Logo Search packages:      
Sourcecode: linux version File versions

process_64.c

/*
 * arch/sh/kernel/process_64.c
 *
 * This file handles the architecture-dependent parts of process handling..
 *
 * Copyright (C) 2000, 2001  Paolo Alberelli
 * Copyright (C) 2003 - 2007  Paul Mundt
 * Copyright (C) 2003, 2004 Richard Curnow
 *
 * Started from SH3/4 version:
 *   Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
 *
 *   In turn started from i386 version:
 *     Copyright (C) 1995  Linus Torvalds
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 */
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/ptrace.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/io.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/fpu.h>

struct task_struct *last_task_used_math = NULL;

static int hlt_counter = 1;

#define HARD_IDLE_TIMEOUT (HZ / 3)

static int __init nohlt_setup(char *__unused)
{
      hlt_counter = 1;
      return 1;
}

static int __init hlt_setup(char *__unused)
{
      hlt_counter = 0;
      return 1;
}

__setup("nohlt", nohlt_setup);
__setup("hlt", hlt_setup);

static inline void hlt(void)
{
      __asm__ __volatile__ ("sleep" : : : "memory");
}

/*
 * The idle loop on a uniprocessor SH..
 */
void cpu_idle(void)
{
      /* endless idle loop with no priority at all */
      while (1) {
            if (hlt_counter) {
                  while (!need_resched())
                        cpu_relax();
            } else {
                  local_irq_disable();
                  while (!need_resched()) {
                        local_irq_enable();
                        hlt();
                        local_irq_disable();
                  }
                  local_irq_enable();
            }
            preempt_enable_no_resched();
            schedule();
            preempt_disable();
      }

}

void machine_restart(char * __unused)
{
      extern void phys_stext(void);

      phys_stext();
}

void machine_halt(void)
{
      for (;;);
}

void machine_power_off(void)
{
#if 0
      /* Disable watchdog timer */
      ctrl_outl(0xa5000000, WTCSR);
      /* Configure deep standby on sleep */
      ctrl_outl(0x03, STBCR);
#endif

      __asm__ __volatile__ (
            "sleep\n\t"
            "synci\n\t"
            "nop;nop;nop;nop\n\t"
      );

      panic("Unexpected wakeup!\n");
}

void (*pm_power_off)(void) = machine_power_off;
EXPORT_SYMBOL(pm_power_off);

void show_regs(struct pt_regs * regs)
{
      unsigned long long ah, al, bh, bl, ch, cl;

      printk("\n");

