Logo Search packages:      
Sourcecode: linux version File versions  Download package

ptrace.c

/*
 * Kernel support for the ptrace() and syscall tracing interfaces.
 *
 * Copyright (C) 1999-2005 Hewlett-Packard Co
 *    David Mosberger-Tang <davidm@hpl.hp.com>
 * Copyright (C) 2006 Intel Co
 *  2006-08-12    - IA64 Native Utrace implementation support added by
 *    Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
 *
 * Derived from the x86 and Alpha versions.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/smp_lock.h>
#include <linux/user.h>
#include <linux/security.h>
#include <linux/audit.h>
#include <linux/signal.h>
#include <linux/regset.h>
#include <linux/elf.h>

#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace_offsets.h>
#include <asm/rse.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/unwind.h>
#ifdef CONFIG_PERFMON
#include <asm/perfmon.h>
#endif

#include "entry.h"

/*
 * Bits in the PSR that we allow ptrace() to change:
 *    be, up, ac, mfl, mfh (the user mask; five bits total)
 *    db (debug breakpoint fault; one bit)
 *    id (instruction debug fault disable; one bit)
 *    dd (data debug fault disable; one bit)
 *    ri (restart instruction; two bits)
 *    is (instruction set; one bit)
 */
#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS  \
               | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)

#define MASK(nbits)     ((1UL << (nbits)) - 1)  /* mask with NBITS bits set */
#define PFM_MASK  MASK(38)

#define PTRACE_DEBUG    0

#if PTRACE_DEBUG
# define dprintk(format...)   printk(format)
# define inline
#else
# define dprintk(format...)
#endif

/* Return TRUE if PT was created due to kernel-entry via a system-call.  */

static inline int
in_syscall (struct pt_regs *pt)
{
      return (long) pt->cr_ifs >= 0;
}

/*
 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
 * bitset where bit i is set iff the NaT bit of register i is set.
 */
unsigned long
ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
{
#     define GET_BITS(first, last, unat)                    \
      ({                                              \
            unsigned long bit = ia64_unat_pos(&pt->r##first);     \
            unsigned long nbits = (last - first + 1);       \
            unsigned long mask = MASK(nbits) << first;            \
            unsigned long dist;                             \
            if (bit < first)                          \
                  dist = 64 + bit - first;                  \
            else                                      \
                  dist = bit - first;                       \
            ia64_rotr(unat, dist) & mask;                   \
      })
      unsigned long val;

      /*
       * Registers that are stored consecutively in struct pt_regs
       * can be handled in parallel.  If the register order in
       * struct_pt_regs changes, this code MUST be updated.
       */
      val  = GET_BITS( 1,  1, scratch_unat);
      val |= GET_BITS( 2,  3, scratch_unat);
      val |= GET_BITS(12, 13, scratch_unat);
      val |= GET_BITS(14, 14, scratch_unat);
      val |= GET_BITS(15, 15, scratch_unat);
      val |= GET_BITS( 8, 11, scratch_unat);
      val |= GET_BITS(16, 31, scratch_unat);
      return val;

#     undef GET_BITS
}

/*
 * Set the NaT bits for the scratch registers according to NAT and
 * return the resulting unat (assuming the scratch registers are
 * stored in PT).
 */
unsigned long
ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
{
#     define PUT_BITS(first, last, nat)                     \
      ({                                              \
            unsigned long bit = ia64_unat_pos(&pt->r##first);     \
            unsigned long nbits = (last - first + 1);       \
            unsigned long mask = MASK(nbits) << first;            \
            long dist;                                \
            if (bit < first)                          \
                  dist = 64 + bit - first;                  \
            else                                      \
                  dist = bit - first;                       \
            ia64_rotl(nat & mask, dist);                    \
      })
      unsigned long scratch_unat;

      /*
       * Registers that are stored consecutively in struct pt_regs
       * can be handled in parallel.  If the register order in
       * struct_pt_regs changes, this code MUST be updated.
       */
      scratch_unat  = PUT_BITS( 1,  1, nat);
      scratch_unat |= PUT_BITS( 2,  3, nat);
      scratch_unat |= PUT_BITS(12, 13, nat);
      scratch_unat |= PUT_BITS(14, 14, nat);
      scratch_unat |= PUT_BITS(15, 15, nat);
      scratch_unat |= PUT_BITS( 8, 11, nat);
      scratch_unat |= PUT_BITS(16, 31, nat);

      return scratch_unat;

#     undef PUT_BITS
}

#define IA64_MLX_TEMPLATE     0x2
#define IA64_MOVL_OPCODE      6

void
ia64_increment_ip (struct pt_regs *regs)
{
      unsigned long w0, ri = ia64_psr(regs)->ri + 1;

      if (ri > 2) {
            ri = 0;
            regs->cr_iip += 16;
      } else if (ri == 2) {
            get_user(w0, (char __user *) regs->cr_iip + 0);
            if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
                  /*
                   * rfi'ing to slot 2 of an MLX bundle causes
                   * an illegal operation fault.  We don't want
                   * that to happen...
                   */
                  ri = 0;
                  regs->cr_iip += 16;
            }
      }
      ia64_psr(regs)->ri = ri;
}

void
ia64_decrement_ip (struct pt_regs *regs)
{
      unsigned long w0, ri = ia64_psr(regs)->ri - 1;

      if (ia64_psr(regs)->ri == 0) {
            regs->cr_iip -= 16;
            ri = 2;
            get_user(w0, (char __user *) regs->cr_iip + 0);
            if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
                  /*
                   * rfi'ing to slot 2 of an MLX bundle causes
                   * an illegal operation fault.  We don't want
                   * that to happen...
                   */
                  ri = 1;
            }
      }
      ia64_psr(regs)->ri = ri;
}

/*
 * This routine is used to read an rnat bits that are stored on the
 * kernel backing store.  Since, in general, the alignment of the user
 * and kernel are different, this is not completely trivial.  In
 * essence, we need to construct the user RNAT based on up to two
 * kernel RNAT values and/or the RNAT value saved in the child's
 * pt_regs.
 *
 * user rbs
 *
 * +--------+ <-- lowest address
 * | slot62 |
 * +--------+
 * |  rnat  | 0x....1f8
 * +--------+
 * | slot00 | \
 * +--------+ |
 * | slot01 | > child_regs->ar_rnat
 * +--------+ |
 * | slot02 | /                     kernel rbs
 * +--------+                       +--------+
 *        <- child_regs->ar_bspstore      | slot61 | <-- krbs
 * +- - - - +                       +--------+
 *                            | slot62 |
 * +- - - - +                       +--------+
 *                            |  rnat      |
 * +- - - - +                       +--------+
 *   vrnat                    | slot00 |
 * +- - - - +                       +--------+
 *                            =      =
 *                            +--------+
 *                            | slot00 | \
 *                            +--------+ |
 *                            | slot01 | > child_stack->ar_rnat
 *                            +--------+ |
 *                            | slot02 | /
 *                            +--------+
 *                                    <--- child_stack->ar_bspstore
 *
 * The way to think of this code is as follows: bit 0 in the user rnat
 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
 * value.  The kernel rnat value holding this bit is stored in
 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
 * form the upper bits of the user rnat value.
 *
 * Boundary cases:
 *
 * o when reading the rnat "below" the first rnat slot on the kernel
 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
 *   merged in from pt->ar_rnat.
 *
 * o when reading the rnat "above" the last rnat slot on the kernel
 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
 */
static unsigned long
get_rnat (struct task_struct *task, struct switch_stack *sw,
        unsigned long *krbs, unsigned long *urnat_addr,
        unsigned long *urbs_end)
{
      unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
      unsigned long umask = 0, mask, m;
      unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
      long num_regs, nbits;
      struct pt_regs *pt;

