Logo Search packages:      
Sourcecode: linux version File versions

sys_ia32.c

/*
 * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
 *
 * Copyright (C) 2000         VA Linux Co
 * Copyright (C) 2000         Don Dugger <n0ano@valinux.com>
 * Copyright (C) 1999         Arun Sharma <arun.sharma@intel.com>
 * Copyright (C) 1997,1998    Jakub Jelinek (jj@sunsite.mff.cuni.cz)
 * Copyright (C) 1997         David S. Miller (davem@caip.rutgers.edu)
 * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
 *    David Mosberger-Tang <davidm@hpl.hp.com>
 * Copyright (C) 2004         Gordon Jin <gordon.jin@intel.com>
 *
 * These routines maintain argument size conversion between 32bit and 64bit
 * environment.
 */

#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/sysctl.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/signal.h>
#include <linux/resource.h>
#include <linux/times.h>
#include <linux/utsname.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/sem.h>
#include <linux/msg.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/socket.h>
#include <linux/quota.h>
#include <linux/poll.h>
#include <linux/eventpoll.h>
#include <linux/personality.h>
#include <linux/ptrace.h>
#include <linux/regset.h>
#include <linux/stat.h>
#include <linux/ipc.h>
#include <linux/capability.h>
#include <linux/compat.h>
#include <linux/vfs.h>
#include <linux/mman.h>
#include <linux/mutex.h>

#include <asm/intrinsics.h>
#include <asm/types.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>

#include "ia32priv.h"

#include <net/scm.h>
#include <net/sock.h>

#define DEBUG     0

#if DEBUG
# define DBG(fmt...)    printk(KERN_DEBUG fmt)
#else
# define DBG(fmt...)
#endif

#define ROUND_UP(x,a)   ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))

#define OFFSET4K(a)           ((a) & 0xfff)
#define PAGE_START(addr)      ((addr) & PAGE_MASK)
#define MINSIGSTKSZ_IA32      2048

#define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
#define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))

/*
 * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
 * while doing so.
 */
/* XXX make per-mm: */
static DEFINE_MUTEX(ia32_mmap_mutex);

asmlinkage long
sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
            struct pt_regs *regs)
{
      long error;
      char *filename;
      unsigned long old_map_base, old_task_size, tssd;

      filename = getname(name);
      error = PTR_ERR(filename);
      if (IS_ERR(filename))
            return error;

      old_map_base  = current->thread.map_base;
      old_task_size = current->thread.task_size;
      tssd = ia64_get_kr(IA64_KR_TSSD);

      /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
      current->thread.map_base  = DEFAULT_MAP_BASE;
      current->thread.task_size = DEFAULT_TASK_SIZE;
      ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
      ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);

      error = compat_do_execve(filename, argv, envp, regs);
      putname(filename);

      if (error < 0) {
            /* oops, execve failed, switch back to old values... */
            ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
            ia64_set_kr(IA64_KR_TSSD, tssd);
            current->thread.map_base  = old_map_base;
            current->thread.task_size = old_task_size;
      }

      return error;
}

int cp_compat_stat(struct kstat *stat, struct compat_stat __user *ubuf)
{
      compat_ino_t ino;
      int err;

      if ((u64) stat->size > MAX_NON_LFS ||
          !old_valid_dev(stat->dev) ||
          !old_valid_dev(stat->rdev))
            return -EOVERFLOW;

      ino = stat->ino;
      if (sizeof(ino) < sizeof(stat->ino) && ino != stat->ino)
            return -EOVERFLOW;

      if (clear_user(ubuf, sizeof(*ubuf)))
            return -EFAULT;

      err  = __put_user(old_encode_dev(stat->dev), &ubuf->st_dev);
      err |= __put_user(ino, &ubuf->st_ino);
      err |= __put_user(stat->mode, &ubuf->st_mode);
      err |= __put_user(stat->nlink, &ubuf->st_nlink);
      err |= __put_user(high2lowuid(stat->uid), &ubuf->st_uid);
      err |= __put_user(high2lowgid(stat->gid), &ubuf->st_gid);
      err |= __put_user(old_encode_dev(stat->rdev), &ubuf->st_rdev);
      err |= __put_user(stat->size, &ubuf->st_size);
      err |= __put_user(stat->atime.tv_sec, &ubuf->st_atime);
      err |= __put_user(stat->atime.tv_nsec, &ubuf->st_atime_nsec);
      err |= __put_user(stat->mtime.tv_sec, &ubuf->st_mtime);
      err |= __put_user(stat->mtime.tv_nsec, &ubuf->st_mtime_nsec);
      err |= __put_user(stat->ctime.tv_sec, &ubuf->st_ctime);
      err |= __put_user(stat->ctime.tv_nsec, &ubuf->st_ctime_nsec);
      err |= __put_user(stat->blksize, &ubuf->st_blksize);
      err |= __put_user(stat->blocks, &ubuf->st_blocks);
      return err;
}

#if PAGE_SHIFT > IA32_PAGE_SHIFT


static int
get_page_prot (struct vm_area_struct *vma, unsigned long addr)
{
      int prot = 0;

      if (!vma || vma->vm_start > addr)
            return 0;

      if (vma->vm_flags & VM_READ)
            prot |= PROT_READ;
      if (vma->vm_flags & VM_WRITE)
            prot |= PROT_WRITE;
      if (vma->vm_flags & VM_EXEC)
            prot |= PROT_EXEC;
      return prot;
}

/*
 * Map a subpage by creating an anonymous page that contains the union of the old page and
 * the subpage.
 */
static unsigned long
mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
            loff_t off)
{
      void *page = NULL;
      struct inode *inode;
      unsigned long ret = 0;
      struct vm_area_struct *vma = find_vma(current->mm, start);
      int old_prot = get_page_prot(vma, start);

      DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
          file, start, end, prot, flags, off);


      /* Optimize the case where the old mmap and the new mmap are both anonymous */
      if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
            if (clear_user((void __user *) start, end - start)) {
                  ret = -EFAULT;
                  goto out;
            }
            goto skip_mmap;
      }

      page = (void *) get_zeroed_page(GFP_KERNEL);
      if (!page)
            return -ENOMEM;

      if (old_prot)
            copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);

      down_write(&current->mm->mmap_sem);
      {
            ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
                        flags | MAP_FIXED | MAP_ANONYMOUS, 0);
      }
      up_write(&current->mm->mmap_sem);

      if (IS_ERR((void *) ret))
            goto out;

      if (old_prot) {
            /* copy back the old page contents.  */
            if (offset_in_page(start))
                  copy_to_user((void __user *) PAGE_START(start), page,
                             offset_in_page(start));
            if (offset_in_page(end))
                  copy_to_user((void __user *) end, page + offset_in_page(end),
                             PAGE_SIZE - offset_in_page(end));
      }

      if (!(flags & MAP_ANONYMOUS)) {
            /* read the file contents */
            inode = file->f_path.dentry->d_inode;
            if (!inode->i_fop || !file->f_op->read
                || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
            {
                  ret = -EINVAL;
                  goto out;
            }
      }

 skip_mmap:
      if (!(prot & PROT_WRITE))
            ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
  out:
      if (page)
            free_page((unsigned long) page);
      return ret;
}

/* SLAB cache for ia64_partial_page structures */
struct kmem_cache *ia64_partial_page_cachep;

/*
 * init ia64_partial_page_list.
 * return 0 means kmalloc fail.
 */
struct ia64_partial_page_list*
ia32_init_pp_list(void)
{
      struct ia64_partial_page_list *p;

      if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
            return p;
      p->pp_head = NULL;
      p->ppl_rb = RB_ROOT;
      p->pp_hint = NULL;
      atomic_set(&p->pp_count, 1);
      return p;
}

/*
 * Search for the partial page with @start in partial page list @ppl.
 * If finds the partial page, return the found partial page.
 * Else, return 0 and provide @pprev, @rb_link, @rb_parent to
 * be used by later __ia32_insert_pp().
 */
static struct ia64_partial_page *
__ia32_find_pp(struct ia64_partial_page_list *ppl, unsigned int start,
      struct ia64_partial_page **pprev, struct rb_node ***rb_link,
      struct rb_node **rb_parent)
{
      struct ia64_partial_page *pp;
      struct rb_node **__rb_link, *__rb_parent, *rb_prev;

      pp = ppl->pp_hint;
      if (pp && pp->base == start)
            return pp;

      __rb_link = &ppl->ppl_rb.rb_node;
      rb_prev = __rb_parent = NULL;

      while (*__rb_link) {
            __rb_parent = *__rb_link;
            pp = rb_entry(__rb_parent, struct ia64_partial_page, pp_rb);

            if (pp->base == start) {
                  ppl->pp_hint = pp;
                  return pp;
            } else if (pp->base < start) {
                  rb_prev = __rb_parent;
                  __rb_link = &__rb_parent->rb_right;
            } else {
                  __rb_link = &__rb_parent->rb_left;
            }
      }

      *rb_link = __rb_link;
      *rb_parent = __rb_parent;
      *pprev = NULL;
      if (rb_prev)
            *pprev = rb_entry(rb_prev, struct ia64_partial_page, pp_rb);
      return NULL;
}

/*
 * insert @pp into @ppl.
 */
static void
__ia32_insert_pp(struct ia64_partial_page_list *ppl,
      struct ia64_partial_page *pp, struct ia64_partial_page *prev,
      struct rb_node **rb_link, struct rb_node *rb_parent)
{
      /* link list */
      if (prev) {
            pp->next = prev->next;
            prev->next = pp;
      } else {
            ppl->pp_head = pp;
            if (rb_parent)
                  pp->next = rb_entry(rb_parent,
                        struct ia64_partial_page, pp_rb);
            else
                  pp->next = NULL;
      }

