Logo Search packages:      
Sourcecode: linux version File versions

numa.c

/*
 *  linux/arch/alpha/mm/numa.c
 *
 *  DISCONTIGMEM NUMA alpha support.
 *
 *  Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
 */

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/swap.h>
#include <linux/initrd.h>
#include <linux/pfn.h>
#include <linux/module.h>

#include <asm/hwrpb.h>
#include <asm/pgalloc.h>

pg_data_t node_data[MAX_NUMNODES];
EXPORT_SYMBOL(node_data);

#undef DEBUG_DISCONTIG
#ifdef DEBUG_DISCONTIG
#define DBGDCONT(args...) printk(args)
#else
#define DBGDCONT(args...)
#endif

#define for_each_mem_cluster(memdesc, cluster, i)           \
      for ((cluster) = (memdesc)->cluster, (i) = 0;         \
           (i) < (memdesc)->numclusters; (i)++, (cluster)++)

static void __init show_mem_layout(void)
{
      struct memclust_struct * cluster;
      struct memdesc_struct * memdesc;
      int i;

      /* Find free clusters, and init and free the bootmem accordingly.  */
      memdesc = (struct memdesc_struct *)
        (hwrpb->mddt_offset + (unsigned long) hwrpb);

      printk("Raw memory layout:\n");
      for_each_mem_cluster(memdesc, cluster, i) {
            printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
                   i, cluster->usage, cluster->start_pfn,
                   cluster->start_pfn + cluster->numpages);
      }
}

static void __init
setup_memory_node(int nid, void *kernel_end)
{
      extern unsigned long mem_size_limit;
      struct memclust_struct * cluster;
      struct memdesc_struct * memdesc;
      unsigned long start_kernel_pfn, end_kernel_pfn;
      unsigned long bootmap_size, bootmap_pages, bootmap_start;
      unsigned long start, end;
      unsigned long node_pfn_start, node_pfn_end;
      unsigned long node_min_pfn, node_max_pfn;
      int i;
      unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
      int show_init = 0;

      /* Find the bounds of current node */
      node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
      node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
      
      /* Find free clusters, and init and free the bootmem accordingly.  */
      memdesc = (struct memdesc_struct *)
        (hwrpb->mddt_offset + (unsigned long) hwrpb);

      /* find the bounds of this node (node_min_pfn/node_max_pfn) */
      node_min_pfn = ~0UL;
      node_max_pfn = 0UL;
      for_each_mem_cluster(memdesc, cluster, i) {
            /* Bit 0 is console/PALcode reserved.  Bit 1 is
               non-volatile memory -- we might want to mark
               this for later.  */
            if (cluster->usage & 3)
                  continue;

            start = cluster->start_pfn;
            end = start + cluster->numpages;

            if (start >= node_pfn_end || end <= node_pfn_start)
                  continue;

            if (!show_init) {
                  show_init = 1;
                  printk("Initializing bootmem allocator on Node ID %d\n", nid);
            }
            printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
                   i, cluster->usage, cluster->start_pfn,
                   cluster->start_pfn + cluster->numpages);

            if (start < node_pfn_start)
                  start = node_pfn_start;
            if (end > node_pfn_end)
                  end = node_pfn_end;

            if (start < node_min_pfn)
                  node_min_pfn = start;
            if (end > node_max_pfn)
                  node_max_pfn = end;
      }

      if (mem_size_limit && node_max_pfn > mem_size_limit) {
            static int msg_shown = 0;
            if (!msg_shown) {
                  msg_shown = 1;
                  printk("setup: forcing memory size to %ldK (from %ldK).\n",
                         mem_size_limit << (PAGE_SHIFT - 10),
                         node_max_pfn    << (PAGE_SHIFT - 10));
            }
            node_max_pfn = mem_size_limit;
      }

      if (node_min_pfn >= node_max_pfn)
            return;

      /* Update global {min,max}_low_pfn from node information. */
      if (node_min_pfn < min_low_pfn)
            min_low_pfn = node_min_pfn;
      if (node_max_pfn > max_low_pfn)
            max_pfn = max_low_pfn = node_max_pfn;

      num_physpages += node_max_pfn - node_min_pfn;

#if 0 /* we'll try this one again in a little while */
      /* Cute trick to make sure our local node data is on local memory */
      node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
#endif
      /* Quasi-mark the pg_data_t as in-use */
      node_min_pfn += node_datasz;
      if (node_min_pfn >= node_max_pfn) {
            printk(" not enough mem to reserve NODE_DATA");
            return;
      }
      NODE_DATA(nid)->bdata = &bootmem_node_data[nid];

      printk(" Detected node memory:   start %8lu, end %8lu\n",
             node_min_pfn, node_max_pfn);

      DBGDCONT(" DISCONTIG: node_data[%d]   is at 0x%p\n", nid, NODE_DATA(nid));
      DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);

      /* Find the bounds of kernel memory.  */
      start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
      end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
      bootmap_start = -1;

      if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
            panic("kernel loaded out of ram");

      /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
         Note that we round this down, not up - node memory
         has much larger alignment than 8Mb, so it's safe. */
      node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);

      /* We need to know how many physically contiguous pages
         we'll need for the bootmap.  */
      bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);