      pt = task_pt_regs(task);
      kbsp = (unsigned long *) sw->ar_bspstore;
      ubspstore = (unsigned long *) pt->ar_bspstore;

      if (urbs_end < urnat_addr)
            nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
      else
            nbits = 63;
      mask = MASK(nbits);
      /*
       * First, figure out which bit number slot 0 in user-land maps
       * to in the kernel rnat.  Do this by figuring out how many
       * register slots we're beyond the user's backingstore and
       * then computing the equivalent address in kernel space.
       */
      num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
      slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
      shift = ia64_rse_slot_num(slot0_kaddr);
      rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
      rnat0_kaddr = rnat1_kaddr - 64;

      if (ubspstore + 63 > urnat_addr) {
            /* some bits need to be merged in from pt->ar_rnat */
            umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
            urnat = (pt->ar_rnat & umask);
            mask &= ~umask;
            if (!mask)
                  return urnat;
      }

      m = mask << shift;
      if (rnat0_kaddr >= kbsp)
            rnat0 = sw->ar_rnat;
      else if (rnat0_kaddr > krbs)
            rnat0 = *rnat0_kaddr;
      urnat |= (rnat0 & m) >> shift;

      m = mask >> (63 - shift);
      if (rnat1_kaddr >= kbsp)
            rnat1 = sw->ar_rnat;
      else if (rnat1_kaddr > krbs)
            rnat1 = *rnat1_kaddr;
      urnat |= (rnat1 & m) << (63 - shift);
      return urnat;
}

/*
 * The reverse of get_rnat.
 */
static void
put_rnat (struct task_struct *task, struct switch_stack *sw,
        unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
        unsigned long *urbs_end)
{
      unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
      unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
      long num_regs, nbits;
      struct pt_regs *pt;
      unsigned long cfm, *urbs_kargs;

      pt = task_pt_regs(task);
      kbsp = (unsigned long *) sw->ar_bspstore;
      ubspstore = (unsigned long *) pt->ar_bspstore;

      urbs_kargs = urbs_end;
      if (in_syscall(pt)) {
            /*
             * If entered via syscall, don't allow user to set rnat bits
             * for syscall args.
             */
            cfm = pt->cr_ifs;
            urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
      }

      if (urbs_kargs >= urnat_addr)
            nbits = 63;
      else {
            if ((urnat_addr - 63) >= urbs_kargs)
                  return;
            nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
      }
      mask = MASK(nbits);

      /*
       * First, figure out which bit number slot 0 in user-land maps
       * to in the kernel rnat.  Do this by figuring out how many
       * register slots we're beyond the user's backingstore and
       * then computing the equivalent address in kernel space.
       */
      num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
      slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
      shift = ia64_rse_slot_num(slot0_kaddr);
      rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
      rnat0_kaddr = rnat1_kaddr - 64;

      if (ubspstore + 63 > urnat_addr) {
            /* some bits need to be place in pt->ar_rnat: */
            umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
            pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
            mask &= ~umask;
            if (!mask)
                  return;
      }
      /*
       * Note: Section 11.1 of the EAS guarantees that bit 63 of an
       * rnat slot is ignored. so we don't have to clear it here.
       */
      rnat0 = (urnat << shift);
      m = mask << shift;
      if (rnat0_kaddr >= kbsp)
            sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
      else if (rnat0_kaddr > krbs)
            *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));

      rnat1 = (urnat >> (63 - shift));
      m = mask >> (63 - shift);
      if (rnat1_kaddr >= kbsp)
            sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
      else if (rnat1_kaddr > krbs)
            *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
}

static inline int
on_kernel_rbs (unsigned long addr, unsigned long bspstore,
             unsigned long urbs_end)
{
      unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
                                          urbs_end);
      return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
}

/*
 * Read a word from the user-level backing store of task CHILD.  ADDR
 * is the user-level address to read the word from, VAL a pointer to
 * the return value, and USER_BSP gives the end of the user-level
 * backing store (i.e., it's the address that would be in ar.bsp after
 * the user executed a "cover" instruction).
 *
 * This routine takes care of accessing the kernel register backing
 * store for those registers that got spilled there.  It also takes
 * care of calculating the appropriate RNaT collection words.
 */
long
ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
         unsigned long user_rbs_end, unsigned long addr, long *val)
{
      unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
      struct pt_regs *child_regs;
      size_t copied;
      long ret;

      urbs_end = (long *) user_rbs_end;
      laddr = (unsigned long *) addr;
      child_regs = task_pt_regs(child);
      bspstore = (unsigned long *) child_regs->ar_bspstore;
      krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
      if (on_kernel_rbs(addr, (unsigned long) bspstore,
                    (unsigned long) urbs_end))
      {
            /*
             * Attempt to read the RBS in an area that's actually
             * on the kernel RBS => read the corresponding bits in
             * the kernel RBS.
             */
            rnat_addr = ia64_rse_rnat_addr(laddr);
            ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);

            if (laddr == rnat_addr) {
                  /* return NaT collection word itself */
                  *val = ret;
                  return 0;
            }

            if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
                  /*
                   * It is implementation dependent whether the
                   * data portion of a NaT value gets saved on a
                   * st8.spill or RSE spill (e.g., see EAS 2.6,
                   * 4.4.4.6 Register Spill and Fill).  To get
                   * consistent behavior across all possible
                   * IA-64 implementations, we return zero in
                   * this case.
                   */
                  *val = 0;
                  return 0;
            }

            if (laddr < urbs_end) {
                  /*
                   * The desired word is on the kernel RBS and
                   * is not a NaT.
                   */
                  regnum = ia64_rse_num_regs(bspstore, laddr);
                  *val = *ia64_rse_skip_regs(krbs, regnum);
                  return 0;
            }
      }
      copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
      if (copied != sizeof(ret))
            return -EIO;
      *val = ret;
      return 0;
}

long
ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
         unsigned long user_rbs_end, unsigned long addr, long val)
{
      unsigned long *bspstore, *krbs, regnum, *laddr;
      unsigned long *urbs_end = (long *) user_rbs_end;
      struct pt_regs *child_regs;

      laddr = (unsigned long *) addr;
      child_regs = task_pt_regs(child);
      bspstore = (unsigned long *) child_regs->ar_bspstore;
      krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
      if (on_kernel_rbs(addr, (unsigned long) bspstore,
                    (unsigned long) urbs_end))
      {
            /*
             * Attempt to write the RBS in an area that's actually
             * on the kernel RBS => write the corresponding bits
             * in the kernel RBS.
             */
            if (ia64_rse_is_rnat_slot(laddr))
                  put_rnat(child, child_stack, krbs, laddr, val,
                         urbs_end);
            else {
                  if (laddr < urbs_end) {
                        regnum = ia64_rse_num_regs(bspstore, laddr);
                        *ia64_rse_skip_regs(krbs, regnum) = val;
                  }
            }
      } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
               != sizeof(val))
            return -EIO;
      return 0;
}