      /* link rb */
      rb_link_node(&pp->pp_rb, rb_parent, rb_link);
      rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);

      ppl->pp_hint = pp;
}

/*
 * delete @pp from partial page list @ppl.
 */
static void
__ia32_delete_pp(struct ia64_partial_page_list *ppl,
      struct ia64_partial_page *pp, struct ia64_partial_page *prev)
{
      if (prev) {
            prev->next = pp->next;
            if (ppl->pp_hint == pp)
                  ppl->pp_hint = prev;
      } else {
            ppl->pp_head = pp->next;
            if (ppl->pp_hint == pp)
                  ppl->pp_hint = pp->next;
      }
      rb_erase(&pp->pp_rb, &ppl->ppl_rb);
      kmem_cache_free(ia64_partial_page_cachep, pp);
}

static struct ia64_partial_page *
__pp_prev(struct ia64_partial_page *pp)
{
      struct rb_node *prev = rb_prev(&pp->pp_rb);
      if (prev)
            return rb_entry(prev, struct ia64_partial_page, pp_rb);
      else
            return NULL;
}

/*
 * Delete partial pages with address between @start and @end.
 * @start and @end are page aligned.
 */
static void
__ia32_delete_pp_range(unsigned int start, unsigned int end)
{
      struct ia64_partial_page *pp, *prev;
      struct rb_node **rb_link, *rb_parent;

      if (start >= end)
            return;

      pp = __ia32_find_pp(current->thread.ppl, start, &prev,
                              &rb_link, &rb_parent);
      if (pp)
            prev = __pp_prev(pp);
      else {
            if (prev)
                  pp = prev->next;
            else
                  pp = current->thread.ppl->pp_head;
      }

      while (pp && pp->base < end) {
            struct ia64_partial_page *tmp = pp->next;
            __ia32_delete_pp(current->thread.ppl, pp, prev);
            pp = tmp;
      }
}

/*
 * Set the range between @start and @end in bitmap.
 * @start and @end should be IA32 page aligned and in the same IA64 page.
 */
static int
__ia32_set_pp(unsigned int start, unsigned int end, int flags)
{
      struct ia64_partial_page *pp, *prev;
      struct rb_node ** rb_link, *rb_parent;
      unsigned int pstart, start_bit, end_bit, i;

      pstart = PAGE_START(start);
      start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
      end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
      if (end_bit == 0)
            end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
      pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
                              &rb_link, &rb_parent);
      if (pp) {
            for (i = start_bit; i < end_bit; i++)
                  set_bit(i, &pp->bitmap);
            /*
             * Check: if this partial page has been set to a full page,
             * then delete it.
             */
            if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
                        PAGE_SIZE/IA32_PAGE_SIZE) {
                  __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
            }
            return 0;
      }

      /*
       * MAP_FIXED may lead to overlapping mmap.
       * In this case, the requested mmap area may already mmaped as a full
       * page. So check vma before adding a new partial page.
       */
      if (flags & MAP_FIXED) {
            struct vm_area_struct *vma = find_vma(current->mm, pstart);
            if (vma && vma->vm_start <= pstart)
                  return 0;
      }

      /* new a ia64_partial_page */
      pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
      if (!pp)
            return -ENOMEM;
      pp->base = pstart;
      pp->bitmap = 0;
      for (i=start_bit; i<end_bit; i++)
            set_bit(i, &(pp->bitmap));
      pp->next = NULL;
      __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
      return 0;
}

/*
 * @start and @end should be IA32 page aligned, but don't need to be in the
 * same IA64 page. Split @start and @end to make sure they're in the same IA64
 * page, then call __ia32_set_pp().
 */
static void
ia32_set_pp(unsigned int start, unsigned int end, int flags)
{
      down_write(&current->mm->mmap_sem);
      if (flags & MAP_FIXED) {
            /*
             * MAP_FIXED may lead to overlapping mmap. When this happens,
             * a series of complete IA64 pages results in deletion of
             * old partial pages in that range.
             */
            __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
      }

      if (end < PAGE_ALIGN(start)) {
            __ia32_set_pp(start, end, flags);
      } else {
            if (offset_in_page(start))
                  __ia32_set_pp(start, PAGE_ALIGN(start), flags);
            if (offset_in_page(end))
                  __ia32_set_pp(PAGE_START(end), end, flags);
      }
      up_write(&current->mm->mmap_sem);
}

/*
 * Unset the range between @start and @end in bitmap.
 * @start and @end should be IA32 page aligned and in the same IA64 page.
 * After doing that, if the bitmap is 0, then free the page and return 1,
 *    else return 0;
 * If not find the partial page in the list, then
 *    If the vma exists, then the full page is set to a partial page;
 *    Else return -ENOMEM.
 */
static int
__ia32_unset_pp(unsigned int start, unsigned int end)
{
      struct ia64_partial_page *pp, *prev;
      struct rb_node ** rb_link, *rb_parent;
      unsigned int pstart, start_bit, end_bit, i;
      struct vm_area_struct *vma;

      pstart = PAGE_START(start);
      start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
      end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
      if (end_bit == 0)
            end_bit = PAGE_SIZE / IA32_PAGE_SIZE;

      pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
                              &rb_link, &rb_parent);
      if (pp) {
            for (i = start_bit; i < end_bit; i++)
                  clear_bit(i, &pp->bitmap);
            if (pp->bitmap == 0) {
                  __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
                  return 1;
            }
            return 0;
      }

      vma = find_vma(current->mm, pstart);
      if (!vma || vma->vm_start > pstart) {
            return -ENOMEM;
      }

      /* new a ia64_partial_page */
      pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
      if (!pp)
            return -ENOMEM;
      pp->base = pstart;
      pp->bitmap = 0;
      for (i = 0; i < start_bit; i++)
            set_bit(i, &(pp->bitmap));
      for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
            set_bit(i, &(pp->bitmap));
      pp->next = NULL;
      __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
      return 0;
}

/*
 * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
 * __ia32_delete_pp_range(). Unset possible partial pages by calling
 * __ia32_unset_pp().
 * The returned value see __ia32_unset_pp().
 */
static int
ia32_unset_pp(unsigned int *startp, unsigned int *endp)
{
      unsigned int start = *startp, end = *endp;
      int ret = 0;

      down_write(&current->mm->mmap_sem);

      __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));

      if (end < PAGE_ALIGN(start)) {
            ret = __ia32_unset_pp(start, end);
            if (ret == 1) {
                  *startp = PAGE_START(start);
                  *endp = PAGE_ALIGN(end);
            }
            if (ret == 0) {
                  /* to shortcut sys_munmap() in sys32_munmap() */
                  *startp = PAGE_START(start);
                  *endp = PAGE_START(end);
            }
      } else {
            if (offset_in_page(start)) {
                  ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
                  if (ret == 1)
                        *startp = PAGE_START(start);
                  if (ret == 0)
                        *startp = PAGE_ALIGN(start);
                  if (ret < 0)
                        goto out;
            }
            if (offset_in_page(end)) {
                  ret = __ia32_unset_pp(PAGE_START(end), end);
                  if (ret == 1)
                        *endp = PAGE_ALIGN(end);
                  if (ret == 0)
                        *endp = PAGE_START(end);
            }
      }

 out:
      up_write(&current->mm->mmap_sem);
      return ret;
}

/*
 * Compare the range between @start and @end with bitmap in partial page.
 * @start and @end should be IA32 page aligned and in the same IA64 page.
 */
static int
__ia32_compare_pp(unsigned int start, unsigned int end)
{
      struct ia64_partial_page *pp, *prev;
      struct rb_node ** rb_link, *rb_parent;
      unsigned int pstart, start_bit, end_bit, size;
      unsigned int first_bit, next_zero_bit;    /* the first range in bitmap */

      pstart = PAGE_START(start);

      pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
                              &rb_link, &rb_parent);
      if (!pp)
            return 1;

      start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
      end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
      size = sizeof(pp->bitmap) * 8;
      first_bit = find_first_bit(&pp->bitmap, size);
      next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
      if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
            /* exceeds the first range in bitmap */
            return -ENOMEM;
      } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
            first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
            if ((next_zero_bit < first_bit) && (first_bit < size))
                  return 1;   /* has next range */
            else
                  return 0;   /* no next range */
      } else
            return 1;
}

/*
 * @start and @end should be IA32 page aligned, but don't need to be in the
 * same IA64 page. Split @start and @end to make sure they're in the same IA64
 * page, then call __ia32_compare_pp().
 *
 * Take this as example: the range is the 1st and 2nd 4K page.
 * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
 * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
 * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
 *    bitmap = 00000101.
 */
static int
ia32_compare_pp(unsigned int *startp, unsigned int *endp)
{
      unsigned int start = *startp, end = *endp;
      int retval = 0;

      down_write(&current->mm->mmap_sem);

      if (end < PAGE_ALIGN(start)) {
            retval = __ia32_compare_pp(start, end);
            if (retval == 0) {
                  *startp = PAGE_START(start);
                  *endp = PAGE_ALIGN(end);
            }
      } else {
            if (offset_in_page(start)) {
                  retval = __ia32_compare_pp(start,
                                       PAGE_ALIGN(start));
                  if (retval == 0)
                        *startp = PAGE_START(start);
                  if (retval < 0)
                        goto out;
            }
            if (offset_in_page(end)) {
                  retval = __ia32_compare_pp(PAGE_START(end), end);
                  if (retval == 0)
                        *endp = PAGE_ALIGN(end);
            }
      }

 out:
      up_write(&current->mm->mmap_sem);
      return retval;
}

static void
__ia32_drop_pp_list(struct ia64_partial_page_list *ppl)
{
      struct ia64_partial_page *pp = ppl->pp_head;

      while (pp) {
            struct ia64_partial_page *next = pp->next;
            kmem_cache_free(ia64_partial_page_cachep, pp);
            pp = next;
      }

      kfree(ppl);
}

void
ia32_drop_ia64_partial_page_list(struct task_struct *task)
{
      struct ia64_partial_page_list* ppl = task->thread.ppl;

      if (ppl && atomic_dec_and_test(&ppl->pp_count))
            __ia32_drop_pp_list(ppl);
}