      /* Now find a good region where to allocate the bootmap.  */
      for_each_mem_cluster(memdesc, cluster, i) {
            if (cluster->usage & 3)
                  continue;

            start = cluster->start_pfn;
            end = start + cluster->numpages;

            if (start >= node_max_pfn || end <= node_min_pfn)
                  continue;

            if (end > node_max_pfn)
                  end = node_max_pfn;
            if (start < node_min_pfn)
                  start = node_min_pfn;

            if (start < start_kernel_pfn) {
                  if (end > end_kernel_pfn
                      && end - end_kernel_pfn >= bootmap_pages) {
                        bootmap_start = end_kernel_pfn;
                        break;
                  } else if (end > start_kernel_pfn)
                        end = start_kernel_pfn;
            } else if (start < end_kernel_pfn)
                  start = end_kernel_pfn;
            if (end - start >= bootmap_pages) {
                  bootmap_start = start;
                  break;
            }
      }

      if (bootmap_start == -1)
            panic("couldn't find a contigous place for the bootmap");

      /* Allocate the bootmap and mark the whole MM as reserved.  */
      bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
                               node_min_pfn, node_max_pfn);
      DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
             bootmap_start, bootmap_size, bootmap_pages);

      /* Mark the free regions.  */
      for_each_mem_cluster(memdesc, cluster, i) {
            if (cluster->usage & 3)
                  continue;

            start = cluster->start_pfn;
            end = cluster->start_pfn + cluster->numpages;

            if (start >= node_max_pfn || end <= node_min_pfn)
                  continue;

            if (end > node_max_pfn)
                  end = node_max_pfn;
            if (start < node_min_pfn)
                  start = node_min_pfn;

            if (start < start_kernel_pfn) {
                  if (end > end_kernel_pfn) {
                        free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
                                   (PFN_PHYS(start_kernel_pfn)
                                    - PFN_PHYS(start)));
                        printk(" freeing pages %ld:%ld\n",
                               start, start_kernel_pfn);
                        start = end_kernel_pfn;
                  } else if (end > start_kernel_pfn)
                        end = start_kernel_pfn;
            } else if (start < end_kernel_pfn)
                  start = end_kernel_pfn;
            if (start >= end)
                  continue;

            free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
            printk(" freeing pages %ld:%ld\n", start, end);
      }

      /* Reserve the bootmap memory.  */
      reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start),
                  bootmap_size, BOOTMEM_DEFAULT);
      printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));

      node_set_online(nid);
}

void __init
setup_memory(void *kernel_end)
{
      int nid;

      show_mem_layout();

      nodes_clear(node_online_map);

      min_low_pfn = ~0UL;
      max_low_pfn = 0UL;
      for (nid = 0; nid < MAX_NUMNODES; nid++)
            setup_memory_node(nid, kernel_end);

#ifdef CONFIG_BLK_DEV_INITRD
      initrd_start = INITRD_START;
      if (initrd_start) {
            extern void *move_initrd(unsigned long);

            initrd_end = initrd_start+INITRD_SIZE;
            printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
                   (void *) initrd_start, INITRD_SIZE);

            if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
                  if (!move_initrd(PFN_PHYS(max_low_pfn)))
                        printk("initrd extends beyond end of memory "
                               "(0x%08lx > 0x%p)\ndisabling initrd\n",
                               initrd_end,
                               phys_to_virt(PFN_PHYS(max_low_pfn)));
            } else {
                  nid = kvaddr_to_nid(initrd_start);
                  reserve_bootmem_node(NODE_DATA(nid),
                                   virt_to_phys((void *)initrd_start),
                                   INITRD_SIZE, BOOTMEM_DEFAULT);
            }
      }
#endif /* CONFIG_BLK_DEV_INITRD */
}

void __init paging_init(void)
{
      unsigned int    nid;
      unsigned long   zones_size[MAX_NR_ZONES] = {0, };
      unsigned long     dma_local_pfn;

      /*
       * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
       * in the NUMA model, for now we convert it to a pfn and
       * we interpret this pfn as a local per-node information.
       * This issue isn't very important since none of these machines
       * have legacy ISA slots anyways.
       */
      dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;

      for_each_online_node(nid) {
            bootmem_data_t *bdata = &bootmem_node_data[nid];
            unsigned long start_pfn = bdata->node_min_pfn;
            unsigned long end_pfn = bdata->node_low_pfn;

            if (dma_local_pfn >= end_pfn - start_pfn)
                  zones_size[ZONE_DMA] = end_pfn - start_pfn;
            else {
                  zones_size[ZONE_DMA] = dma_local_pfn;
                  zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
            }
            free_area_init_node(nid, zones_size, start_pfn, NULL);
      }

      /* Initialize the kernel's ZERO_PGE. */
      memset((void *)ZERO_PGE, 0, PAGE_SIZE);
}

void __init mem_init(void)
{
      unsigned long codesize, reservedpages, datasize, initsize, pfn;
      extern int page_is_ram(unsigned long) __init;
      extern char _text, _etext, _data, _edata;
      extern char __init_begin, __init_end;
      unsigned long nid, i;
      high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);

      reservedpages = 0;
      for_each_online_node(nid) {
            /*
             * This will free up the bootmem, ie, slot 0 memory
             */
            totalram_pages += free_all_bootmem_node(NODE_DATA(nid));

            pfn = NODE_DATA(nid)->node_start_pfn;
            for (i = 0; i < node_spanned_pages(nid); i++, pfn++)
                  if (page_is_ram(pfn) &&
                      PageReserved(nid_page_nr(nid, i)))
                        reservedpages++;
      }

      codesize =  (unsigned long) &_etext - (unsigned long) &_text;
      datasize =  (unsigned long) &_edata - (unsigned long) &_data;
      initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;

      printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "
             "%luk data, %luk init)\n",
             (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
             num_physpages << (PAGE_SHIFT-10),
             codesize >> 10,
             reservedpages << (PAGE_SHIFT-10),
             datasize >> 10,
             initsize >> 10);
#if 0
      mem_stress();
#endif
}

Generated by  Doxygen 1.6.0   Back to index