/*
 * Calculate the address of the end of the user-level register backing
 * store.  This is the address that would have been stored in ar.bsp
 * if the user had executed a "cover" instruction right before
 * entering the kernel.  If CFMP is not NULL, it is used to return the
 * "current frame mask" that was active at the time the kernel was
 * entered.
 */
unsigned long
ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
                   unsigned long *cfmp)
{
      unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
      long ndirty;

      krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
      bspstore = (unsigned long *) pt->ar_bspstore;
      ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));

      if (in_syscall(pt))
            ndirty += (cfm & 0x7f);
      else
            cfm &= ~(1UL << 63);    /* clear valid bit */

      if (cfmp)
            *cfmp = cfm;
      return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
}

/*
 * Synchronize (i.e, write) the RSE backing store living in kernel
 * space to the VM of the CHILD task.  SW and PT are the pointers to
 * the switch_stack and pt_regs structures, respectively.
 * USER_RBS_END is the user-level address at which the backing store
 * ends.
 */
long
ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
                unsigned long user_rbs_start, unsigned long user_rbs_end)
{
      unsigned long addr, val;
      long ret;

      /* now copy word for word from kernel rbs to user rbs: */
      for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
            ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
            if (ret < 0)
                  return ret;
            if (access_process_vm(child, addr, &val, sizeof(val), 1)
                != sizeof(val))
                  return -EIO;
      }
      return 0;
}

static long
ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
            unsigned long user_rbs_start, unsigned long user_rbs_end)
{
      unsigned long addr, val;
      long ret;

      /* now copy word for word from user rbs to kernel rbs: */
      for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
            if (access_process_vm(child, addr, &val, sizeof(val), 0)
                        != sizeof(val))
                  return -EIO;

            ret = ia64_poke(child, sw, user_rbs_end, addr, val);
            if (ret < 0)
                  return ret;
      }
      return 0;
}

typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
                      unsigned long, unsigned long);

static void do_sync_rbs(struct unw_frame_info *info, void *arg)
{
      struct pt_regs *pt;
      unsigned long urbs_end;
      syncfunc_t fn = arg;

      if (unw_unwind_to_user(info) < 0)
            return;
      pt = task_pt_regs(info->task);
      urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);

      fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
}

/*
 * when a thread is stopped (ptraced), debugger might change thread's user
 * stack (change memory directly), and we must avoid the RSE stored in kernel
 * to override user stack (user space's RSE is newer than kernel's in the
 * case). To workaround the issue, we copy kernel RSE to user RSE before the
 * task is stopped, so user RSE has updated data.  we then copy user RSE to
 * kernel after the task is resummed from traced stop and kernel will use the
 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
 * synchronize user RSE to kernel.
 */
void ia64_ptrace_stop(void)
{
      if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
            return;
      tsk_set_notify_resume(current);
      unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
}

/*
 * This is called to read back the register backing store.
 */
void ia64_sync_krbs(void)
{
      clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
      tsk_clear_notify_resume(current);

      unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
}

/*
 * After PTRACE_ATTACH, a thread's register backing store area in user
 * space is assumed to contain correct data whenever the thread is
 * stopped.  arch_ptrace_stop takes care of this on tracing stops.
 * But if the child was already stopped for job control when we attach
 * to it, then it might not ever get into ptrace_stop by the time we
 * want to examine the user memory containing the RBS.
 */
void
ptrace_attach_sync_user_rbs (struct task_struct *child)
{
      int stopped = 0;
      struct unw_frame_info info;

      /*
       * If the child is in TASK_STOPPED, we need to change that to
       * TASK_TRACED momentarily while we operate on it.  This ensures
       * that the child won't be woken up and return to user mode while
       * we are doing the sync.  (It can only be woken up for SIGKILL.)
       */

      read_lock(&tasklist_lock);
      if (child->signal) {
            spin_lock_irq(&child->sighand->siglock);
            if (child->state == TASK_STOPPED &&
                !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
                  tsk_set_notify_resume(child);

                  child->state = TASK_TRACED;
                  stopped = 1;
            }
            spin_unlock_irq(&child->sighand->siglock);
      }
      read_unlock(&tasklist_lock);

      if (!stopped)
            return;

      unw_init_from_blocked_task(&info, child);
      do_sync_rbs(&info, ia64_sync_user_rbs);

      /*
       * Now move the child back into TASK_STOPPED if it should be in a
       * job control stop, so that SIGCONT can be used to wake it up.
       */
      read_lock(&tasklist_lock);
      if (child->signal) {
            spin_lock_irq(&child->sighand->siglock);
            if (child->state == TASK_TRACED &&
                (child->signal->flags & SIGNAL_STOP_STOPPED)) {
                  child->state = TASK_STOPPED;
            }
            spin_unlock_irq(&child->sighand->siglock);
      }
      read_unlock(&tasklist_lock);
}

static inline int
thread_matches (struct task_struct *thread, unsigned long addr)
{
      unsigned long thread_rbs_end;
      struct pt_regs *thread_regs;

      if (ptrace_check_attach(thread, 0) < 0)
            /*
             * If the thread is not in an attachable state, we'll
             * ignore it.  The net effect is that if ADDR happens
             * to overlap with the portion of the thread's
             * register backing store that is currently residing
             * on the thread's kernel stack, then ptrace() may end
             * up accessing a stale value.  But if the thread
             * isn't stopped, that's a problem anyhow, so we're
             * doing as well as we can...
             */
            return 0;

      thread_regs = task_pt_regs(thread);
      thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
      if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
            return 0;

      return 1;   /* looks like we've got a winner */
}

/*
 * Write f32-f127 back to task->thread.fph if it has been modified.
 */
inline void
ia64_flush_fph (struct task_struct *task)
{
      struct ia64_psr *psr = ia64_psr(task_pt_regs(task));

      /*
       * Prevent migrating this task while
       * we're fiddling with the FPU state
       */
      preempt_disable();
      if (ia64_is_local_fpu_owner(task) && psr->mfh) {
            psr->mfh = 0;
            task->thread.flags |= IA64_THREAD_FPH_VALID;
            ia64_save_fpu(&task->thread.fph[0]);
      }
      preempt_enable();
}

/*
 * Sync the fph state of the task so that it can be manipulated
 * through thread.fph.  If necessary, f32-f127 are written back to
 * thread.fph or, if the fph state hasn't been used before, thread.fph
 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 * ensure that the task picks up the state from thread.fph when it
 * executes again.
 */
void
ia64_sync_fph (struct task_struct *task)
{
      struct ia64_psr *psr = ia64_psr(task_pt_regs(task));

      ia64_flush_fph(task);
      if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
            task->thread.flags |= IA64_THREAD_FPH_VALID;
            memset(&task->thread.fph, 0, sizeof(task->thread.fph));
      }
      ia64_drop_fpu(task);
      psr->dfh = 1;
}