/*
 * Copy current->thread.ppl to ppl (already initialized).
 */
static int
__ia32_copy_pp_list(struct ia64_partial_page_list *ppl)
{
      struct ia64_partial_page *pp, *tmp, *prev;
      struct rb_node **rb_link, *rb_parent;

      ppl->pp_head = NULL;
      ppl->pp_hint = NULL;
      ppl->ppl_rb = RB_ROOT;
      rb_link = &ppl->ppl_rb.rb_node;
      rb_parent = NULL;
      prev = NULL;

      for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
            tmp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
            if (!tmp)
                  return -ENOMEM;
            *tmp = *pp;
            __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
            prev = tmp;
            rb_link = &tmp->pp_rb.rb_right;
            rb_parent = &tmp->pp_rb;
      }
      return 0;
}

int
ia32_copy_ia64_partial_page_list(struct task_struct *p,
                        unsigned long clone_flags)
{
      int retval = 0;

      if (clone_flags & CLONE_VM) {
            atomic_inc(&current->thread.ppl->pp_count);
            p->thread.ppl = current->thread.ppl;
      } else {
            p->thread.ppl = ia32_init_pp_list();
            if (!p->thread.ppl)
                  return -ENOMEM;
            down_write(&current->mm->mmap_sem);
            {
                  retval = __ia32_copy_pp_list(p->thread.ppl);
            }
            up_write(&current->mm->mmap_sem);
      }

      return retval;
}

static unsigned long
emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
            loff_t off)
{
      unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
      struct inode *inode;
      loff_t poff;

      end = start + len;
      pstart = PAGE_START(start);
      pend = PAGE_ALIGN(end);

      if (flags & MAP_FIXED) {
            ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
            if (start > pstart) {
                  if (flags & MAP_SHARED)
                        printk(KERN_INFO
                               "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
                               current->comm, task_pid_nr(current), start);
                  ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
                                 off);
                  if (IS_ERR((void *) ret))
                        return ret;
                  pstart += PAGE_SIZE;
                  if (pstart >= pend)
                        goto out;   /* done */
            }
            if (end < pend) {
                  if (flags & MAP_SHARED)
                        printk(KERN_INFO
                               "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
                               current->comm, task_pid_nr(current), end);
                  ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
                                 (off + len) - offset_in_page(end));
                  if (IS_ERR((void *) ret))
                        return ret;
                  pend -= PAGE_SIZE;
                  if (pstart >= pend)
                        goto out;   /* done */
            }
      } else {
            /*
             * If a start address was specified, use it if the entire rounded out area
             * is available.
             */
            if (start && !pstart)
                  fudge = 1;  /* handle case of mapping to range (0,PAGE_SIZE) */
            tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
            if (tmp != pstart) {
                  pstart = tmp;
                  start = pstart + offset_in_page(off);     /* make start congruent with off */
                  end = start + len;
                  pend = PAGE_ALIGN(end);
            }
      }

      poff = off + (pstart - start);      /* note: (pstart - start) may be negative */
      is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);

      if ((flags & MAP_SHARED) && !is_congruent)
            printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
                   "(addr=0x%lx,off=0x%llx)\n", current->comm, task_pid_nr(current), start, off);

      DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
          is_congruent ? "congruent" : "not congruent", poff);

      down_write(&current->mm->mmap_sem);
      {
            if (!(flags & MAP_ANONYMOUS) && is_congruent)
                  ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
            else
                  ret = do_mmap(NULL, pstart, pend - pstart,
                              prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
                              flags | MAP_FIXED | MAP_ANONYMOUS, 0);
      }
      up_write(&current->mm->mmap_sem);

      if (IS_ERR((void *) ret))
            return ret;

      if (!is_congruent) {
            /* read the file contents */
            inode = file->f_path.dentry->d_inode;
            if (!inode->i_fop || !file->f_op->read
                || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
                  < 0))
            {
                  sys_munmap(pstart, pend - pstart);
                  return -EINVAL;
            }
            if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
                  return -EINVAL;
      }

      if (!(flags & MAP_FIXED))
            ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
out:
      return start;
}

#endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */

static inline unsigned int
get_prot32 (unsigned int prot)
{
      if (prot & PROT_WRITE)
            /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
            prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
      else if (prot & (PROT_READ | PROT_EXEC))
            /* on x86, there is no distinction between PROT_READ and PROT_EXEC */
            prot |= (PROT_READ | PROT_EXEC);

      return prot;
}

unsigned long
ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
            loff_t offset)
{
      DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
          file, addr, len, prot, flags, offset);

      if (file && (!file->f_op || !file->f_op->mmap))
            return -ENODEV;

      len = IA32_PAGE_ALIGN(len);
      if (len == 0)
            return addr;

      if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
      {
            if (flags & MAP_FIXED)
                  return -ENOMEM;
            else
            return -EINVAL;
      }

      if (OFFSET4K(offset))
            return -EINVAL;

      prot = get_prot32(prot);

#if PAGE_SHIFT > IA32_PAGE_SHIFT
      mutex_lock(&ia32_mmap_mutex);
      {
            addr = emulate_mmap(file, addr, len, prot, flags, offset);
      }
      mutex_unlock(&ia32_mmap_mutex);
#else
      down_write(&current->mm->mmap_sem);
      {
            addr = do_mmap(file, addr, len, prot, flags, offset);
      }
      up_write(&current->mm->mmap_sem);
#endif
      DBG("ia32_do_mmap: returning 0x%lx\n", addr);
      return addr;
}

/*
 * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
 * system calls used a memory block for parameter passing..
 */

struct mmap_arg_struct {
      unsigned int addr;
      unsigned int len;
      unsigned int prot;
      unsigned int flags;
      unsigned int fd;
      unsigned int offset;
};

asmlinkage long
sys32_mmap (struct mmap_arg_struct __user *arg)
{
      struct mmap_arg_struct a;
      struct file *file = NULL;
      unsigned long addr;
      int flags;

      if (copy_from_user(&a, arg, sizeof(a)))
            return -EFAULT;

      if (OFFSET4K(a.offset))
            return -EINVAL;

      flags = a.flags;

      flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
      if (!(flags & MAP_ANONYMOUS)) {
            file = fget(a.fd);
            if (!file)
                  return -EBADF;
      }

      addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);

      if (file)
            fput(file);
      return addr;
}

asmlinkage long
sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
           unsigned int fd, unsigned int pgoff)
{
      struct file *file = NULL;
      unsigned long retval;

      flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
      if (!(flags & MAP_ANONYMOUS)) {
            file = fget(fd);
            if (!file)
                  return -EBADF;
      }

      retval = ia32_do_mmap(file, addr, len, prot, flags,
                        (unsigned long) pgoff << IA32_PAGE_SHIFT);

      if (file)
            fput(file);
      return retval;
}

asmlinkage long
sys32_munmap (unsigned int start, unsigned int len)
{
      unsigned int end = start + len;
      long ret;

#if PAGE_SHIFT <= IA32_PAGE_SHIFT
      ret = sys_munmap(start, end - start);
#else
      if (OFFSET4K(start))
            return -EINVAL;

      end = IA32_PAGE_ALIGN(end);
      if (start >= end)
            return -EINVAL;

      ret = ia32_unset_pp(&start, &end);
      if (ret < 0)
            return ret;

      if (start >= end)
            return 0;

      mutex_lock(&ia32_mmap_mutex);
      ret = sys_munmap(start, end - start);
      mutex_unlock(&ia32_mmap_mutex);
#endif
      return ret;
}

#if PAGE_SHIFT > IA32_PAGE_SHIFT

/*
 * When mprotect()ing a partial page, we set the permission to the union of the old
 * settings and the new settings.  In other words, it's only possible to make access to a
 * partial page less restrictive.
 */
static long
mprotect_subpage (unsigned long address, int new_prot)
{
      int old_prot;
      struct vm_area_struct *vma;

      if (new_prot == PROT_NONE)
            return 0;         /* optimize case where nothing changes... */
      vma = find_vma(current->mm, address);
      old_prot = get_page_prot(vma, address);
      return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
}

#endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */

asmlinkage long
sys32_mprotect (unsigned int start, unsigned int len, int prot)
{
      unsigned int end = start + len;
#if PAGE_SHIFT > IA32_PAGE_SHIFT
      long retval = 0;
#endif

      prot = get_prot32(prot);

#if PAGE_SHIFT <= IA32_PAGE_SHIFT
      return sys_mprotect(start, end - start, prot);
#else
      if (OFFSET4K(start))
            return -EINVAL;

      end = IA32_PAGE_ALIGN(end);
      if (end < start)
            return -EINVAL;

      retval = ia32_compare_pp(&start, &end);

      if (retval < 0)
            return retval;

      mutex_lock(&ia32_mmap_mutex);
      {
            if (offset_in_page(start)) {
                  /* start address is 4KB aligned but not page aligned. */
                  retval = mprotect_subpage(PAGE_START(start), prot);
                  if (retval < 0)
                        goto out;

                  start = PAGE_ALIGN(start);
                  if (start >= end)
                        goto out;   /* retval is already zero... */
            }

            if (offset_in_page(end)) {
                  /* end address is 4KB aligned but not page aligned. */
                  retval = mprotect_subpage(PAGE_START(end), prot);
                  if (retval < 0)
                        goto out;

                  end = PAGE_START(end);
            }
            retval = sys_mprotect(start, end - start, prot);
      }
  out:
      mutex_unlock(&ia32_mmap_mutex);
      return retval;
#endif
}

asmlinkage long
sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
            unsigned int flags, unsigned int new_addr)
{
      long ret;

