can just do the math here.
       */
      return ioremap(0xe0000000 + (p->devfn << 12), 0x2000);
}

/* pasemi_dma_init - Initialize the PA Semi DMA library
 *
 * This function initializes the DMA library. It must be called before
 * any other function in the library.
 *
 * Returns 0 on success, errno on failure.
 */
int pasemi_dma_init(void)
{
      static spinlock_t init_lock = SPIN_LOCK_UNLOCKED;
      struct pci_dev *iob_pdev;
      struct pci_dev *pdev;
      struct resource res;
      struct device_node *dn;
      int i, intf, err = 0;
      unsigned long timeout;
      u32 tmp;

      if (!machine_is(pasemi))
            return -ENODEV;

      spin_lock(&init_lock);

      /* Make sure we haven't already initialized */
      if (dma_pdev)
            goto out;

      iob_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa001, NULL);
      if (!iob_pdev) {
            BUG();
            printk(KERN_WARNING "Can't find I/O Bridge\n");
            err = -ENODEV;
            goto out;
      }
      iob_regs = map_onedev(iob_pdev, 0);

      dma_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa007, NULL);
      if (!dma_pdev) {
            BUG();
            printk(KERN_WARNING "Can't find DMA controller\n");
            err = -ENODEV;
            goto out;
      }
      dma_regs = map_onedev(dma_pdev, 0);
      base_hw_irq = virq_to_hw(dma_pdev->irq);

      pci_read_config_dword(dma_pdev, PAS_DMA_CAP_TXCH, &tmp);
      num_txch = (tmp & PAS_DMA_CAP_TXCH_TCHN_M) >> PAS_DMA_CAP_TXCH_TCHN_S;

      pci_read_config_dword(dma_pdev, PAS_DMA_CAP_RXCH, &tmp);
      num_rxch = (tmp & PAS_DMA_CAP_RXCH_RCHN_M) >> PAS_DMA_CAP_RXCH_RCHN_S;

      intf = 0;
      for (pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa006, NULL);
           pdev;
           pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa006, pdev))
            mac_regs[intf++] = map_onedev(pdev, 0);

      pci_dev_put(pdev);

      for (pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa005, NULL);
           pdev;
           pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa005, pdev))
            mac_regs[intf++] = map_onedev(pdev, 0);

      pci_dev_put(pdev);

      dn = pci_device_to_OF_node(iob_pdev);
      if (dn)
            err = of_address_to_resource(dn, 1, &res);
      if (!dn || err) {
            /* Fallback for old firmware */
            res.start = 0xfd800000;
            res.end = res.start + 0x1000;
      }
      dma_status = __ioremap(res.start, res.end-res.start, 0);
      pci_dev_put(iob_pdev);

      for (i = 0; i < MAX_TXCH; i++)
            __set_bit(i, txch_free);

      for (i = 0; i < MAX_RXCH; i++)
            __set_bit(i, rxch_free);

      timeout = jiffies + HZ;
      pasemi_write_dma_reg(PAS_DMA_COM_RXCMD, 0);
      while (pasemi_read_dma_reg(PAS_DMA_COM_RXSTA) & 1) {
            if (time_after(jiffies, timeout)) {
                  pr_warning("Warning: Could not disable RX section\n");
                  break;
            }
      }

      timeout = jiffies + HZ;
      pasemi_write_dma_reg(PAS_DMA_COM_TXCMD, 0);
      while (pasemi_read_dma_reg(PAS_DMA_COM_TXSTA) & 1) {
            if (time_after(jiffies, timeout)) {
                  pr_warning("Warning: Could not disable TX section\n");
                  break;
            }
      }

      /* setup resource allocations for the different DMA sections */
      tmp = pasemi_read_dma_reg(PAS_DMA_COM_CFG);
      pasemi_write_dma_reg(PAS_DMA_COM_CFG, tmp | 0x18000000);

      /* enable tx section */
      pasemi_write_dma_reg(PAS_DMA_COM_TXCMD, PAS_DMA_COM_TXCMD_EN);

      /* enable rx section */
      pasemi_write_dma_reg(PAS_DMA_COM_RXCMD, PAS_DMA_COM_RXCMD_EN);

      for (i = 0; i < MAX_FLAGS; i++)
            __set_bit(i, flags_free);

      for (i = 0; i < MAX_FUN; i++)
            __set_bit(i, fun_free);

      /* clear all status flags */
      pasemi_write_dma_reg(PAS_DMA_TXF_CFLG0, 0xffffffff);
      pasemi_write_dma_reg(PAS_DMA_TXF_CFLG1, 0xffffffff);

      printk(KERN_INFO "PA Semi PWRficient DMA library initialized "
            "(%d tx, %d rx channels)\n", num_txch, num_rxch);

out:
      spin_unlock(&init_lock);
      return err;
}
EXPORT_SYMBOL(pasemi_dma_init);

Generated by  Doxygen 1.6.0   Back to index