/*
 * Change the machine-state of CHILD such that it will return via the normal
 * kernel exit-path, rather than the syscall-exit path.
 */
static void
convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
                  unsigned long cfm)
{
      struct unw_frame_info info, prev_info;
      unsigned long ip, sp, pr;

      unw_init_from_blocked_task(&info, child);
      while (1) {
            prev_info = info;
            if (unw_unwind(&info) < 0)
                  return;

            unw_get_sp(&info, &sp);
            if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
                < IA64_PT_REGS_SIZE) {
                  dprintk("ptrace.%s: ran off the top of the kernel "
                        "stack\n", __func__);
                  return;
            }
            if (unw_get_pr (&prev_info, &pr) < 0) {
                  unw_get_rp(&prev_info, &ip);
                  dprintk("ptrace.%s: failed to read "
                        "predicate register (ip=0x%lx)\n",
                        __func__, ip);
                  return;
            }
            if (unw_is_intr_frame(&info)
                && (pr & (1UL << PRED_USER_STACK)))
                  break;
      }

      /*
       * Note: at the time of this call, the target task is blocked
       * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
       * (aka, "pLvSys") we redirect execution from
       * .work_pending_syscall_end to .work_processed_kernel.
       */
      unw_get_pr(&prev_info, &pr);
      pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
      pr |=  (1UL << PRED_NON_SYSCALL);
      unw_set_pr(&prev_info, pr);

      pt->cr_ifs = (1UL << 63) | cfm;
      /*
       * Clear the memory that is NOT written on syscall-entry to
       * ensure we do not leak kernel-state to user when execution
       * resumes.
       */
      pt->r2 = 0;
      pt->r3 = 0;
      pt->r14 = 0;
      memset(&pt->r16, 0, 16*8);    /* clear r16-r31 */
      memset(&pt->f6, 0, 6*16);     /* clear f6-f11 */
      pt->b7 = 0;
      pt->ar_ccv = 0;
      pt->ar_csd = 0;
      pt->ar_ssd = 0;
}

static int
access_nat_bits (struct task_struct *child, struct pt_regs *pt,
             struct unw_frame_info *info,
             unsigned long *data, int write_access)
{
      unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
      char nat = 0;

      if (write_access) {
            nat_bits = *data;
            scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
            if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
                  dprintk("ptrace: failed to set ar.unat\n");
                  return -1;
            }
            for (regnum = 4; regnum <= 7; ++regnum) {
                  unw_get_gr(info, regnum, &dummy, &nat);
                  unw_set_gr(info, regnum, dummy,
                           (nat_bits >> regnum) & 1);
            }
      } else {
            if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
                  dprintk("ptrace: failed to read ar.unat\n");
                  return -1;
            }
            nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
            for (regnum = 4; regnum <= 7; ++regnum) {
                  unw_get_gr(info, regnum, &dummy, &nat);
                  nat_bits |= (nat != 0) << regnum;
            }
            *data = nat_bits;
      }
      return 0;
}

static int
access_uarea (struct task_struct *child, unsigned long addr,
            unsigned long *data, int write_access);

static long
ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
{
      unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
      struct unw_frame_info info;
      struct ia64_fpreg fpval;
      struct switch_stack *sw;
      struct pt_regs *pt;
      long ret, retval = 0;
      char nat = 0;
      int i;

      if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
            return -EIO;

      pt = task_pt_regs(child);
      sw = (struct switch_stack *) (child->thread.ksp + 16);
      unw_init_from_blocked_task(&info, child);
      if (unw_unwind_to_user(&info) < 0) {
            return -EIO;
      }

      if (((unsigned long) ppr & 0x7) != 0) {
            dprintk("ptrace:unaligned register address %p\n", ppr);
            return -EIO;
      }

      if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
          || access_uarea(child, PT_AR_EC, &ec, 0) < 0
          || access_uarea(child, PT_AR_LC, &lc, 0) < 0
          || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
          || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
          || access_uarea(child, PT_CFM, &cfm, 0)
          || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
            return -EIO;

      /* control regs */

      retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
      retval |= __put_user(psr, &ppr->cr_ipsr);

      /* app regs */

      retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
      retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
      retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
      retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
      retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
      retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);

      retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
      retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
      retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
      retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
      retval |= __put_user(cfm, &ppr->cfm);

      /* gr1-gr3 */

      retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
      retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);

      /* gr4-gr7 */

      for (i = 4; i < 8; i++) {
            if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
                  return -EIO;
            retval |= __put_user(val, &ppr->gr[i]);
      }

      /* gr8-gr11 */

      retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);

      /* gr12-gr15 */

      retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
      retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
      retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));

      /* gr16-gr31 */

      retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);

      /* b0 */

      retval |= __put_user(pt->b0, &ppr->br[0]);

      /* b1-b5 */

      for (i = 1; i < 6; i++) {
            if (unw_access_br(&info, i, &val, 0) < 0)
                  return -EIO;
            __put_user(val, &ppr->br[i]);
      }

      /* b6-b7 */

      retval |= __put_user(pt->b6, &ppr->br[6]);
      retval |= __put_user(pt->b7, &ppr->br[7]);

      /* fr2-fr5 */

      for (i = 2; i < 6; i++) {
            if (unw_get_fr(&info, i, &fpval) < 0)
                  return -EIO;
            retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
      }

      /* fr6-fr11 */

      retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
                         sizeof(struct ia64_fpreg) * 6);

      /* fp scratch regs(12-15) */

      retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
                         sizeof(struct ia64_fpreg) * 4);

      /* fr16-fr31 */

      for (i = 16; i < 32; i++) {
            if (unw_get_fr(&info, i, &fpval) < 0)
                  return -EIO;
            retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
      }

      /* fph */

      ia64_flush_fph(child);
      retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
                         sizeof(ppr->fr[32]) * 96);

      /*  preds */

      retval |= __put_user(pt->pr, &ppr->pr);

      /* nat bits */

      retval |= __put_user(nat_bits, &ppr->nat);

      ret = retval ? -EIO : 0;
      return ret;
}

static long
ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
{
      unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
      struct unw_frame_info info;
      struct switch_stack *sw;
      struct ia64_fpreg fpval;
      struct pt_regs *pt;
      long ret, retval = 0;
      int i;

      memset(&fpval, 0, sizeof(fpval));

      if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
            return -EIO;

      pt = task_pt_regs(child);
      sw = (struct switch_stack *) (child->thread.ksp + 16);
      unw_init_from_blocked_task(&info, child);
      if (unw_unwind_to_user(&info) < 0) {
            return -EIO;
      }

      if (((unsigned long) ppr & 0x7) != 0) {
            dprintk("ptrace:unaligned register address %p\n", ppr);
            return -EIO;
      }

      /* control regs */

      retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
      retval |= __get_user(psr, &ppr->cr_ipsr);

      /* app regs */

      retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
      retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
      retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
      retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
      retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
      retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);

      retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
      retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
      retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
      retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
      retval |= __get_user(cfm, &ppr->cfm);

      /* gr1-gr3 */

      retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
      retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);

      /* gr4-gr7 */

      for (i = 4; i < 8; i++) {
            retval |= __get_user(val, &ppr->gr[i]);
            /* NaT bit will be set via PT_NAT_BITS: */
            if (unw_set_gr(&info, i, val, 0) < 0)
                  return -EIO;
      }

      /* gr8-gr11 */

      retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);

      /* gr12-gr15 */

      retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
      retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
      retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));