#if PAGE_SHIFT <= IA32_PAGE_SHIFT
      ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
#else
      unsigned int old_end, new_end;

      if (OFFSET4K(addr))
            return -EINVAL;

      old_len = IA32_PAGE_ALIGN(old_len);
      new_len = IA32_PAGE_ALIGN(new_len);
      old_end = addr + old_len;
      new_end = addr + new_len;

      if (!new_len)
            return -EINVAL;

      if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
            return -EINVAL;

      if (old_len >= new_len) {
            ret = sys32_munmap(addr + new_len, old_len - new_len);
            if (ret && old_len != new_len)
                  return ret;
            ret = addr;
            if (!(flags & MREMAP_FIXED) || (new_addr == addr))
                  return ret;
            old_len = new_len;
      }

      addr = PAGE_START(addr);
      old_len = PAGE_ALIGN(old_end) - addr;
      new_len = PAGE_ALIGN(new_end) - addr;

      mutex_lock(&ia32_mmap_mutex);
      ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
      mutex_unlock(&ia32_mmap_mutex);

      if ((ret >= 0) && (old_len < new_len)) {
            /* mremap expanded successfully */
            ia32_set_pp(old_end, new_end, flags);
      }
#endif
      return ret;
}

asmlinkage long
sys32_pipe (int __user *fd)
{
      int retval;
      int fds[2];

      retval = do_pipe_flags(fds, 0);
      if (retval)
            goto out;
      if (copy_to_user(fd, fds, sizeof(fds)))
            retval = -EFAULT;
  out:
      return retval;
}

static inline long
get_tv32 (struct timeval *o, struct compat_timeval __user *i)
{
      return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
            (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec)));
}

static inline long
put_tv32 (struct compat_timeval __user *o, struct timeval *i)
{
      return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
            (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec)));
}

asmlinkage unsigned long
sys32_alarm (unsigned int seconds)
{
      return alarm_setitimer(seconds);
}

/* Translations due to time_t size differences.  Which affects all
   sorts of things, like timeval and itimerval.  */

extern struct timezone sys_tz;

asmlinkage long
sys32_gettimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
{
      if (tv) {
            struct timeval ktv;
            do_gettimeofday(&ktv);
            if (put_tv32(tv, &ktv))
                  return -EFAULT;
      }
      if (tz) {
            if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
                  return -EFAULT;
      }
      return 0;
}

asmlinkage long
sys32_settimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
{
      struct timeval ktv;
      struct timespec kts;
      struct timezone ktz;

      if (tv) {
            if (get_tv32(&ktv, tv))
                  return -EFAULT;
            kts.tv_sec = ktv.tv_sec;
            kts.tv_nsec = ktv.tv_usec * 1000;
      }
      if (tz) {
            if (copy_from_user(&ktz, tz, sizeof(ktz)))
                  return -EFAULT;
      }

      return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
}

struct sel_arg_struct {
      unsigned int n;
      unsigned int inp;
      unsigned int outp;
      unsigned int exp;
      unsigned int tvp;
};

asmlinkage long
sys32_old_select (struct sel_arg_struct __user *arg)
{
      struct sel_arg_struct a;

      if (copy_from_user(&a, arg, sizeof(a)))
            return -EFAULT;
      return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
                         compat_ptr(a.exp), compat_ptr(a.tvp));
}

#define SEMOP            1
#define SEMGET           2
#define SEMCTL           3
#define SEMTIMEDOP       4
#define MSGSND          11
#define MSGRCV          12
#define MSGGET          13
#define MSGCTL          14
#define SHMAT           21
#define SHMDT           22
#define SHMGET          23
#define SHMCTL          24

asmlinkage long
sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
{
      int version;

      version = call >> 16; /* hack for backward compatibility */
      call &= 0xffff;

      switch (call) {
            case SEMTIMEDOP:
            if (fifth)
                  return compat_sys_semtimedop(first, compat_ptr(ptr),
                        second, compat_ptr(fifth));
            /* else fall through for normal semop() */
            case SEMOP:
            /* struct sembuf is the same on 32 and 64bit :)) */
            return sys_semtimedop(first, compat_ptr(ptr), second,
                              NULL);
            case SEMGET:
            return sys_semget(first, second, third);
            case SEMCTL:
            return compat_sys_semctl(first, second, third, compat_ptr(ptr));

            case MSGSND:
            return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
            case MSGRCV:
            return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
            case MSGGET:
            return sys_msgget((key_t) first, second);
            case MSGCTL:
            return compat_sys_msgctl(first, second, compat_ptr(ptr));

            case SHMAT:
            return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
            break;
            case SHMDT:
            return sys_shmdt(compat_ptr(ptr));
            case SHMGET:
            return sys_shmget(first, (unsigned)second, third);
            case SHMCTL:
            return compat_sys_shmctl(first, second, compat_ptr(ptr));

            default:
            return -ENOSYS;
      }
      return -EINVAL;
}

asmlinkage long
compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
             struct compat_rusage *ru);

asmlinkage long
sys32_waitpid (int pid, unsigned int *stat_addr, int options)
{
      return compat_sys_wait4(pid, stat_addr, options, NULL);
}

static unsigned int
ia32_peek (struct task_struct *child, unsigned long addr, unsigned int *val)
{
      size_t copied;
      unsigned int ret;

      copied = access_process_vm(child, addr, val, sizeof(*val), 0);
      return (copied != sizeof(ret)) ? -EIO : 0;
}

static unsigned int
ia32_poke (struct task_struct *child, unsigned long addr, unsigned int val)
{

      if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
            return -EIO;
      return 0;
}

/*
 *  The order in which registers are stored in the ptrace regs structure
 */
#define PT_EBX    0
#define PT_ECX    1
#define PT_EDX    2
#define PT_ESI    3
#define PT_EDI    4
#define PT_EBP    5
#define PT_EAX    6
#define PT_DS     7
#define PT_ES     8
#define PT_FS     9
#define PT_GS     10
#define PT_ORIG_EAX 11
#define PT_EIP    12
#define PT_CS     13
#define PT_EFL    14
#define PT_UESP   15
#define PT_SS     16

static unsigned int
getreg (struct task_struct *child, int regno)
{
      struct pt_regs *child_regs;

      child_regs = task_pt_regs(child);
      switch (regno / sizeof(int)) {
            case PT_EBX: return child_regs->r11;
            case PT_ECX: return child_regs->r9;
            case PT_EDX: return child_regs->r10;
            case PT_ESI: return child_regs->r14;
            case PT_EDI: return child_regs->r15;
            case PT_EBP: return child_regs->r13;
            case PT_EAX: return child_regs->r8;
            case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
            case PT_EIP: return child_regs->cr_iip;
            case PT_UESP: return child_regs->r12;
            case PT_EFL: return child->thread.eflag;
            case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
            return __USER_DS;
            case PT_CS: return __USER_CS;
            default:
            printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
            break;
      }
      return 0;
}

static void
putreg (struct task_struct *child, int regno, unsigned int value)
{
      struct pt_regs *child_regs;

      child_regs = task_pt_regs(child);
      switch (regno / sizeof(int)) {
            case PT_EBX: child_regs->r11 = value; break;
            case PT_ECX: child_regs->r9 = value; break;
            case PT_EDX: child_regs->r10 = value; break;
            case PT_ESI: child_regs->r14 = value; break;
            case PT_EDI: child_regs->r15 = value; break;
            case PT_EBP: child_regs->r13 = value; break;
            case PT_EAX: child_regs->r8 = value; break;
            case PT_ORIG_EAX: child_regs->r1 = value; break;
            case PT_EIP: child_regs->cr_iip = value; break;
            case PT_UESP: child_regs->r12 = value; break;
            case PT_EFL: child->thread.eflag = value; break;
            case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
            if (value != __USER_DS)
                  printk(KERN_ERR
                         "ia32.putreg: attempt to set invalid segment register %d = %x\n",
                         regno, value);
            break;
            case PT_CS:
            if (value != __USER_CS)
                  printk(KERN_ERR
                         "ia32.putreg: attempt to to set invalid segment register %d = %x\n",
                         regno, value);
            break;
            default:
            printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
            break;
      }
}

static void
put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
         struct switch_stack *swp, int tos)
{
      struct _fpreg_ia32 *f;
      char buf[32];

      f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
      if ((regno += tos) >= 8)
            regno -= 8;
      switch (regno) {
            case 0:
            ia64f2ia32f(f, &ptp->f8);
            break;
            case 1:
            ia64f2ia32f(f, &ptp->f9);
            break;
            case 2:
            ia64f2ia32f(f, &ptp->f10);
            break;
            case 3:
            ia64f2ia32f(f, &ptp->f11);
            break;
            case 4:
            case 5:
            case 6:
            case 7:
            ia64f2ia32f(f, &swp->f12 + (regno - 4));
            break;
      }
      copy_to_user(reg, f, sizeof(*reg));
}

static void
get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
         struct switch_stack *swp, int tos)
{

      if ((regno += tos) >= 8)
            regno -= 8;
      switch (regno) {
            case 0:
            copy_from_user(&ptp->f8, reg, sizeof(*reg));
            break;
            case 1:
            copy_from_user(&ptp->f9, reg, sizeof(*reg));
            break;
            case 2:
            copy_from_user(&ptp->f10, reg, sizeof(*reg));
            break;
            case 3:
            copy_from_user(&ptp->f11, reg, sizeof(*reg));
            break;
            case 4:
            case 5:
            case 6:
            case 7:
            copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
            break;
      }
      return;
}

int
save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
{
      struct switch_stack *swp;
      struct pt_regs *ptp;
      int i, tos;

      if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
            return -EFAULT;

      __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
      __put_user(tsk->thread.fsr & 0xffff, &save->swd);
      __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
      __put_user(tsk->thread.fir, &save->fip);
      __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
      __put_user(tsk->thread.fdr, &save->foo);
      __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);