      ah = (regs->pc) >> 32;
      al = (regs->pc) & 0xffffffff;
      bh = (regs->regs[18]) >> 32;
      bl = (regs->regs[18]) & 0xffffffff;
      ch = (regs->regs[15]) >> 32;
      cl = (regs->regs[15]) & 0xffffffff;
      printk("PC  : %08Lx%08Lx LINK: %08Lx%08Lx SP  : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->sr) >> 32;
      al = (regs->sr) & 0xffffffff;
        asm volatile ("getcon   " __TEA ", %0" : "=r" (bh));
        asm volatile ("getcon   " __TEA ", %0" : "=r" (bl));
      bh = (bh) >> 32;
      bl = (bl) & 0xffffffff;
        asm volatile ("getcon   " __KCR0 ", %0" : "=r" (ch));
        asm volatile ("getcon   " __KCR0 ", %0" : "=r" (cl));
      ch = (ch) >> 32;
      cl = (cl) & 0xffffffff;
      printk("SR  : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[0]) >> 32;
      al = (regs->regs[0]) & 0xffffffff;
      bh = (regs->regs[1]) >> 32;
      bl = (regs->regs[1]) & 0xffffffff;
      ch = (regs->regs[2]) >> 32;
      cl = (regs->regs[2]) & 0xffffffff;
      printk("R0  : %08Lx%08Lx R1  : %08Lx%08Lx R2  : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[3]) >> 32;
      al = (regs->regs[3]) & 0xffffffff;
      bh = (regs->regs[4]) >> 32;
      bl = (regs->regs[4]) & 0xffffffff;
      ch = (regs->regs[5]) >> 32;
      cl = (regs->regs[5]) & 0xffffffff;
      printk("R3  : %08Lx%08Lx R4  : %08Lx%08Lx R5  : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[6]) >> 32;
      al = (regs->regs[6]) & 0xffffffff;
      bh = (regs->regs[7]) >> 32;
      bl = (regs->regs[7]) & 0xffffffff;
      ch = (regs->regs[8]) >> 32;
      cl = (regs->regs[8]) & 0xffffffff;
      printk("R6  : %08Lx%08Lx R7  : %08Lx%08Lx R8  : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[9]) >> 32;
      al = (regs->regs[9]) & 0xffffffff;
      bh = (regs->regs[10]) >> 32;
      bl = (regs->regs[10]) & 0xffffffff;
      ch = (regs->regs[11]) >> 32;
      cl = (regs->regs[11]) & 0xffffffff;
      printk("R9  : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[12]) >> 32;
      al = (regs->regs[12]) & 0xffffffff;
      bh = (regs->regs[13]) >> 32;
      bl = (regs->regs[13]) & 0xffffffff;
      ch = (regs->regs[14]) >> 32;
      cl = (regs->regs[14]) & 0xffffffff;
      printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[16]) >> 32;
      al = (regs->regs[16]) & 0xffffffff;
      bh = (regs->regs[17]) >> 32;
      bl = (regs->regs[17]) & 0xffffffff;
      ch = (regs->regs[19]) >> 32;
      cl = (regs->regs[19]) & 0xffffffff;
      printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[20]) >> 32;
      al = (regs->regs[20]) & 0xffffffff;
      bh = (regs->regs[21]) >> 32;
      bl = (regs->regs[21]) & 0xffffffff;
      ch = (regs->regs[22]) >> 32;
      cl = (regs->regs[22]) & 0xffffffff;
      printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[23]) >> 32;
      al = (regs->regs[23]) & 0xffffffff;
      bh = (regs->regs[24]) >> 32;
      bl = (regs->regs[24]) & 0xffffffff;
      ch = (regs->regs[25]) >> 32;
      cl = (regs->regs[25]) & 0xffffffff;
      printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[26]) >> 32;
      al = (regs->regs[26]) & 0xffffffff;
      bh = (regs->regs[27]) >> 32;
      bl = (regs->regs[27]) & 0xffffffff;
      ch = (regs->regs[28]) >> 32;
      cl = (regs->regs[28]) & 0xffffffff;
      printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[29]) >> 32;
      al = (regs->regs[29]) & 0xffffffff;
      bh = (regs->regs[30]) >> 32;
      bl = (regs->regs[30]) & 0xffffffff;
      ch = (regs->regs[31]) >> 32;
      cl = (regs->regs[31]) & 0xffffffff;
      printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[32]) >> 32;
      al = (regs->regs[32]) & 0xffffffff;