      /* gr16-gr31 */

      retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);

      /* b0 */

      retval |= __get_user(pt->b0, &ppr->br[0]);

      /* b1-b5 */

      for (i = 1; i < 6; i++) {
            retval |= __get_user(val, &ppr->br[i]);
            unw_set_br(&info, i, val);
      }

      /* b6-b7 */

      retval |= __get_user(pt->b6, &ppr->br[6]);
      retval |= __get_user(pt->b7, &ppr->br[7]);

      /* fr2-fr5 */

      for (i = 2; i < 6; i++) {
            retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
            if (unw_set_fr(&info, i, fpval) < 0)
                  return -EIO;
      }

      /* fr6-fr11 */

      retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
                           sizeof(ppr->fr[6]) * 6);

      /* fp scratch regs(12-15) */

      retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
                           sizeof(ppr->fr[12]) * 4);

      /* fr16-fr31 */

      for (i = 16; i < 32; i++) {
            retval |= __copy_from_user(&fpval, &ppr->fr[i],
                                 sizeof(fpval));
            if (unw_set_fr(&info, i, fpval) < 0)
                  return -EIO;
      }

      /* fph */

      ia64_sync_fph(child);
      retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
                           sizeof(ppr->fr[32]) * 96);

      /* preds */

      retval |= __get_user(pt->pr, &ppr->pr);

      /* nat bits */

      retval |= __get_user(nat_bits, &ppr->nat);

      retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
      retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
      retval |= access_uarea(child, PT_AR_EC, &ec, 1);
      retval |= access_uarea(child, PT_AR_LC, &lc, 1);
      retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
      retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
      retval |= access_uarea(child, PT_CFM, &cfm, 1);
      retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);

      ret = retval ? -EIO : 0;
      return ret;
}

void
user_enable_single_step (struct task_struct *child)
{
      struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));

      set_tsk_thread_flag(child, TIF_SINGLESTEP);
      child_psr->ss = 1;
}

void
user_enable_block_step (struct task_struct *child)
{
      struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));

      set_tsk_thread_flag(child, TIF_SINGLESTEP);
      child_psr->tb = 1;
}

void
user_disable_single_step (struct task_struct *child)
{
      struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));

      /* make sure the single step/taken-branch trap bits are not set: */
      clear_tsk_thread_flag(child, TIF_SINGLESTEP);
      child_psr->ss = 0;
      child_psr->tb = 0;
}

/*
 * Called by kernel/ptrace.c when detaching..
 *
 * Make sure the single step bit is not set.
 */
void
ptrace_disable (struct task_struct *child)
{
      user_disable_single_step(child);
}

long
arch_ptrace (struct task_struct *child, long request, long addr, long data)
{
      switch (request) {
      case PTRACE_PEEKTEXT:
      case PTRACE_PEEKDATA:
            /* read word at location addr */
            if (access_process_vm(child, addr, &data, sizeof(data), 0)
                != sizeof(data))
                  return -EIO;
            /* ensure return value is not mistaken for error code */
            force_successful_syscall_return();
            return data;

      /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
       * by the generic ptrace_request().
       */

      case PTRACE_PEEKUSR:
            /* read the word at addr in the USER area */
            if (access_uarea(child, addr, &data, 0) < 0)
                  return -EIO;
            /* ensure return value is not mistaken for error code */
            force_successful_syscall_return();
            return data;

      case PTRACE_POKEUSR:
            /* write the word at addr in the USER area */
            if (access_uarea(child, addr, &data, 1) < 0)
                  return -EIO;
            return 0;

      case PTRACE_OLD_GETSIGINFO:
            /* for backwards-compatibility */
            return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);

      case PTRACE_OLD_SETSIGINFO:
            /* for backwards-compatibility */
            return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);

      case PTRACE_GETREGS:
            return ptrace_getregs(child,
                              (struct pt_all_user_regs __user *) data);

      case PTRACE_SETREGS:
            return ptrace_setregs(child,
                              (struct pt_all_user_regs __user *) data);

      default:
            return ptrace_request(child, request, addr, data);
      }
}


static void
syscall_trace (void)
{
      /*
       * The 0x80 provides a way for the tracing parent to
       * distinguish between a syscall stop and SIGTRAP delivery.
       */
      ptrace_notify(SIGTRAP
                  | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));

      /*
       * This isn't the same as continuing with a signal, but it
       * will do for normal use.  strace only continues with a
       * signal if the stopping signal is not SIGTRAP.  -brl
       */
      if (current->exit_code) {
            send_sig(current->exit_code, current, 1);
            current->exit_code = 0;
      }
}

/* "asmlinkage" so the input arguments are preserved... */

asmlinkage void
syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
                 long arg4, long arg5, long arg6, long arg7,
                 struct pt_regs regs)
{
      if (test_thread_flag(TIF_SYSCALL_TRACE) 
          && (current->ptrace & PT_PTRACED))
            syscall_trace();

      /* copy user rbs to kernel rbs */
      if (test_thread_flag(TIF_RESTORE_RSE))
            ia64_sync_krbs();

      if (unlikely(current->audit_context)) {
            long syscall;
            int arch;

            if (IS_IA32_PROCESS(&regs)) {
                  syscall = regs.r1;
                  arch = AUDIT_ARCH_I386;
            } else {
                  syscall = regs.r15;
                  arch = AUDIT_ARCH_IA64;
            }

            audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
      }

}

/* "asmlinkage" so the input arguments are preserved... */

asmlinkage void
syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
                 long arg4, long arg5, long arg6, long arg7,
                 struct pt_regs regs)
{
      if (unlikely(current->audit_context)) {
            int success = AUDITSC_RESULT(regs.r10);
            long result = regs.r8;

            if (success != AUDITSC_SUCCESS)
                  result = -result;
            audit_syscall_exit(success, result);
      }

      if ((test_thread_flag(TIF_SYSCALL_TRACE)
          || test_thread_flag(TIF_SINGLESTEP))
          && (current->ptrace & PT_PTRACED))
            syscall_trace();

      /* copy user rbs to kernel rbs */
      if (test_thread_flag(TIF_RESTORE_RSE))
            ia64_sync_krbs();
}

/* Utrace implementation starts here */
struct regset_get {
      void *kbuf;
      void __user *ubuf;
};

struct regset_set {
      const void *kbuf;
      const void __user *ubuf;
};

struct regset_getset {
      struct task_struct *target;
      const struct user_regset *regset;
      union {
            struct regset_get get;
            struct regset_set set;
      } u;
      unsigned int pos;
      unsigned int count;
      int ret;
};

static int
access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
            unsigned long addr, unsigned long *data, int write_access)
{
      struct pt_regs *pt;
      unsigned long *ptr = NULL;
      int ret;
      char nat = 0;

      pt = task_pt_regs(target);
      switch (addr) {
      case ELF_GR_OFFSET(1):
            ptr = &pt->r1;
            break;
      case ELF_GR_OFFSET(2):
      case ELF_GR_OFFSET(3):
            ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
            break;
      case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
            if (write_access) {
                  /* read NaT bit first: */
                  unsigned long dummy;