      /*
       *  Stack frames start with 16-bytes of temp space
       */
      swp = (struct switch_stack *)(tsk->thread.ksp + 16);
      ptp = task_pt_regs(tsk);
      tos = (tsk->thread.fsr >> 11) & 7;
      for (i = 0; i < 8; i++)
            put_fpreg(i, &save->st_space[i], ptp, swp, tos);
      return 0;
}

static int
restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
{
      struct switch_stack *swp;
      struct pt_regs *ptp;
      int i, tos;
      unsigned int fsrlo, fsrhi, num32;

      if (!access_ok(VERIFY_READ, save, sizeof(*save)))
            return(-EFAULT);

      __get_user(num32, (unsigned int __user *)&save->cwd);
      tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
      __get_user(fsrlo, (unsigned int __user *)&save->swd);
      __get_user(fsrhi, (unsigned int __user *)&save->twd);
      num32 = (fsrhi << 16) | fsrlo;
      tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
      __get_user(num32, (unsigned int __user *)&save->fip);
      tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
      __get_user(num32, (unsigned int __user *)&save->foo);
      tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;

      /*
       *  Stack frames start with 16-bytes of temp space
       */
      swp = (struct switch_stack *)(tsk->thread.ksp + 16);
      ptp = task_pt_regs(tsk);
      tos = (tsk->thread.fsr >> 11) & 7;
      for (i = 0; i < 8; i++)
            get_fpreg(i, &save->st_space[i], ptp, swp, tos);
      return 0;
}

int
save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
{
      struct switch_stack *swp;
      struct pt_regs *ptp;
      int i, tos;
      unsigned long mxcsr=0;
      unsigned long num128[2];

      if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
            return -EFAULT;

      __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
      __put_user(tsk->thread.fsr & 0xffff, &save->swd);
      __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
      __put_user(tsk->thread.fir, &save->fip);
      __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
      __put_user(tsk->thread.fdr, &save->foo);
      __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);

        /*
         *  Stack frames start with 16-bytes of temp space
         */
        swp = (struct switch_stack *)(tsk->thread.ksp + 16);
        ptp = task_pt_regs(tsk);
      tos = (tsk->thread.fsr >> 11) & 7;
        for (i = 0; i < 8; i++)
            put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);

      mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
      __put_user(mxcsr & 0xffff, &save->mxcsr);
      for (i = 0; i < 8; i++) {
            memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
            memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
            copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
      }
      return 0;
}

static int
restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
{
      struct switch_stack *swp;
      struct pt_regs *ptp;
      int i, tos;
      unsigned int fsrlo, fsrhi, num32;
      int mxcsr;
      unsigned long num64;
      unsigned long num128[2];

      if (!access_ok(VERIFY_READ, save, sizeof(*save)))
            return(-EFAULT);

      __get_user(num32, (unsigned int __user *)&save->cwd);
      tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
      __get_user(fsrlo, (unsigned int __user *)&save->swd);
      __get_user(fsrhi, (unsigned int __user *)&save->twd);
      num32 = (fsrhi << 16) | fsrlo;
      tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
      __get_user(num32, (unsigned int __user *)&save->fip);
      tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
      __get_user(num32, (unsigned int __user *)&save->foo);
      tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;

      /*
       *  Stack frames start with 16-bytes of temp space
       */
      swp = (struct switch_stack *)(tsk->thread.ksp + 16);
      ptp = task_pt_regs(tsk);
      tos = (tsk->thread.fsr >> 11) & 7;
      for (i = 0; i < 8; i++)
      get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);

      __get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
      num64 = mxcsr & 0xff10;
      tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
      num64 = mxcsr & 0x3f;
      tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);

      for (i = 0; i < 8; i++) {
            copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
            memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
            memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
      }
      return 0;
}

asmlinkage long
sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data)
{
      struct task_struct *child;
      unsigned int value, tmp;
      long i, ret;

      lock_kernel();
      if (request == PTRACE_TRACEME) {
            ret = ptrace_traceme();
            goto out;
      }

      child = ptrace_get_task_struct(pid);
      if (IS_ERR(child)) {
            ret = PTR_ERR(child);
            goto out;
      }

      if (request == PTRACE_ATTACH) {
            ret = sys_ptrace(request, pid, addr, data);
            goto out_tsk;
      }

      ret = ptrace_check_attach(child, request == PTRACE_KILL);
      if (ret < 0)
            goto out_tsk;

      switch (request) {
            case PTRACE_PEEKTEXT:
            case PTRACE_PEEKDATA:   /* read word at location addr */
            ret = ia32_peek(child, addr, &value);
            if (ret == 0)
                  ret = put_user(value, (unsigned int __user *) compat_ptr(data));
            else
                  ret = -EIO;
            goto out_tsk;

            case PTRACE_POKETEXT:
            case PTRACE_POKEDATA:   /* write the word at location addr */
            ret = ia32_poke(child, addr, data);
            goto out_tsk;

            case PTRACE_PEEKUSR:    /* read word at addr in USER area */
            ret = -EIO;
            if ((addr & 3) || addr > 17*sizeof(int))
                  break;

            tmp = getreg(child, addr);
            if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
                  ret = 0;
            break;

            case PTRACE_POKEUSR:    /* write word at addr in USER area */
            ret = -EIO;
            if ((addr & 3) || addr > 17*sizeof(int))
                  break;

            putreg(child, addr, data);
            ret = 0;
            break;

            case IA32_PTRACE_GETREGS:
            if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
                  ret = -EIO;
                  break;
            }
            for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
                  put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
                  data += sizeof(int);
            }
            ret = 0;
            break;

            case IA32_PTRACE_SETREGS:
            if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
                  ret = -EIO;
                  break;
            }
            for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
                  get_user(tmp, (unsigned int __user *) compat_ptr(data));
                  putreg(child, i, tmp);
                  data += sizeof(int);
            }
            ret = 0;
            break;

            case IA32_PTRACE_GETFPREGS:
            ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
                              compat_ptr(data));
            break;

            case IA32_PTRACE_GETFPXREGS:
            ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
                               compat_ptr(data));
            break;

            case IA32_PTRACE_SETFPREGS:
            ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
                                 compat_ptr(data));
            break;

            case IA32_PTRACE_SETFPXREGS:
            ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
                                  compat_ptr(data));
            break;

            case PTRACE_GETEVENTMSG:   
            ret = put_user(child->ptrace_message, (unsigned int __user *) compat_ptr(data));
            break;

            case PTRACE_SYSCALL:    /* continue, stop after next syscall */
            case PTRACE_CONT:       /* restart after signal. */
            case PTRACE_KILL:
            case PTRACE_SINGLESTEP: /* execute chile for one instruction */
            case PTRACE_DETACH:     /* detach a process */
            ret = sys_ptrace(request, pid, addr, data);
            break;

            default:
            ret = ptrace_request(child, request, addr, data);
            break;

      }
  out_tsk:
      put_task_struct(child);
  out:
      unlock_kernel();
      return ret;
}

typedef struct {
      unsigned int      ss_sp;
      unsigned int      ss_flags;
      unsigned int      ss_size;
} ia32_stack_t;

asmlinkage long
sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
               long arg2, long arg3, long arg4, long arg5, long arg6,
               long arg7, struct pt_regs pt)
{
      stack_t uss, uoss;
      ia32_stack_t buf32;
      int ret;
      mm_segment_t old_fs = get_fs();

      if (uss32) {
            if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
                  return -EFAULT;
            uss.ss_sp = (void __user *) (long) buf32.ss_sp;
            uss.ss_flags = buf32.ss_flags;
            /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
                 check and set it to the user requested value later */
            if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
                  ret = -ENOMEM;
                  goto out;
            }
            uss.ss_size = MINSIGSTKSZ;
      }
      set_fs(KERNEL_DS);
      ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
                       (stack_t __user *) &uoss, pt.r12);
      current->sas_ss_size = buf32.ss_size;
      set_fs(old_fs);
out:
      if (ret < 0)
            return(ret);
      if (uoss32) {
            buf32.ss_sp = (long __user) uoss.ss_sp;
            buf32.ss_flags = uoss.ss_flags;
            buf32.ss_size = uoss.ss_size;
            if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
                  return -EFAULT;
      }
      return ret;
}

asmlinkage int
sys32_pause (void)
{
      current->state = TASK_INTERRUPTIBLE;
      schedule();
      return -ERESTARTNOHAND;
}

asmlinkage int
sys32_msync (unsigned int start, unsigned int len, int flags)
{
      unsigned int addr;

      if (OFFSET4K(start))
            return -EINVAL;
      addr = PAGE_START(start);
      return sys_msync(addr, len + (start - addr), flags);
}

struct sysctl32 {
      unsigned int      name;
      int         nlen;
      unsigned int      oldval;
      unsigned int      oldlenp;
      unsigned int      newval;
      unsigned int      newlen;
      unsigned int      __unused[4];
};

#ifdef CONFIG_SYSCTL_SYSCALL
asmlinkage long
sys32_sysctl (struct sysctl32 __user *args)
{
      struct sysctl32 a32;
      mm_segment_t old_fs = get_fs ();
      void __user *oldvalp, *newvalp;
      size_t oldlen;
      int __user *namep;
      long ret;

      if (copy_from_user(&a32, args, sizeof(a32)))
            return -EFAULT;

