Logo Search packages:      
Sourcecode: linux version File versions  Download package

smp.c

/* smp.c: Sparc SMP support.
 *
 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
 */

#include <asm/head.h>

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/cache.h>
#include <linux/delay.h>

#include <asm/ptrace.h>
#include <asm/atomic.h>

#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/cpudata.h>

#include "irq.h"

volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
unsigned char boot_cpu_id = 0;
unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */

cpumask_t cpu_online_map = CPU_MASK_NONE;
cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
cpumask_t smp_commenced_mask = CPU_MASK_NONE;

/* The only guaranteed locking primitive available on all Sparc
 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
 * places the current byte at the effective address into dest_reg and
 * places 0xff there afterwards.  Pretty lame locking primitive
 * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
 * instruction which is much better...
 */

void __cpuinit smp_store_cpu_info(int id)
{
      int cpu_node;

      cpu_data(id).udelay_val = loops_per_jiffy;

      cpu_find_by_mid(id, &cpu_node);
      cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
                                         "clock-frequency", 0);
      cpu_data(id).prom_node = cpu_node;
      cpu_data(id).mid = cpu_get_hwmid(cpu_node);

      if (cpu_data(id).mid < 0)
            panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
}

void __init smp_cpus_done(unsigned int max_cpus)
{
      extern void smp4m_smp_done(void);
      extern void smp4d_smp_done(void);
      unsigned long bogosum = 0;
      int cpu, num;

      for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
            if (cpu_online(cpu)) {
                  num++;
                  bogosum += cpu_data(cpu).udelay_val;
            }

      printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
            num, bogosum/(500000/HZ),
            (bogosum/(5000/HZ))%100);

      switch(sparc_cpu_model) {
      case sun4:
            printk("SUN4\n");
            BUG();
            break;
      case sun4c:
            printk("SUN4C\n");
            BUG();
            break;
      case sun4m:
            smp4m_smp_done();
            break;
      case sun4d:
            smp4d_smp_done();
            break;
      case sun4e:
            printk("SUN4E\n");
            BUG();
            break;
      case sun4u:
            printk("SUN4U\n");
            BUG();
            break;
      default:
            printk("UNKNOWN!\n");
            BUG();
            break;
      };
}

void cpu_panic(void)
{
      printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
      panic("SMP bolixed\n");
}

struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };

void smp_send_reschedule(int cpu)
{
      /* See sparc64 */
}

void smp_send_stop(void)
{
}

void smp_flush_cache_all(void)
{
      xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
      local_flush_cache_all();
}

void smp_flush_tlb_all(void)
{
      xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
      local_flush_tlb_all();
}

void smp_flush_cache_mm(struct mm_struct *mm)
{
      if(mm->context != NO_CONTEXT) {
            cpumask_t cpu_mask = mm->cpu_vm_mask;
            cpu_clear(smp_processor_id(), cpu_mask);
            if (!cpus_empty(cpu_mask))
                  xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
            local_flush_cache_mm(mm);
      }
}

void smp_flush_tlb_mm(struct mm_struct *mm)
{
      if(mm->context != NO_CONTEXT) {
            cpumask_t cpu_mask = mm->cpu_vm_mask;
            cpu_clear(smp_processor_id(), cpu_mask);
            if (!cpus_empty(cpu_mask)) {
                  xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
                  if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
                        mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
            }
            local_flush_tlb_mm(mm);
      }
}

void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
                     unsigned long end)
{
      struct mm_struct *mm = vma->vm_mm;

      if (mm->context != NO_CONTEXT) {
            cpumask_t cpu_mask = mm->cpu_vm_mask;
            cpu_clear(smp_processor_id(), cpu_mask);
            if (!cpus_empty(cpu_mask))
                  xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
            local_flush_cache_range(vma, start, end);
      }
}

void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
                   unsigned long end)
{
      struct mm_struct *mm = vma->vm_mm;

      if (mm->context != NO_CONTEXT) {
            cpumask_t cpu_mask = mm->cpu_vm_mask;
            cpu_clear(smp_processor_id(), cpu_mask);
            if (!cpus_empty(cpu_mask))
                  xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
            local_flush_tlb_range(vma, start, end);
      }
}

void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
      struct mm_struct *mm = vma->vm_mm;

      if(mm->context != NO_CONTEXT) {
            cpumask_t cpu_mask = mm->cpu_vm_mask;
            cpu_clear(smp_processor_id(), cpu_mask);
            if (!cpus_empty(cpu_mask))
                  xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
            local_flush_cache_page(vma, page);
      }
}

void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
      struct mm_struct *mm = vma->vm_mm;

      if(mm->context != NO_CONTEXT) {
            cpumask_t cpu_mask = mm->cpu_vm_mask;
            cpu_clear(smp_processor_id(), cpu_mask);
            if (!cpus_empty(cpu_mask))
                  xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
            local_flush_tlb_page(vma, page);
      }
}

void smp_reschedule_irq(void)
{
      set_need_resched();
}

void smp_flush_page_to_ram(unsigned long page)
{
      /* Current theory is that those who call this are the one's
       * who have just dirtied their cache with the pages contents
       * in kernel space, therefore we only run this on local cpu.
       *
       * XXX This experiment failed, research further... -DaveM
       */
#if 1
      xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
#endif
      local_flush_page_to_ram(page);
}

void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
      cpumask_t cpu_mask = mm->cpu_vm_mask;
      cpu_clear(smp_processor_id(), cpu_mask);
      if (!cpus_empty(cpu_mask))
            xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
      local_flush_sig_insns(mm, insn_addr);
}

extern unsigned int lvl14_resolution;

