Logo Search packages:      
Sourcecode: linux version File versions  Download package

topology.c

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * This file contains NUMA specific variables and functions which can
 * be split away from DISCONTIGMEM and are used on NUMA machines with
 * contiguous memory.
 *          2002/08/07 Erich Focht <efocht@ess.nec.de>
 * Populate cpu entries in sysfs for non-numa systems as well
 *    Intel Corporation - Ashok Raj
 * 02/27/2006 Zhang, Yanmin
 *    Populate cpu cache entries in sysfs for cpu cache info
 */

#include <linux/cpu.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/node.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/nodemask.h>
#include <linux/notifier.h>
#include <asm/mmzone.h>
#include <asm/numa.h>
#include <asm/cpu.h>

static struct ia64_cpu *sysfs_cpus;

void arch_fix_phys_package_id(int num, u32 slot)
{
#ifdef CONFIG_SMP
      if (cpu_data(num)->socket_id == -1)
            cpu_data(num)->socket_id = slot;
#endif
}
EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);


#ifdef CONFIG_HOTPLUG_CPU
int __ref arch_register_cpu(int num)
{
#ifdef CONFIG_ACPI
      /*
       * If CPEI can be re-targetted or if this is not
       * CPEI target, then it is hotpluggable
       */
      if (can_cpei_retarget() || !is_cpu_cpei_target(num))
            sysfs_cpus[num].cpu.hotpluggable = 1;
      map_cpu_to_node(num, node_cpuid[num].nid);
#endif
      return register_cpu(&sysfs_cpus[num].cpu, num);
}
EXPORT_SYMBOL(arch_register_cpu);

void arch_unregister_cpu(int num)
{
      unregister_cpu(&sysfs_cpus[num].cpu);
      unmap_cpu_from_node(num, cpu_to_node(num));
}
EXPORT_SYMBOL(arch_unregister_cpu);
#else
static int __init arch_register_cpu(int num)
{
      return register_cpu(&sysfs_cpus[num].cpu, num);
}
#endif /*CONFIG_HOTPLUG_CPU*/


static int __init topology_init(void)
{
      int i, err = 0;

#ifdef CONFIG_NUMA
      /*
       * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
       */
      for_each_online_node(i) {
            if ((err = register_one_node(i)))
                  goto out;
      }
#endif

      sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
      if (!sysfs_cpus)
            panic("kzalloc in topology_init failed - NR_CPUS too big?");

      for_each_present_cpu(i) {
            if((err = arch_register_cpu(i)))
                  goto out;
      }
out:
      return err;
}

subsys_initcall(topology_init);


/*
 * Export cpu cache information through sysfs
 */

/*
 *  A bunch of string array to get pretty printing
 */
static const char *cache_types[] = {
      "",               /* not used */
      "Instruction",
      "Data",
      "Unified"   /* unified */
};

static const char *cache_mattrib[]={
      "WriteThrough",
      "WriteBack",
      "",         /* reserved */
      ""          /* reserved */
};

struct cache_info {
      pal_cache_config_info_t cci;
      cpumask_t shared_cpu_map;
      int level;
      int type;
      struct kobject kobj;
};

struct cpu_cache_info {
      struct cache_info *cache_leaves;
      int   num_cache_leaves;
      struct kobject kobj;
};

static struct cpu_cache_info  all_cpu_cache_info[NR_CPUS] __cpuinitdata;
#define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])

#ifdef CONFIG_SMP
static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
            struct cache_info * this_leaf)
{
      pal_cache_shared_info_t csi;
      int num_shared, i = 0;
      unsigned int j;

      if (cpu_data(cpu)->threads_per_core <= 1 &&
            cpu_data(cpu)->cores_per_socket <= 1) {
            cpu_set(cpu, this_leaf->shared_cpu_map);
            return;
      }

      if (ia64_pal_cache_shared_info(this_leaf->level,
                              this_leaf->type,
                              0,
                              &csi) != PAL_STATUS_SUCCESS)
            return;

      num_shared = (int) csi.num_shared;
      do {
            for_each_possible_cpu(j)
                  if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
                        && cpu_data(j)->core_id == csi.log1_cid
                        && cpu_data(j)->thread_id == csi.log1_tid)
                        cpu_set(j, this_leaf->shared_cpu_map);

            i++;
      } while (i < num_shared &&
            ia64_pal_cache_shared_info(this_leaf->level,
                        this_leaf->type,
                        i,
                        &csi) == PAL_STATUS_SUCCESS);
}
#else
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
            struct cache_info * this_leaf)
{
      cpu_set(cpu, this_leaf->shared_cpu_map);
      return;
}
#endif

static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
                              char *buf)
{
      return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
}

static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
                              char *buf)
{
      return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
}

static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
{
      return sprintf(buf,
                  "%s\n",
                  cache_mattrib[this_leaf->cci.pcci_cache_attr]);
}

static ssize_t show_size(struct cache_info *this_leaf, char *buf)
{
      return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
}

static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
{
      unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
      number_of_sets /= this_leaf->cci.pcci_assoc;
      number_of_sets /= 1 << this_leaf->cci.pcci_line_size;

      return sprintf(buf, "%u\n", number_of_sets);
}

static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
{
      ssize_t     len;
      cpumask_t shared_cpu_map;

      cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
      len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
      len += sprintf(buf+len, "\n");
      return len;
}

static ssize_t show_type(struct cache_info *this_leaf, char *buf)
{
      int type = this_leaf->type + this_leaf->cci.pcci_unified;
      return sprintf(buf, "%s\n", cache_types[type]);
}

static ssize_t show_level(struct cache_info *this_leaf, char *buf)
{
      return sprintf(buf, "%u\n", this_leaf->level);
}

struct cache_attr {
      struct attribute attr;
      ssize_t (*show)(struct cache_info *, char *);
      ssize_t (*store)(struct cache_info *, const char *, size_t count);
};