                  ret = unw_get_gr(info, addr/8, &dummy, &nat);
                  if (ret < 0)
                        return ret;
            }
            return unw_access_gr(info, addr/8, data, &nat, write_access);
      case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
            ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
            break;
      case ELF_GR_OFFSET(12):
      case ELF_GR_OFFSET(13):
            ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
            break;
      case ELF_GR_OFFSET(14):
            ptr = &pt->r14;
            break;
      case ELF_GR_OFFSET(15):
            ptr = &pt->r15;
      }
      if (write_access)
            *ptr = *data;
      else
            *data = *ptr;
      return 0;
}

static int
access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
            unsigned long addr, unsigned long *data, int write_access)
{
      struct pt_regs *pt;
      unsigned long *ptr = NULL;

      pt = task_pt_regs(target);
      switch (addr) {
      case ELF_BR_OFFSET(0):
            ptr = &pt->b0;
            break;
      case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
            return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
                             data, write_access);
      case ELF_BR_OFFSET(6):
            ptr = &pt->b6;
            break;
      case ELF_BR_OFFSET(7):
            ptr = &pt->b7;
      }
      if (write_access)
            *ptr = *data;
      else
            *data = *ptr;
      return 0;
}

static int
access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
            unsigned long addr, unsigned long *data, int write_access)
{
      struct pt_regs *pt;
      unsigned long cfm, urbs_end;
      unsigned long *ptr = NULL;

      pt = task_pt_regs(target);
      if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
            switch (addr) {
            case ELF_AR_RSC_OFFSET:
                  /* force PL3 */
                  if (write_access)
                        pt->ar_rsc = *data | (3 << 2);
                  else
                        *data = pt->ar_rsc;
                  return 0;
            case ELF_AR_BSP_OFFSET:
                  /*
                   * By convention, we use PT_AR_BSP to refer to
                   * the end of the user-level backing store.
                   * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
                   * to get the real value of ar.bsp at the time
                   * the kernel was entered.
                   *
                   * Furthermore, when changing the contents of
                   * PT_AR_BSP (or PT_CFM) while the task is
                   * blocked in a system call, convert the state
                   * so that the non-system-call exit
                   * path is used.  This ensures that the proper
                   * state will be picked up when resuming
                   * execution.  However, it *also* means that
                   * once we write PT_AR_BSP/PT_CFM, it won't be
                   * possible to modify the syscall arguments of
                   * the pending system call any longer.  This
                   * shouldn't be an issue because modifying
                   * PT_AR_BSP/PT_CFM generally implies that
                   * we're either abandoning the pending system
                   * call or that we defer it's re-execution
                   * (e.g., due to GDB doing an inferior
                   * function call).
                   */
                  urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
                  if (write_access) {
                        if (*data != urbs_end) {
                              if (in_syscall(pt))
                                    convert_to_non_syscall(target,
                                                       pt,
                                                       cfm);
                              /*
                               * Simulate user-level write
                               * of ar.bsp:
                               */
                              pt->loadrs = 0;
                              pt->ar_bspstore = *data;
                        }
                  } else
                        *data = urbs_end;
                  return 0;
            case ELF_AR_BSPSTORE_OFFSET:
                  ptr = &pt->ar_bspstore;
                  break;
            case ELF_AR_RNAT_OFFSET:
                  ptr = &pt->ar_rnat;
                  break;
            case ELF_AR_CCV_OFFSET:
                  ptr = &pt->ar_ccv;
                  break;
            case ELF_AR_UNAT_OFFSET:
                  ptr = &pt->ar_unat;
                  break;
            case ELF_AR_FPSR_OFFSET:
                  ptr = &pt->ar_fpsr;
                  break;
            case ELF_AR_PFS_OFFSET:
                  ptr = &pt->ar_pfs;
                  break;
            case ELF_AR_LC_OFFSET:
                  return unw_access_ar(info, UNW_AR_LC, data,
                                   write_access);
            case ELF_AR_EC_OFFSET:
                  return unw_access_ar(info, UNW_AR_EC, data,
                                   write_access);
            case ELF_AR_CSD_OFFSET:
                  ptr = &pt->ar_csd;
                  break;
            case ELF_AR_SSD_OFFSET:
                  ptr = &pt->ar_ssd;
            }
      } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
            switch (addr) {
            case ELF_CR_IIP_OFFSET:
                  ptr = &pt->cr_iip;
                  break;
            case ELF_CFM_OFFSET:
                  urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
                  if (write_access) {
                        if (((cfm ^ *data) & PFM_MASK) != 0) {
                              if (in_syscall(pt))
                                    convert_to_non_syscall(target,
                                                       pt,
                                                       cfm);
                              pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
                                          | (*data & PFM_MASK));
                        }
                  } else
                        *data = cfm;
                  return 0;
            case ELF_CR_IPSR_OFFSET:
                  if (write_access) {
                        unsigned long tmp = *data;
                        /* psr.ri==3 is a reserved value: SDM 2:25 */
                        if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
                              tmp &= ~IA64_PSR_RI;
                        pt->cr_ipsr = ((tmp & IPSR_MASK)
                                     | (pt->cr_ipsr & ~IPSR_MASK));
                  } else
                        *data = (pt->cr_ipsr & IPSR_MASK);
                  return 0;
            }
      } else if (addr == ELF_NAT_OFFSET)
            return access_nat_bits(target, pt, info,
                               data, write_access);
      else if (addr == ELF_PR_OFFSET)
            ptr = &pt->pr;
      else
            return -1;

      if (write_access)
            *ptr = *data;
      else
            *data = *ptr;

      return 0;
}

static int
access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
            unsigned long addr, unsigned long *data, int write_access)
{
      if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
            return access_elf_gpreg(target, info, addr, data, write_access);
      else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
            return access_elf_breg(target, info, addr, data, write_access);
      else
            return access_elf_areg(target, info, addr, data, write_access);
}

void do_gpregs_get(struct unw_frame_info *info, void *arg)
{
      struct pt_regs *pt;
      struct regset_getset *dst = arg;
      elf_greg_t tmp[16];
      unsigned int i, index, min_copy;

      if (unw_unwind_to_user(info) < 0)
            return;

      /*
       * coredump format:
       *      r0-r31
       *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
       *      predicate registers (p0-p63)
       *      b0-b7
       *      ip cfm user-mask
       *      ar.rsc ar.bsp ar.bspstore ar.rnat
       *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
       */


      /* Skip r0 */
      if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
            dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
                                          &dst->u.get.kbuf,
                                          &dst->u.get.ubuf,
                                          0, ELF_GR_OFFSET(1));
            if (dst->ret || dst->count == 0)
                  return;
      }

      /* gr1 - gr15 */
      if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
            index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
            min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
                   (dst->pos + dst->count) : ELF_GR_OFFSET(16);
            for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
                        index++)
                  if (access_elf_reg(dst->target, info, i,
                                    &tmp[index], 0) < 0) {
                        dst->ret = -EIO;
                        return;
                  }
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
                        ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
            if (dst->ret || dst->count == 0)
                  return;
      }

      /* r16-r31 */
      if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
            pt = task_pt_regs(dst->target);
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
                        ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
            if (dst->ret || dst->count == 0)
                  return;
      }

      /* nat, pr, b0 - b7 */
      if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
            index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
            min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
                   (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
            for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
                        index++)
                  if (access_elf_reg(dst->target, info, i,
                                    &tmp[index], 0) < 0) {
                        dst->ret = -EIO;
                        return;
                  }
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
                        ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
            if (dst->ret || dst->count == 0)
                  return;
      }