      bh = (regs->regs[33]) >> 32;
      bl = (regs->regs[33]) & 0xffffffff;
      ch = (regs->regs[34]) >> 32;
      cl = (regs->regs[34]) & 0xffffffff;
      printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[35]) >> 32;
      al = (regs->regs[35]) & 0xffffffff;
      bh = (regs->regs[36]) >> 32;
      bl = (regs->regs[36]) & 0xffffffff;
      ch = (regs->regs[37]) >> 32;
      cl = (regs->regs[37]) & 0xffffffff;
      printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[38]) >> 32;
      al = (regs->regs[38]) & 0xffffffff;
      bh = (regs->regs[39]) >> 32;
      bl = (regs->regs[39]) & 0xffffffff;
      ch = (regs->regs[40]) >> 32;
      cl = (regs->regs[40]) & 0xffffffff;
      printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[41]) >> 32;
      al = (regs->regs[41]) & 0xffffffff;
      bh = (regs->regs[42]) >> 32;
      bl = (regs->regs[42]) & 0xffffffff;
      ch = (regs->regs[43]) >> 32;
      cl = (regs->regs[43]) & 0xffffffff;
      printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[44]) >> 32;
      al = (regs->regs[44]) & 0xffffffff;
      bh = (regs->regs[45]) >> 32;
      bl = (regs->regs[45]) & 0xffffffff;
      ch = (regs->regs[46]) >> 32;
      cl = (regs->regs[46]) & 0xffffffff;
      printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[47]) >> 32;
      al = (regs->regs[47]) & 0xffffffff;
      bh = (regs->regs[48]) >> 32;
      bl = (regs->regs[48]) & 0xffffffff;
      ch = (regs->regs[49]) >> 32;
      cl = (regs->regs[49]) & 0xffffffff;
      printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[50]) >> 32;
      al = (regs->regs[50]) & 0xffffffff;
      bh = (regs->regs[51]) >> 32;
      bl = (regs->regs[51]) & 0xffffffff;
      ch = (regs->regs[52]) >> 32;
      cl = (regs->regs[52]) & 0xffffffff;
      printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[53]) >> 32;
      al = (regs->regs[53]) & 0xffffffff;
      bh = (regs->regs[54]) >> 32;
      bl = (regs->regs[54]) & 0xffffffff;
      ch = (regs->regs[55]) >> 32;
      cl = (regs->regs[55]) & 0xffffffff;
      printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[56]) >> 32;
      al = (regs->regs[56]) & 0xffffffff;
      bh = (regs->regs[57]) >> 32;
      bl = (regs->regs[57]) & 0xffffffff;
      ch = (regs->regs[58]) >> 32;
      cl = (regs->regs[58]) & 0xffffffff;
      printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[59]) >> 32;
      al = (regs->regs[59]) & 0xffffffff;
      bh = (regs->regs[60]) >> 32;
      bl = (regs->regs[60]) & 0xffffffff;
      ch = (regs->regs[61]) >> 32;
      cl = (regs->regs[61]) & 0xffffffff;
      printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->regs[62]) >> 32;
      al = (regs->regs[62]) & 0xffffffff;
      bh = (regs->tregs[0]) >> 32;
      bl = (regs->tregs[0]) & 0xffffffff;
      ch = (regs->tregs[1]) >> 32;
      cl = (regs->tregs[1]) & 0xffffffff;
      printk("R62 : %08Lx%08Lx T0  : %08Lx%08Lx T1  : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->tregs[2]) >> 32;
      al = (regs->tregs[2]) & 0xffffffff;
      bh = (regs->tregs[3]) >> 32;
      bl = (regs->tregs[3]) & 0xffffffff;
      ch = (regs->tregs[4]) >> 32;
      cl = (regs->tregs[4]) & 0xffffffff;
      printk("T2  : %08Lx%08Lx T3  : %08Lx%08Lx T4  : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      ah = (regs->tregs[5]) >> 32;
      al = (regs->tregs[5]) & 0xffffffff;
      bh = (regs->tregs[6]) >> 32;
      bl = (regs->tregs[6]) & 0xffffffff;
      ch = (regs->tregs[7]) >> 32;
      cl = (regs->tregs[7]) & 0xffffffff;
      printk("T5  : %08Lx%08Lx T6  : %08Lx%08Lx T7  : %08Lx%08Lx\n",
             ah, al, bh, bl, ch, cl);