      /*
       * We need to pre-validate these because we have to disable address checking
       * before calling do_sysctl() because of OLDLEN but we can't run the risk of the
       * user specifying bad addresses here.  Well, since we're dealing with 32 bit
       * addresses, we KNOW that access_ok() will always succeed, so this is an
       * expensive NOP, but so what...
       */
      namep = (int __user *) compat_ptr(a32.name);
      oldvalp = compat_ptr(a32.oldval);
      newvalp = compat_ptr(a32.newval);

      if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
          || !access_ok(VERIFY_WRITE, namep, 0)
          || !access_ok(VERIFY_WRITE, oldvalp, 0)
          || !access_ok(VERIFY_WRITE, newvalp, 0))
            return -EFAULT;

      set_fs(KERNEL_DS);
      lock_kernel();
      ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
                  newvalp, (size_t) a32.newlen);
      unlock_kernel();
      set_fs(old_fs);

      if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
            return -EFAULT;

      return ret;
}
#endif

asmlinkage long
sys32_newuname (struct new_utsname __user *name)
{
      int ret = sys_newuname(name);

      if (!ret)
            if (copy_to_user(name->machine, "i686\0\0\0", 8))
                  ret = -EFAULT;
      return ret;
}

asmlinkage long
sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
{
      uid_t a, b, c;
      int ret;
      mm_segment_t old_fs = get_fs();

      set_fs(KERNEL_DS);
      ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
      set_fs(old_fs);

      if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
            return -EFAULT;
      return ret;
}

asmlinkage long
sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
{
      gid_t a, b, c;
      int ret;
      mm_segment_t old_fs = get_fs();

      set_fs(KERNEL_DS);
      ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
      set_fs(old_fs);

      if (ret)
            return ret;

      return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
}

asmlinkage long
sys32_lseek (unsigned int fd, int offset, unsigned int whence)
{
      /* Sign-extension of "offset" is important here... */
      return sys_lseek(fd, offset, whence);
}

static int
groups16_to_user(short __user *grouplist, struct group_info *group_info)
{
      int i;
      short group;

      for (i = 0; i < group_info->ngroups; i++) {
            group = (short)GROUP_AT(group_info, i);
            if (put_user(group, grouplist+i))
                  return -EFAULT;
      }

      return 0;
}

static int
groups16_from_user(struct group_info *group_info, short __user *grouplist)
{
      int i;
      short group;

      for (i = 0; i < group_info->ngroups; i++) {
            if (get_user(group, grouplist+i))
                  return  -EFAULT;
            GROUP_AT(group_info, i) = (gid_t)group;
      }

      return 0;
}

asmlinkage long
sys32_getgroups16 (int gidsetsize, short __user *grouplist)
{
      int i;

      if (gidsetsize < 0)
            return -EINVAL;

      get_group_info(current->group_info);
      i = current->group_info->ngroups;
      if (gidsetsize) {
            if (i > gidsetsize) {
                  i = -EINVAL;
                  goto out;
            }
            if (groups16_to_user(grouplist, current->group_info)) {
                  i = -EFAULT;
                  goto out;
            }
      }
out:
      put_group_info(current->group_info);
      return i;
}

asmlinkage long
sys32_setgroups16 (int gidsetsize, short __user *grouplist)
{
      struct group_info *group_info;
      int retval;

      if (!capable(CAP_SETGID))
            return -EPERM;
      if ((unsigned)gidsetsize > NGROUPS_MAX)
            return -EINVAL;

      group_info = groups_alloc(gidsetsize);
      if (!group_info)
            return -ENOMEM;
      retval = groups16_from_user(group_info, grouplist);
      if (retval) {
            put_group_info(group_info);
            return retval;
      }

      retval = set_current_groups(group_info);
      put_group_info(group_info);

      return retval;
}

asmlinkage long
sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
{
      return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
}

asmlinkage long
sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
{
      return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
}

static int
putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
{
      int err;
      u64 hdev;

      if (clear_user(ubuf, sizeof(*ubuf)))
            return -EFAULT;

      hdev = huge_encode_dev(kbuf->dev);
      err  = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
      err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
      err |= __put_user(kbuf->ino, &ubuf->__st_ino);
      err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
      err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
      err |= __put_user(kbuf->mode, &ubuf->st_mode);
      err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
      err |= __put_user(kbuf->uid, &ubuf->st_uid);
      err |= __put_user(kbuf->gid, &ubuf->st_gid);
      hdev = huge_encode_dev(kbuf->rdev);
      err  = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
      err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
      err |= __put_user(kbuf->size, &ubuf->st_size_lo);
      err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
      err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
      err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
      err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
      err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
      err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
      err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
      err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
      err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
      return err;
}

asmlinkage long
sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
{
      struct kstat s;
      long ret = vfs_stat(filename, &s);
      if (!ret)
            ret = putstat64(statbuf, &s);
      return ret;
}

asmlinkage long
sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
{
      struct kstat s;
      long ret = vfs_lstat(filename, &s);
      if (!ret)
            ret = putstat64(statbuf, &s);
      return ret;
}

asmlinkage long
sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
{
      struct kstat s;
      long ret = vfs_fstat(fd, &s);
      if (!ret)
            ret = putstat64(statbuf, &s);
      return ret;
}

asmlinkage long
sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
{
      mm_segment_t old_fs = get_fs();
      struct timespec t;
      long ret;

      set_fs(KERNEL_DS);
      ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
      set_fs(old_fs);
      if (put_compat_timespec(&t, interval))
            return -EFAULT;
      return ret;
}

asmlinkage long
sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
{
      return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
}

asmlinkage long
sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
{
      return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
}

asmlinkage long
sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
{
      mm_segment_t old_fs = get_fs();
      long ret;
      off_t of;

      if (offset && get_user(of, offset))
            return -EFAULT;

      set_fs(KERNEL_DS);
      ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
      set_fs(old_fs);

      if (offset && put_user(of, offset))
            return -EFAULT;

      return ret;
}

asmlinkage long
sys32_personality (unsigned int personality)
{
      long ret;

      if (current->personality == PER_LINUX32 && personality == PER_LINUX)
            personality = PER_LINUX32;
      ret = sys_personality(personality);
      if (ret == PER_LINUX32)
            ret = PER_LINUX;
      return ret;
}

asmlinkage unsigned long
sys32_brk (unsigned int brk)
{
      unsigned long ret, obrk;
      struct mm_struct *mm = current->mm;

      obrk = mm->brk;
      ret = sys_brk(brk);
      if (ret < obrk)
            clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
      return ret;
}

/* Structure for ia32 emulation on ia64 */
struct epoll_event32
{
      u32 events;
      u32 data[2];
};

asmlinkage long
sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
{
      mm_segment_t old_fs = get_fs();
      struct epoll_event event64;
      int error;
      u32 data_halfword;

      if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
            return -EFAULT;

      __get_user(event64.events, &event->events);
      __get_user(data_halfword, &event->data[0]);
      event64.data = data_halfword;
      __get_user(data_halfword, &event->data[1]);
      event64.data |= (u64)data_halfword << 32;

      set_fs(KERNEL_DS);
      error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
      set_fs(old_fs);

      return error;
}

asmlinkage long
sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
             int timeout)
{
      struct epoll_event *events64 = NULL;
      mm_segment_t old_fs = get_fs();
      int numevents, size;
      int evt_idx;
      int do_free_pages = 0;

      if (maxevents <= 0) {
            return -EINVAL;
      }

      /* Verify that the area passed by the user is writeable */
      if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
            return -EFAULT;

      /*
       * Allocate space for the intermediate copy.  If the space needed
       * is large enough to cause kmalloc to fail, then try again with
       * __get_free_pages.
       */
      size = maxevents * sizeof(struct epoll_event);
      events64 = kmalloc(size, GFP_KERNEL);
      if (events64 == NULL) {
            events64 = (struct epoll_event *)
                        __get_free_pages(GFP_KERNEL, get_order(size));
            if (events64 == NULL)
                  return -ENOMEM;
            do_free_pages = 1;
      }

      /* Do the system call */
      set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
      numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
                           maxevents, timeout);
      set_fs(old_fs);

      /* Don't modify userspace memory if we're returning an error */
      if (numevents > 0) {
            /* Translate the 64-bit structures back into the 32-bit
               structures */
            for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
                  __put_user(events64[evt_idx].events,
                           &events[evt_idx].events);
                  __put_user((u32)events64[evt_idx].data,
                           &events[evt_idx].data[0]);
                  __put_user((u32)(events64[evt_idx].data >> 32),
                           &events[evt_idx].data[1]);
            }
      }

      if (do_free_pages)
            free_pages((unsigned long) events64, get_order(size));
      else
            kfree(events64);
      return numevents;
}

/*
 * Get a yet unused TLS descriptor index.
 */
static int
get_free_idx (void)
{
      struct thread_struct *t = &current->thread;
      int idx;

      for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
            if (desc_empty(t->tls_array + idx))
                  return idx + GDT_ENTRY_TLS_MIN;
      return -ESRCH;
}

static void set_tls_desc(struct task_struct *p, int idx,
            const struct ia32_user_desc *info, int n)
{
      struct thread_struct *t = &p->thread;
      struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN];
      int cpu;

      /*
       * We must not get preempted while modifying the TLS.
       */
      cpu = get_cpu();

      while (n-- > 0) {
            if (LDT_empty(info)) {
                  desc->a = 0;
                  desc->b = 0;
            } else {
                  desc->a = LDT_entry_a(info);
                  desc->b = LDT_entry_b(info);
            }

            ++info;
            ++desc;
      }

      if (t == &current->thread)
            load_TLS(t, cpu);

      put_cpu();
}

/*
 * Set a given TLS descriptor:
 */
asmlinkage int
sys32_set_thread_area (struct ia32_user_desc __user *u_info)
{
      struct ia32_user_desc info;
      int idx;

      if (copy_from_user(&info, u_info, sizeof(info)))
            return -EFAULT;
      idx = info.entry_number;

      /*
       * index -1 means the kernel should try to find and allocate an empty descriptor:
       */
      if (idx == -1) {
            idx = get_free_idx();
            if (idx < 0)
                  return idx;
            if (put_user(idx, &u_info->entry_number))
                  return -EFAULT;
      }

      if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
            return -EINVAL;

      set_tls_desc(current, idx, &info, 1);
      return 0;
}

/*
 * Get the current Thread-Local Storage area:
 */

#define GET_BASE(desc) (                  \
      (((desc)->a >> 16) & 0x0000ffff) |  \
      (((desc)->b << 16) & 0x00ff0000) |  \
      ( (desc)->b        & 0xff000000)   )