      /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
       * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
       */
      if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
            index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
            min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
                   (dst->pos + dst->count) : ELF_AR_END_OFFSET;
            for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
                        index++)
                  if (access_elf_reg(dst->target, info, i,
                                    &tmp[index], 0) < 0) {
                        dst->ret = -EIO;
                        return;
                  }
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
                        ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
      }
}

void do_gpregs_set(struct unw_frame_info *info, void *arg)
{
      struct pt_regs *pt;
      struct regset_getset *dst = arg;
      elf_greg_t tmp[16];
      unsigned int i, index;

      if (unw_unwind_to_user(info) < 0)
            return;

      /* Skip r0 */
      if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
            dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
                                           &dst->u.set.kbuf,
                                           &dst->u.set.ubuf,
                                           0, ELF_GR_OFFSET(1));
            if (dst->ret || dst->count == 0)
                  return;
      }

      /* gr1-gr15 */
      if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
            i = dst->pos;
            index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
                        ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
            if (dst->ret)
                  return;
            for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
                  if (access_elf_reg(dst->target, info, i,
                                    &tmp[index], 1) < 0) {
                        dst->ret = -EIO;
                        return;
                  }
            if (dst->count == 0)
                  return;
      }

      /* gr16-gr31 */
      if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
            pt = task_pt_regs(dst->target);
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
                        ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
            if (dst->ret || dst->count == 0)
                  return;
      }

      /* nat, pr, b0 - b7 */
      if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
            i = dst->pos;
            index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
                        ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
            if (dst->ret)
                  return;
            for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
                  if (access_elf_reg(dst->target, info, i,
                                    &tmp[index], 1) < 0) {
                        dst->ret = -EIO;
                        return;
                  }
            if (dst->count == 0)
                  return;
      }

      /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
       * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
       */
      if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
            i = dst->pos;
            index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
                        ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
            if (dst->ret)
                  return;
            for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
                  if (access_elf_reg(dst->target, info, i,
                                    &tmp[index], 1) < 0) {
                        dst->ret = -EIO;
                        return;
                  }
      }
}

#define ELF_FP_OFFSET(i)      (i * sizeof(elf_fpreg_t))

void do_fpregs_get(struct unw_frame_info *info, void *arg)
{
      struct regset_getset *dst = arg;
      struct task_struct *task = dst->target;
      elf_fpreg_t tmp[30];
      int index, min_copy, i;

      if (unw_unwind_to_user(info) < 0)
            return;

      /* Skip pos 0 and 1 */
      if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
            dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
                                          &dst->u.get.kbuf,
                                          &dst->u.get.ubuf,
                                          0, ELF_FP_OFFSET(2));
            if (dst->count == 0 || dst->ret)
                  return;
      }

      /* fr2-fr31 */
      if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
            index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);

            min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
                        dst->pos + dst->count);
            for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
                        index++)
                  if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
                               &tmp[index])) {
                        dst->ret = -EIO;
                        return;
                  }
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
                        ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
            if (dst->count == 0 || dst->ret)
                  return;
      }

      /* fph */
      if (dst->count > 0) {
            ia64_flush_fph(dst->target);
            if (task->thread.flags & IA64_THREAD_FPH_VALID)
                  dst->ret = user_regset_copyout(
                        &dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf,
                        &dst->target->thread.fph,
                        ELF_FP_OFFSET(32), -1);
            else
                  /* Zero fill instead.  */
                  dst->ret = user_regset_copyout_zero(
                        &dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf,
                        ELF_FP_OFFSET(32), -1);
      }
}

void do_fpregs_set(struct unw_frame_info *info, void *arg)
{
      struct regset_getset *dst = arg;
      elf_fpreg_t fpreg, tmp[30];
      int index, start, end;

      if (unw_unwind_to_user(info) < 0)
            return;

      /* Skip pos 0 and 1 */
      if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
            dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
                                           &dst->u.set.kbuf,
                                           &dst->u.set.ubuf,
                                           0, ELF_FP_OFFSET(2));
            if (dst->count == 0 || dst->ret)
                  return;
      }

      /* fr2-fr31 */
      if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
            start = dst->pos;
            end = min(((unsigned int)ELF_FP_OFFSET(32)),
                   dst->pos + dst->count);
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
                        ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
            if (dst->ret)
                  return;

            if (start & 0xF) { /* only write high part */
                  if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
                               &fpreg)) {
                        dst->ret = -EIO;
                        return;
                  }
                  tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
                        = fpreg.u.bits[0];
                  start &= ~0xFUL;
            }
            if (end & 0xF) { /* only write low part */
                  if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
                              &fpreg)) {
                        dst->ret = -EIO;
                        return;
                  }
                  tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
                        = fpreg.u.bits[1];
                  end = (end + 0xF) & ~0xFUL;
            }

            for ( ;     start < end ; start += sizeof(elf_fpreg_t)) {
                  index = start / sizeof(elf_fpreg_t);
                  if (unw_set_fr(info, index, tmp[index - 2])) {
                        dst->ret = -EIO;
                        return;
                  }
            }
            if (dst->ret || dst->count == 0)
                  return;
      }

      /* fph */
      if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
            ia64_sync_fph(dst->target);
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                                    &dst->u.set.kbuf,
                                    &dst->u.set.ubuf,
                                    &dst->target->thread.fph,
                                    ELF_FP_OFFSET(32), -1);
      }
}

static int
do_regset_call(void (*call)(struct unw_frame_info *, void *),
             struct task_struct *target,
             const struct user_regset *regset,
             unsigned int pos, unsigned int count,
             const void *kbuf, const void __user *ubuf)
{
      struct regset_getset info = { .target = target, .regset = regset,
                         .pos = pos, .count = count,
                         .u.set = { .kbuf = kbuf, .ubuf = ubuf },
                         .ret = 0 };

      if (target == current)
            unw_init_running(call, &info);
      else {
            struct unw_frame_info ufi;
            memset(&ufi, 0, sizeof(ufi));
            unw_init_from_blocked_task(&ufi, target);
            (*call)(&ufi, &info);
      }

      return info.ret;
}

static int
gpregs_get(struct task_struct *target,
         const struct user_regset *regset,
         unsigned int pos, unsigned int count,
         void *kbuf, void __user *ubuf)
{
      return do_regset_call(do_gpregs_get, target, regset, pos, count,
            kbuf, ubuf);
}

static int gpregs_set(struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            const void *kbuf, const void __user *ubuf)
{
      return do_regset_call(do_gpregs_set, target, regset, pos, count,
            kbuf, ubuf);
}

static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
{
      do_sync_rbs(info, ia64_sync_user_rbs);
}