      /*
       * If we're in kernel mode, dump the stack too..
       */
      if (!user_mode(regs)) {
            void show_stack(struct task_struct *tsk, unsigned long *sp);
            unsigned long sp = regs->regs[15] & 0xffffffff;
            struct task_struct *tsk = get_current();

            tsk->thread.kregs = regs;

            show_stack(tsk, (unsigned long *)sp);
      }
}

struct task_struct * alloc_task_struct(void)
{
      /* Get task descriptor pages */
      return (struct task_struct *)
            __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
}

void free_task_struct(struct task_struct *p)
{
      free_pages((unsigned long) p, get_order(THREAD_SIZE));
}

/*
 * Create a kernel thread
 */
ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
{
      do_exit(fn(arg));
}

/*
 * This is the mechanism for creating a new kernel thread.
 *
 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
 * who haven't done an "execve()") should use this: it will work within
 * a system call from a "real" process, but the process memory space will
 * not be freed until both the parent and the child have exited.
 */
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
      struct pt_regs regs;

      memset(&regs, 0, sizeof(regs));
      regs.regs[2] = (unsigned long)arg;
      regs.regs[3] = (unsigned long)fn;

      regs.pc = (unsigned long)kernel_thread_helper;
      regs.sr = (1 << 30);

      return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
                   &regs, 0, NULL, NULL);
}

/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
      /*
       * See arch/sparc/kernel/process.c for the precedent for doing
       * this -- RPC.
       *
       * The SH-5 FPU save/restore approach relies on
       * last_task_used_math pointing to a live task_struct.  When
       * another task tries to use the FPU for the 1st time, the FPUDIS
       * trap handling (see arch/sh/kernel/cpu/sh5/fpu.c) will save the
       * existing FPU state to the FP regs field within
       * last_task_used_math before re-loading the new task's FPU state
       * (or initialising it if the FPU has been used before).  So if
       * last_task_used_math is stale, and its page has already been
       * re-allocated for another use, the consequences are rather
       * grim. Unless we null it here, there is no other path through
       * which it would get safely nulled.
       */
#ifdef CONFIG_SH_FPU
      if (last_task_used_math == current) {
            last_task_used_math = NULL;
      }
#endif
}

void flush_thread(void)
{

      /* Called by fs/exec.c (flush_old_exec) to remove traces of a
       * previously running executable. */
#ifdef CONFIG_SH_FPU
      if (last_task_used_math == current) {
            last_task_used_math = NULL;
      }
      /* Force FPU state to be reinitialised after exec */
      clear_used_math();
#endif

      /* if we are a kernel thread, about to change to user thread,
         * update kreg
         */
      if(current->thread.kregs==&fake_swapper_regs) {
          current->thread.kregs =
             ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
        current->thread.uregs = current->thread.kregs;
      }
}

void release_thread(struct task_struct *dead_task)
{
      /* do nothing */
}

/* Fill in the fpu structure for a core dump.. */
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
{
#ifdef CONFIG_SH_FPU
      int fpvalid;
      struct task_struct *tsk = current;

      fpvalid = !!tsk_used_math(tsk);
      if (fpvalid) {
            if (current == last_task_used_math) {
                  enable_fpu();
                  save_fpu(tsk, regs);
                  disable_fpu();
                  last_task_used_math = 0;
                  regs->sr |= SR_FD;
            }

            memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
      }

      return fpvalid;
#else
      return 0; /* Task didn't use the fpu at all. */
#endif
}

asmlinkage void ret_from_fork(void);

int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
            unsigned long unused,
            struct task_struct *p, struct pt_regs *regs)
{
      struct pt_regs *childregs;
      unsigned long long se;              /* Sign extension */

#ifdef CONFIG_SH_FPU
      if(last_task_used_math == current) {
            enable_fpu();
            save_fpu(current, regs);
            disable_fpu();
            last_task_used_math = NULL;
            regs->sr |= SR_FD;
      }
#endif
      /* Copy from sh version */
      childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;

      *childregs = *regs;

      if (user_mode(regs)) {
            childregs->regs[15] = usp;
            p->thread.uregs = childregs;
      } else {
            childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
      }

      childregs->regs[9] = 0; /* Set return value for child */
      childregs->sr |= SR_FD; /* Invalidate FPU flag */

      p->thread.sp = (unsigned long) childregs;
      p->thread.pc = (unsigned long) ret_from_fork;

      /*
       * Sign extend the edited stack.
         * Note that thread.pc and thread.pc will stay
       * 32-bit wide and context switch must take care
       * of NEFF sign extension.
       */

      se = childregs->regs[15];
      se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
      childregs->regs[15] = se;

      return 0;
}

asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
                  unsigned long r4, unsigned long r5,
                  unsigned long r6, unsigned long r7,
                  struct pt_regs *pregs)
{
      return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
}

asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
                   unsigned long r4, unsigned long r5,
                   unsigned long r6, unsigned long r7,
                   struct pt_regs *pregs)
{
      if (!newsp)
            newsp = pregs->regs[15];
      return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
}