/* /proc/profile writes can call this, don't __init it please. */
static DEFINE_SPINLOCK(prof_setup_lock);

int setup_profiling_timer(unsigned int multiplier)
{
      int i;
      unsigned long flags;

      /* Prevent level14 ticker IRQ flooding. */
      if((!multiplier) || (lvl14_resolution / multiplier) < 500)
            return -EINVAL;

      spin_lock_irqsave(&prof_setup_lock, flags);
      for_each_possible_cpu(i) {
            load_profile_irq(i, lvl14_resolution / multiplier);
            prof_multiplier(i) = multiplier;
      }
      spin_unlock_irqrestore(&prof_setup_lock, flags);

      return 0;
}

void __init smp_prepare_cpus(unsigned int max_cpus)
{
      extern void __init smp4m_boot_cpus(void);
      extern void __init smp4d_boot_cpus(void);
      int i, cpuid, extra;

      printk("Entering SMP Mode...\n");

      extra = 0;
      for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
            if (cpuid >= NR_CPUS)
                  extra++;
      }
      /* i = number of cpus */
      if (extra && max_cpus > i - extra)
            printk("Warning: NR_CPUS is too low to start all cpus\n");

      smp_store_cpu_info(boot_cpu_id);

      switch(sparc_cpu_model) {
      case sun4:
            printk("SUN4\n");
            BUG();
            break;
      case sun4c:
            printk("SUN4C\n");
            BUG();
            break;
      case sun4m:
            smp4m_boot_cpus();
            break;
      case sun4d:
            smp4d_boot_cpus();
            break;
      case sun4e:
            printk("SUN4E\n");
            BUG();
            break;
      case sun4u:
            printk("SUN4U\n");
            BUG();
            break;
      default:
            printk("UNKNOWN!\n");
            BUG();
            break;
      };
}

/* Set this up early so that things like the scheduler can init
 * properly.  We use the same cpu mask for both the present and
 * possible cpu map.
 */
void __init smp_setup_cpu_possible_map(void)
{
      int instance, mid;

      instance = 0;
      while (!cpu_find_by_instance(instance, NULL, &mid)) {
            if (mid < NR_CPUS) {
                  cpu_set(mid, phys_cpu_present_map);
                  cpu_set(mid, cpu_present_map);
            }
            instance++;
      }
}

void __init smp_prepare_boot_cpu(void)
{
      int cpuid = hard_smp_processor_id();

      if (cpuid >= NR_CPUS) {
            prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
            prom_halt();
      }
      if (cpuid != 0)
            printk("boot cpu id != 0, this could work but is untested\n");

      current_thread_info()->cpu = cpuid;
      cpu_set(cpuid, cpu_online_map);
      cpu_set(cpuid, phys_cpu_present_map);
}

int __cpuinit __cpu_up(unsigned int cpu)
{
      extern int __cpuinit smp4m_boot_one_cpu(int);
      extern int __cpuinit smp4d_boot_one_cpu(int);
      int ret=0;

      switch(sparc_cpu_model) {
      case sun4:
            printk("SUN4\n");
            BUG();
            break;
      case sun4c:
            printk("SUN4C\n");
            BUG();
            break;
      case sun4m:
            ret = smp4m_boot_one_cpu(cpu);
            break;
      case sun4d:
            ret = smp4d_boot_one_cpu(cpu);
            break;
      case sun4e:
            printk("SUN4E\n");
            BUG();
            break;
      case sun4u:
            printk("SUN4U\n");
            BUG();
            break;
      default:
            printk("UNKNOWN!\n");
            BUG();
            break;
      };

      if (!ret) {
            cpu_set(cpu, smp_commenced_mask);
            while (!cpu_online(cpu))
                  mb();
      }
      return ret;
}

void smp_bogo(struct seq_file *m)
{
      int i;
      
      for_each_online_cpu(i) {
            seq_printf(m,
                     "Cpu%dBogo\t: %lu.%02lu\n",
                     i,
                     cpu_data(i).udelay_val/(500000/HZ),
                     (cpu_data(i).udelay_val/(5000/HZ))%100);
      }
}

void smp_info(struct seq_file *m)
{
      int i;

      seq_printf(m, "State:\n");
      for_each_online_cpu(i)
            seq_printf(m, "CPU%d\t\t: online\n", i);
}

Generated by  Doxygen 1.6.0   Back to index