/*
 * This is called to write back the register backing store.
 * ptrace does this before it stops, so that a tracer reading the user
 * memory after the thread stops will get the current register data.
 */
static int
gpregs_writeback(struct task_struct *target,
             const struct user_regset *regset,
             int now)
{
      if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
            return 0;
      tsk_set_notify_resume(target);
      return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
            NULL, NULL);
}

static int
fpregs_active(struct task_struct *target, const struct user_regset *regset)
{
      return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
}

static int fpregs_get(struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            void *kbuf, void __user *ubuf)
{
      return do_regset_call(do_fpregs_get, target, regset, pos, count,
            kbuf, ubuf);
}

static int fpregs_set(struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            const void *kbuf, const void __user *ubuf)
{
      return do_regset_call(do_fpregs_set, target, regset, pos, count,
            kbuf, ubuf);
}

static int
access_uarea(struct task_struct *child, unsigned long addr,
            unsigned long *data, int write_access)
{
      unsigned int pos = -1; /* an invalid value */
      int ret;
      unsigned long *ptr, regnum;

      if ((addr & 0x7) != 0) {
            dprintk("ptrace: unaligned register address 0x%lx\n", addr);
            return -1;
      }
      if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
            (addr >= PT_R7 + 8 && addr < PT_B1) ||
            (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
            (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
            dprintk("ptrace: rejecting access to register "
                              "address 0x%lx\n", addr);
            return -1;
      }

      switch (addr) {
      case PT_F32 ... (PT_F127 + 15):
            pos = addr - PT_F32 + ELF_FP_OFFSET(32);
            break;
      case PT_F2 ... (PT_F5 + 15):
            pos = addr - PT_F2 + ELF_FP_OFFSET(2);
            break;
      case PT_F10 ... (PT_F31 + 15):
            pos = addr - PT_F10 + ELF_FP_OFFSET(10);
            break;
      case PT_F6 ... (PT_F9 + 15):
            pos = addr - PT_F6 + ELF_FP_OFFSET(6);
            break;
      }

      if (pos != -1) {
            if (write_access)
                  ret = fpregs_set(child, NULL, pos,
                        sizeof(unsigned long), data, NULL);
            else
                  ret = fpregs_get(child, NULL, pos,
                        sizeof(unsigned long), data, NULL);
            if (ret != 0)
                  return -1;
            return 0;
      }

      switch (addr) {
      case PT_NAT_BITS:
            pos = ELF_NAT_OFFSET;
            break;
      case PT_R4 ... PT_R7:
            pos = addr - PT_R4 + ELF_GR_OFFSET(4);
            break;
      case PT_B1 ... PT_B5:
            pos = addr - PT_B1 + ELF_BR_OFFSET(1);
            break;
      case PT_AR_EC:
            pos = ELF_AR_EC_OFFSET;
            break;
      case PT_AR_LC:
            pos = ELF_AR_LC_OFFSET;
            break;
      case PT_CR_IPSR:
            pos = ELF_CR_IPSR_OFFSET;
            break;
      case PT_CR_IIP:
            pos = ELF_CR_IIP_OFFSET;
            break;
      case PT_CFM:
            pos = ELF_CFM_OFFSET;
            break;
      case PT_AR_UNAT:
            pos = ELF_AR_UNAT_OFFSET;
            break;
      case PT_AR_PFS:
            pos = ELF_AR_PFS_OFFSET;
            break;
      case PT_AR_RSC:
            pos = ELF_AR_RSC_OFFSET;
            break;
      case PT_AR_RNAT:
            pos = ELF_AR_RNAT_OFFSET;
            break;
      case PT_AR_BSPSTORE:
            pos = ELF_AR_BSPSTORE_OFFSET;
            break;
      case PT_PR:
            pos = ELF_PR_OFFSET;
            break;
      case PT_B6:
            pos = ELF_BR_OFFSET(6);
            break;
      case PT_AR_BSP:
            pos = ELF_AR_BSP_OFFSET;
            break;
      case PT_R1 ... PT_R3:
            pos = addr - PT_R1 + ELF_GR_OFFSET(1);
            break;
      case PT_R12 ... PT_R15:
            pos = addr - PT_R12 + ELF_GR_OFFSET(12);
            break;
      case PT_R8 ... PT_R11:
            pos = addr - PT_R8 + ELF_GR_OFFSET(8);
            break;
      case PT_R16 ... PT_R31:
            pos = addr - PT_R16 + ELF_GR_OFFSET(16);
            break;
      case PT_AR_CCV:
            pos = ELF_AR_CCV_OFFSET;
            break;
      case PT_AR_FPSR:
            pos = ELF_AR_FPSR_OFFSET;
            break;
      case PT_B0:
            pos = ELF_BR_OFFSET(0);
            break;
      case PT_B7:
            pos = ELF_BR_OFFSET(7);
            break;
      case PT_AR_CSD:
            pos = ELF_AR_CSD_OFFSET;
            break;
      case PT_AR_SSD:
            pos = ELF_AR_SSD_OFFSET;
            break;
      }

      if (pos != -1) {
            if (write_access)
                  ret = gpregs_set(child, NULL, pos,
                        sizeof(unsigned long), data, NULL);
            else
                  ret = gpregs_get(child, NULL, pos,
                        sizeof(unsigned long), data, NULL);
            if (ret != 0)
                  return -1;
            return 0;
      }

      /* access debug registers */
      if (addr >= PT_IBR) {
            regnum = (addr - PT_IBR) >> 3;
            ptr = &child->thread.ibr[0];
      } else {
            regnum = (addr - PT_DBR) >> 3;
            ptr = &child->thread.dbr[0];
      }

      if (regnum >= 8) {
            dprintk("ptrace: rejecting access to register "
                        "address 0x%lx\n", addr);
            return -1;
      }
#ifdef CONFIG_PERFMON
      /*
       * Check if debug registers are used by perfmon. This
       * test must be done once we know that we can do the
       * operation, i.e. the arguments are all valid, but
       * before we start modifying the state.
       *
       * Perfmon needs to keep a count of how many processes
       * are trying to modify the debug registers for system
       * wide monitoring sessions.
       *
       * We also include read access here, because they may
       * cause the PMU-installed debug register state
       * (dbr[], ibr[]) to be reset. The two arrays are also
       * used by perfmon, but we do not use
       * IA64_THREAD_DBG_VALID. The registers are restored
       * by the PMU context switch code.
       */
      if (pfm_use_debug_registers(child))
            return -1;
#endif

      if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
            child->thread.flags |= IA64_THREAD_DBG_VALID;
            memset(child->thread.dbr, 0,
                        sizeof(child->thread.dbr));
            memset(child->thread.ibr, 0,
                        sizeof(child->thread.ibr));
      }

      ptr += regnum;

      if ((regnum & 1) && write_access) {
            /* don't let the user set kernel-level breakpoints: */
            *ptr = *data & ~(7UL << 56);
            return 0;
      }
      if (write_access)
            *ptr = *data;
      else
            *data = *ptr;
      return 0;
}

static const struct user_regset native_regsets[] = {
      {
            .core_note_type = NT_PRSTATUS,
            .n = ELF_NGREG,
            .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
            .get = gpregs_get, .set = gpregs_set,
            .writeback = gpregs_writeback
      },
      {
            .core_note_type = NT_PRFPREG,
            .n = ELF_NFPREG,
            .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
            .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
      },
};

static const struct user_regset_view user_ia64_view = {
      .name = "ia64",
      .e_machine = EM_IA_64,
      .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
};

const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
{
#ifdef CONFIG_IA32_SUPPORT
      extern const struct user_regset_view user_ia32_view;
      if (IS_IA32_PROCESS(task_pt_regs(tsk)))
            return &user_ia32_view;
#endif
      return &user_ia64_view;
}

Generated by  Doxygen 1.6.0   Back to index