#ifdef define_one_ro
      #undef define_one_ro
#endif
#define define_one_ro(_name) \
      static struct cache_attr _name = \
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(level);
define_one_ro(type);
define_one_ro(coherency_line_size);
define_one_ro(ways_of_associativity);
define_one_ro(size);
define_one_ro(number_of_sets);
define_one_ro(shared_cpu_map);
define_one_ro(attributes);

static struct attribute * cache_default_attrs[] = {
      &type.attr,
      &level.attr,
      &coherency_line_size.attr,
      &ways_of_associativity.attr,
      &attributes.attr,
      &size.attr,
      &number_of_sets.attr,
      &shared_cpu_map.attr,
      NULL
};

#define to_object(k) container_of(k, struct cache_info, kobj)
#define to_attr(a) container_of(a, struct cache_attr, attr)

static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
{
      struct cache_attr *fattr = to_attr(attr);
      struct cache_info *this_leaf = to_object(kobj);
      ssize_t ret;

      ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
      return ret;
}

static struct sysfs_ops cache_sysfs_ops = {
      .show   = cache_show
};

static struct kobj_type cache_ktype = {
      .sysfs_ops  = &cache_sysfs_ops,
      .default_attrs    = cache_default_attrs,
};

static struct kobj_type cache_ktype_percpu_entry = {
      .sysfs_ops  = &cache_sysfs_ops,
};

static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
{
      kfree(all_cpu_cache_info[cpu].cache_leaves);
      all_cpu_cache_info[cpu].cache_leaves = NULL;
      all_cpu_cache_info[cpu].num_cache_leaves = 0;
      memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
      return;
}

static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
{
      u64 i, levels, unique_caches;
      pal_cache_config_info_t cci;
      int j;
      s64 status;
      struct cache_info *this_cache;
      int num_cache_leaves = 0;

      if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
            printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
            return -1;
      }

      this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
                  GFP_KERNEL);
      if (this_cache == NULL)
            return -ENOMEM;

      for (i=0; i < levels; i++) {
            for (j=2; j >0 ; j--) {
                  if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
                              PAL_STATUS_SUCCESS)
                        continue;

                  this_cache[num_cache_leaves].cci = cci;
                  this_cache[num_cache_leaves].level = i + 1;
                  this_cache[num_cache_leaves].type = j;

                  cache_shared_cpu_map_setup(cpu,
                              &this_cache[num_cache_leaves]);
                  num_cache_leaves ++;
            }
      }

      all_cpu_cache_info[cpu].cache_leaves = this_cache;
      all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;

      memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));

      return 0;
}

/* Add cache interface for CPU device */
static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
{
      unsigned int cpu = sys_dev->id;
      unsigned long i, j;
      struct cache_info *this_object;
      int retval = 0;
      cpumask_t oldmask;

      if (all_cpu_cache_info[cpu].kobj.parent)
            return 0;

      oldmask = current->cpus_allowed;
      retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
      if (unlikely(retval))
            return retval;

      retval = cpu_cache_sysfs_init(cpu);
      set_cpus_allowed(current, oldmask);
      if (unlikely(retval < 0))
            return retval;

      retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
                              &cache_ktype_percpu_entry, &sys_dev->kobj,
                              "%s", "cache");

      for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
            this_object = LEAF_KOBJECT_PTR(cpu,i);
            retval = kobject_init_and_add(&(this_object->kobj),
                                    &cache_ktype,
                                    &all_cpu_cache_info[cpu].kobj,
                                    "index%1lu", i);
            if (unlikely(retval)) {
                  for (j = 0; j < i; j++) {
                        kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
                  }
                  kobject_put(&all_cpu_cache_info[cpu].kobj);
                  cpu_cache_sysfs_exit(cpu);
                  break;
            }
            kobject_uevent(&(this_object->kobj), KOBJ_ADD);
      }
      kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
      return retval;
}

/* Remove cache interface for CPU device */
static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
{
      unsigned int cpu = sys_dev->id;
      unsigned long i;

      for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
            kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));

      if (all_cpu_cache_info[cpu].kobj.parent) {
            kobject_put(&all_cpu_cache_info[cpu].kobj);
            memset(&all_cpu_cache_info[cpu].kobj,
                  0,
                  sizeof(struct kobject));
      }

      cpu_cache_sysfs_exit(cpu);

      return 0;
}

/*
 * When a cpu is hot-plugged, do a check and initiate
 * cache kobject if necessary
 */
static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
            unsigned long action, void *hcpu)
{
      unsigned int cpu = (unsigned long)hcpu;
      struct sys_device *sys_dev;

      sys_dev = get_cpu_sysdev(cpu);
      switch (action) {
      case CPU_ONLINE:
      case CPU_ONLINE_FROZEN:
            cache_add_dev(sys_dev);
            break;
      case CPU_DEAD:
      case CPU_DEAD_FROZEN:
            cache_remove_dev(sys_dev);
            break;
      }
      return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata cache_cpu_notifier =
{
      .notifier_call = cache_cpu_callback
};

static int __init cache_sysfs_init(void)
{
      int i;

      for_each_online_cpu(i) {
            struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
            cache_add_dev(sys_dev);
      }

      register_hotcpu_notifier(&cache_cpu_notifier);

      return 0;
}

device_initcall(cache_sysfs_init);


Generated by  Doxygen 1.6.0   Back to index