#define GET_LIMIT(desc) (                 \
      ((desc)->a & 0x0ffff) |             \
       ((desc)->b & 0xf0000) )

#define GET_32BIT(desc)       (((desc)->b >> 22) & 1)
#define GET_CONTENTS(desc)    (((desc)->b >> 10) & 3)
#define GET_WRITABLE(desc)    (((desc)->b >>  9) & 1)
#define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
#define GET_PRESENT(desc)     (((desc)->b >> 15) & 1)
#define GET_USEABLE(desc)     (((desc)->b >> 20) & 1)

static void fill_user_desc(struct ia32_user_desc *info, int idx,
            const struct desc_struct *desc)
{
      info->entry_number = idx;
      info->base_addr = GET_BASE(desc);
      info->limit = GET_LIMIT(desc);
      info->seg_32bit = GET_32BIT(desc);
      info->contents = GET_CONTENTS(desc);
      info->read_exec_only = !GET_WRITABLE(desc);
      info->limit_in_pages = GET_LIMIT_PAGES(desc);
      info->seg_not_present = !GET_PRESENT(desc);
      info->useable = GET_USEABLE(desc);
}

asmlinkage int
sys32_get_thread_area (struct ia32_user_desc __user *u_info)
{
      struct ia32_user_desc info;
      struct desc_struct *desc;
      int idx;

      if (get_user(idx, &u_info->entry_number))
            return -EFAULT;
      if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
            return -EINVAL;

      desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
      fill_user_desc(&info, idx, desc);

      if (copy_to_user(u_info, &info, sizeof(info)))
            return -EFAULT;
      return 0;
}

struct regset_get {
      void *kbuf;
      void __user *ubuf;
};

struct regset_set {
      const void *kbuf;
      const void __user *ubuf;
};

struct regset_getset {
      struct task_struct *target;
      const struct user_regset *regset;
      union {
            struct regset_get get;
            struct regset_set set;
      } u;
      unsigned int pos;
      unsigned int count;
      int ret;
};

static void getfpreg(struct task_struct *task, int regno, int *val)
{
      switch (regno / sizeof(int)) {
      case 0:
            *val = task->thread.fcr & 0xffff;
            break;
      case 1:
            *val = task->thread.fsr & 0xffff;
            break;
      case 2:
            *val = (task->thread.fsr>>16) & 0xffff;
            break;
      case 3:
            *val = task->thread.fir;
            break;
      case 4:
            *val = (task->thread.fir>>32) & 0xffff;
            break;
      case 5:
            *val = task->thread.fdr;
            break;
      case 6:
            *val = (task->thread.fdr >> 32) & 0xffff;
            break;
      }
}

static void setfpreg(struct task_struct *task, int regno, int val)
{
      switch (regno / sizeof(int)) {
      case 0:
            task->thread.fcr = (task->thread.fcr & (~0x1f3f))
                  | (val & 0x1f3f);
            break;
      case 1:
            task->thread.fsr = (task->thread.fsr & (~0xffff)) | val;
            break;
      case 2:
            task->thread.fsr = (task->thread.fsr & (~0xffff0000))
                  | (val << 16);
            break;
      case 3:
            task->thread.fir = (task->thread.fir & (~0xffffffff)) | val;
            break;
      case 5:
            task->thread.fdr = (task->thread.fdr & (~0xffffffff)) | val;
            break;
      }
}

static void access_fpreg_ia32(int regno, void *reg,
            struct pt_regs *pt, struct switch_stack *sw,
            int tos, int write)
{
      void *f;

      if ((regno += tos) >= 8)
            regno -= 8;
      if (regno < 4)
            f = &pt->f8 + regno;
      else if (regno <= 7)
            f = &sw->f12 + (regno - 4);
      else {
            printk(KERN_ERR "regno must be less than 7 \n");
             return;
      }

      if (write)
            memcpy(f, reg, sizeof(struct _fpreg_ia32));
      else
            memcpy(reg, f, sizeof(struct _fpreg_ia32));
}

static void do_fpregs_get(struct unw_frame_info *info, void *arg)
{
      struct regset_getset *dst = arg;
      struct task_struct *task = dst->target;
      struct pt_regs *pt;
      int start, end, tos;
      char buf[80];

      if (dst->count == 0 || unw_unwind_to_user(info) < 0)
            return;
      if (dst->pos < 7 * sizeof(int)) {
            end = min((dst->pos + dst->count),
                  (unsigned int)(7 * sizeof(int)));
            for (start = dst->pos; start < end; start += sizeof(int))
                  getfpreg(task, start, (int *)(buf + start));
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
                        0, 7 * sizeof(int));
            if (dst->ret || dst->count == 0)
                  return;
      }
      if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
            pt = task_pt_regs(task);
            tos = (task->thread.fsr >> 11) & 7;
            end = min(dst->pos + dst->count,
                  (unsigned int)(sizeof(struct ia32_user_i387_struct)));
            start = (dst->pos - 7 * sizeof(int)) /
                  sizeof(struct _fpreg_ia32);
            end = (end - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
            for (; start < end; start++)
                  access_fpreg_ia32(start,
                        (struct _fpreg_ia32 *)buf + start,
                        pt, info->sw, tos, 0);
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf,
                        buf, 7 * sizeof(int),
                        sizeof(struct ia32_user_i387_struct));
            if (dst->ret || dst->count == 0)
                  return;
      }
}

static void do_fpregs_set(struct unw_frame_info *info, void *arg)
{
      struct regset_getset *dst = arg;
      struct task_struct *task = dst->target;
      struct pt_regs *pt;
      char buf[80];
      int end, start, tos;

      if (dst->count == 0 || unw_unwind_to_user(info) < 0)
            return;

      if (dst->pos < 7 * sizeof(int)) {
            start = dst->pos;
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf, buf,
                        0, 7 * sizeof(int));
            if (dst->ret)
                  return;
            for (; start < dst->pos; start += sizeof(int))
                  setfpreg(task, start, *((int *)(buf + start)));
            if (dst->count == 0)
                  return;
      }
      if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
            start = (dst->pos - 7 * sizeof(int)) /
                  sizeof(struct _fpreg_ia32);
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf,
                        buf, 7 * sizeof(int),
                        sizeof(struct ia32_user_i387_struct));
            if (dst->ret)
                  return;
            pt = task_pt_regs(task);
            tos = (task->thread.fsr >> 11) & 7;
            end = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
            for (; start < end; start++)
                  access_fpreg_ia32(start,
                        (struct _fpreg_ia32 *)buf + start,
                        pt, info->sw, tos, 1);
            if (dst->count == 0)
                  return;
      }
}

#define OFFSET(member) ((int)(offsetof(struct ia32_user_fxsr_struct, member)))
static void getfpxreg(struct task_struct *task, int start, int end, char *buf)
{
      int min_val;

      min_val = min(end, OFFSET(fop));
      while (start < min_val) {
            if (start == OFFSET(cwd))
                  *((short *)buf) = task->thread.fcr & 0xffff;
            else if (start == OFFSET(swd))
                  *((short *)buf) = task->thread.fsr & 0xffff;
            else if (start == OFFSET(twd))
                  *((short *)buf) = (task->thread.fsr>>16) & 0xffff;
            buf += 2;
            start += 2;
      }
      /* skip fop element */
      if (start == OFFSET(fop)) {
            start += 2;
            buf += 2;
      }
      while (start < end) {
            if (start == OFFSET(fip))
                  *((int *)buf) = task->thread.fir;
            else if (start == OFFSET(fcs))
                  *((int *)buf) = (task->thread.fir>>32) & 0xffff;
            else if (start == OFFSET(foo))
                  *((int *)buf) = task->thread.fdr;
            else if (start == OFFSET(fos))
                  *((int *)buf) = (task->thread.fdr>>32) & 0xffff;
            else if (start == OFFSET(mxcsr))
                  *((int *)buf) = ((task->thread.fcr>>32) & 0xff80)
                               | ((task->thread.fsr>>32) & 0x3f);
            buf += 4;
            start += 4;
      }
}

static void setfpxreg(struct task_struct *task, int start, int end, char *buf)
{
      int min_val, num32;
      short num;
      unsigned long num64;

      min_val = min(end, OFFSET(fop));
      while (start < min_val) {
            num = *((short *)buf);
            if (start == OFFSET(cwd)) {
                  task->thread.fcr = (task->thread.fcr & (~0x1f3f))
                                    | (num & 0x1f3f);
            } else if (start == OFFSET(swd)) {
                  task->thread.fsr = (task->thread.fsr & (~0xffff)) | num;
            } else if (start == OFFSET(twd)) {
                  task->thread.fsr = (task->thread.fsr & (~0xffff0000))
                        | (((int)num) << 16);
            }
            buf += 2;
            start += 2;
      }
      /* skip fop element */
      if (start == OFFSET(fop)) {
            start += 2;
            buf += 2;
      }
      while (start < end) {
            num32 = *((int *)buf);
            if (start == OFFSET(fip))
                  task->thread.fir = (task->thread.fir & (~0xffffffff))
                                     | num32;
            else if (start == OFFSET(foo))
                  task->thread.fdr = (task->thread.fdr & (~0xffffffff))
                                     | num32;
            else if (start == OFFSET(mxcsr)) {
                  num64 = num32 & 0xff10;
                  task->thread.fcr = (task->thread.fcr &
                        (~0xff1000000000UL)) | (num64<<32);
                  num64 = num32 & 0x3f;
                  task->thread.fsr = (task->thread.fsr &
                        (~0x3f00000000UL)) | (num64<<32);
            }
            buf += 4;
            start += 4;
      }
}