/*
 * This is trivial, and on the face of it looks like it
 * could equally well be done in user mode.
 *
 * Not so, for quite unobvious reasons - register pressure.
 * In user mode vfork() cannot have a stack frame, and if
 * done by calling the "clone()" system call directly, you
 * do not have enough call-clobbered registers to hold all
 * the information you need.
 */
asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
                   unsigned long r4, unsigned long r5,
                   unsigned long r6, unsigned long r7,
                   struct pt_regs *pregs)
{
      return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
}

/*
 * sys_execve() executes a new program.
 */
asmlinkage int sys_execve(char *ufilename, char **uargv,
                    char **uenvp, unsigned long r5,
                    unsigned long r6, unsigned long r7,
                    struct pt_regs *pregs)
{
      int error;
      char *filename;

      lock_kernel();
      filename = getname((char __user *)ufilename);
      error = PTR_ERR(filename);
      if (IS_ERR(filename))
            goto out;

      error = do_execve(filename,
                    (char __user * __user *)uargv,
                    (char __user * __user *)uenvp,
                    pregs);
      if (error == 0) {
            task_lock(current);
            current->ptrace &= ~PT_DTRACE;
            task_unlock(current);
      }
      putname(filename);
out:
      unlock_kernel();
      return error;
}

/*
 * These bracket the sleeping functions..
 */
extern void interruptible_sleep_on(wait_queue_head_t *q);

#define mid_sched ((unsigned long) interruptible_sleep_on)

#ifdef CONFIG_FRAME_POINTER
static int in_sh64_switch_to(unsigned long pc)
{
      extern char __sh64_switch_to_end;
      /* For a sleeping task, the PC is somewhere in the middle of the function,
         so we don't have to worry about masking the LSB off */
      return (pc >= (unsigned long) sh64_switch_to) &&
             (pc < (unsigned long) &__sh64_switch_to_end);
}
#endif

unsigned long get_wchan(struct task_struct *p)
{
      unsigned long pc;

      if (!p || p == current || p->state == TASK_RUNNING)
            return 0;

      /*
       * The same comment as on the Alpha applies here, too ...
       */
      pc = thread_saved_pc(p);

#ifdef CONFIG_FRAME_POINTER
      if (in_sh64_switch_to(pc)) {
            unsigned long schedule_fp;
            unsigned long sh64_switch_to_fp;
            unsigned long schedule_caller_pc;

            sh64_switch_to_fp = (long) p->thread.sp;
            /* r14 is saved at offset 4 in the sh64_switch_to frame */
            schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);

            /* and the caller of 'schedule' is (currently!) saved at offset 24
               in the frame of schedule (from disasm) */
            schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
            return schedule_caller_pc;
      }
#endif
      return pc;
}

/* Provide a /proc/asids file that lists out the
   ASIDs currently associated with the processes.  (If the DM.PC register is
   examined through the debug link, this shows ASID + PC.  To make use of this,
   the PID->ASID relationship needs to be known.  This is primarily for
   debugging.)
   */

#if defined(CONFIG_SH64_PROC_ASIDS)
static int
asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
{
      int len=0;
      struct task_struct *p;
      read_lock(&tasklist_lock);
      for_each_process(p) {
            int pid = p->pid;

            if (!pid)
                  continue;
            if (p->mm)
                  len += sprintf(buf+len, "%5d : %02lx\n", pid,
                               asid_cache(smp_processor_id()));
            else
                  len += sprintf(buf+len, "%5d : (none)\n", pid);
      }
      read_unlock(&tasklist_lock);
      *eof = 1;
      return len;
}

static int __init register_proc_asids(void)
{
      create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
      return 0;
}
__initcall(register_proc_asids);
#endif

Generated by  Doxygen 1.6.0   Back to index