static void do_fpxregs_get(struct unw_frame_info *info, void *arg)
{
      struct regset_getset *dst = arg;
      struct task_struct *task = dst->target;
      struct pt_regs *pt;
      char buf[128];
      int start, end, tos;

      if (dst->count == 0 || unw_unwind_to_user(info) < 0)
            return;
      if (dst->pos < OFFSET(st_space[0])) {
            end = min(dst->pos + dst->count, (unsigned int)32);
            getfpxreg(task, dst->pos, end, buf);
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
                        0, OFFSET(st_space[0]));
            if (dst->ret || dst->count == 0)
                  return;
      }
      if (dst->pos < OFFSET(xmm_space[0])) {
            pt = task_pt_regs(task);
            tos = (task->thread.fsr >> 11) & 7;
            end = min(dst->pos + dst->count,
                        (unsigned int)OFFSET(xmm_space[0]));
            start = (dst->pos - OFFSET(st_space[0])) / 16;
            end = (end - OFFSET(st_space[0])) / 16;
            for (; start < end; start++)
                  access_fpreg_ia32(start, buf + 16 * start, pt,
                                    info->sw, tos, 0);
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf,
                        buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
            if (dst->ret || dst->count == 0)
                  return;
      }
      if (dst->pos < OFFSET(padding[0]))
            dst->ret = user_regset_copyout(&dst->pos, &dst->count,
                        &dst->u.get.kbuf, &dst->u.get.ubuf,
                        &info->sw->f16, OFFSET(xmm_space[0]),
                        OFFSET(padding[0]));
}

static void do_fpxregs_set(struct unw_frame_info *info, void *arg)
{
      struct regset_getset *dst = arg;
      struct task_struct *task = dst->target;
      char buf[128];
      int start, end;

      if (dst->count == 0 || unw_unwind_to_user(info) < 0)
            return;

      if (dst->pos < OFFSET(st_space[0])) {
            start = dst->pos;
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf,
                        buf, 0, OFFSET(st_space[0]));
            if (dst->ret)
                  return;
            setfpxreg(task, start, dst->pos, buf);
            if (dst->count == 0)
                  return;
      }
      if (dst->pos < OFFSET(xmm_space[0])) {
            struct pt_regs *pt;
            int tos;
            pt = task_pt_regs(task);
            tos = (task->thread.fsr >> 11) & 7;
            start = (dst->pos - OFFSET(st_space[0])) / 16;
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf,
                        buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
            if (dst->ret)
                  return;
            end = (dst->pos - OFFSET(st_space[0])) / 16;
            for (; start < end; start++)
                  access_fpreg_ia32(start, buf + 16 * start, pt, info->sw,
                                     tos, 1);
            if (dst->count == 0)
                  return;
      }
      if (dst->pos < OFFSET(padding[0]))
            dst->ret = user_regset_copyin(&dst->pos, &dst->count,
                        &dst->u.set.kbuf, &dst->u.set.ubuf,
                        &info->sw->f16, OFFSET(xmm_space[0]),
                         OFFSET(padding[0]));
}
#undef OFFSET

static int do_regset_call(void (*call)(struct unw_frame_info *, void *),
            struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            const void *kbuf, const void __user *ubuf)
{
      struct regset_getset info = { .target = target, .regset = regset,
            .pos = pos, .count = count,
            .u.set = { .kbuf = kbuf, .ubuf = ubuf },
            .ret = 0 };

      if (target == current)
            unw_init_running(call, &info);
      else {
            struct unw_frame_info ufi;
            memset(&ufi, 0, sizeof(ufi));
            unw_init_from_blocked_task(&ufi, target);
            (*call)(&ufi, &info);
      }

      return info.ret;
}

static int ia32_fpregs_get(struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            void *kbuf, void __user *ubuf)
{
      return do_regset_call(do_fpregs_get, target, regset, pos, count,
            kbuf, ubuf);
}

static int ia32_fpregs_set(struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            const void *kbuf, const void __user *ubuf)
{
      return do_regset_call(do_fpregs_set, target, regset, pos, count,
            kbuf, ubuf);
}

static int ia32_fpxregs_get(struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            void *kbuf, void __user *ubuf)
{
      return do_regset_call(do_fpxregs_get, target, regset, pos, count,
            kbuf, ubuf);
}

static int ia32_fpxregs_set(struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            const void *kbuf, const void __user *ubuf)
{
      return do_regset_call(do_fpxregs_set, target, regset, pos, count,
            kbuf, ubuf);
}

static int ia32_genregs_get(struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            void *kbuf, void __user *ubuf)
{
      if (kbuf) {
            u32 *kp = kbuf;
            while (count > 0) {
                  *kp++ = getreg(target, pos);
                  pos += 4;
                  count -= 4;
            }
      } else {
            u32 __user *up = ubuf;
            while (count > 0) {
                  if (__put_user(getreg(target, pos), up++))
                        return -EFAULT;
                  pos += 4;
                  count -= 4;
            }
      }
      return 0;
}

static int ia32_genregs_set(struct task_struct *target,
            const struct user_regset *regset,
            unsigned int pos, unsigned int count,
            const void *kbuf, const void __user *ubuf)
{
      int ret = 0;

      if (kbuf) {
            const u32 *kp = kbuf;
            while (!ret && count > 0) {
                  putreg(target, pos, *kp++);
                  pos += 4;
                  count -= 4;
            }
      } else {
            const u32 __user *up = ubuf;
            u32 val;
            while (!ret && count > 0) {
                  ret = __get_user(val, up++);
                  if (!ret)
                        putreg(target, pos, val);
                  pos += 4;
                  count -= 4;
            }
      }
      return ret;
}

static int ia32_tls_active(struct task_struct *target,
            const struct user_regset *regset)
{
      struct thread_struct *t = &target->thread;
      int n = GDT_ENTRY_TLS_ENTRIES;
      while (n > 0 && desc_empty(&t->tls_array[n -1]))
            --n;
      return n;
}

static int ia32_tls_get(struct task_struct *target,
            const struct user_regset *regset, unsigned int pos,
            unsigned int count, void *kbuf, void __user *ubuf)
{
      const struct desc_struct *tls;

      if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
                  (pos % sizeof(struct ia32_user_desc)) != 0 ||
                  (count % sizeof(struct ia32_user_desc)) != 0)
            return -EINVAL;

      pos /= sizeof(struct ia32_user_desc);
      count /= sizeof(struct ia32_user_desc);

      tls = &target->thread.tls_array[pos];

      if (kbuf) {
            struct ia32_user_desc *info = kbuf;
            while (count-- > 0)
                  fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++,
                              tls++);
      } else {
            struct ia32_user_desc __user *u_info = ubuf;
            while (count-- > 0) {
                  struct ia32_user_desc info;
                  fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++);
                  if (__copy_to_user(u_info++, &info, sizeof(info)))
                        return -EFAULT;
            }
      }

      return 0;
}

static int ia32_tls_set(struct task_struct *target,
            const struct user_regset *regset, unsigned int pos,
            unsigned int count, const void *kbuf, const void __user *ubuf)
{
      struct ia32_user_desc infobuf[GDT_ENTRY_TLS_ENTRIES];
      const struct ia32_user_desc *info;

      if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
                  (pos % sizeof(struct ia32_user_desc)) != 0 ||
                  (count % sizeof(struct ia32_user_desc)) != 0)
            return -EINVAL;

      if (kbuf)
            info = kbuf;
      else if (__copy_from_user(infobuf, ubuf, count))
            return -EFAULT;
      else
            info = infobuf;

      set_tls_desc(target,
            GDT_ENTRY_TLS_MIN + (pos / sizeof(struct ia32_user_desc)),
            info, count / sizeof(struct ia32_user_desc));

      return 0;
}

/*
 * This should match arch/i386/kernel/ptrace.c:native_regsets.
 * XXX ioperm? vm86?
 */
static const struct user_regset ia32_regsets[] = {
      {
            .core_note_type = NT_PRSTATUS,
            .n = sizeof(struct user_regs_struct32)/4,
            .size = 4, .align = 4,
            .get = ia32_genregs_get, .set = ia32_genregs_set
      },
      {
            .core_note_type = NT_PRFPREG,
            .n = sizeof(struct ia32_user_i387_struct) / 4,
            .size = 4, .align = 4,
            .get = ia32_fpregs_get, .set = ia32_fpregs_set
      },
      {
            .core_note_type = NT_PRXFPREG,
            .n = sizeof(struct ia32_user_fxsr_struct) / 4,
            .size = 4, .align = 4,
            .get = ia32_fpxregs_get, .set = ia32_fpxregs_set
      },
      {
            .core_note_type = NT_386_TLS,
            .n = GDT_ENTRY_TLS_ENTRIES,
            .bias = GDT_ENTRY_TLS_MIN,
            .size = sizeof(struct ia32_user_desc),
            .align = sizeof(struct ia32_user_desc),
            .active = ia32_tls_active,
            .get = ia32_tls_get, .set = ia32_tls_set,
      },
};

const struct user_regset_view user_ia32_view = {
      .name = "i386", .e_machine = EM_386,
      .regsets = ia32_regsets, .n = ARRAY_SIZE(ia32_regsets)
};

long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high, 
                  __u32 len_low, __u32 len_high, int advice)
{ 
      return sys_fadvise64_64(fd,
                         (((u64)offset_high)<<32) | offset_low,
                         (((u64)len_high)<<32) | len_low,
                         advice); 
} 

#ifdef      NOTYET  /* UNTESTED FOR IA64 FROM HERE DOWN */

asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
{
      uid_t sruid, seuid;

      sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
      seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
      return sys_setreuid(sruid, seuid);
}

asmlinkage long
sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
            compat_uid_t suid)
{
      uid_t sruid, seuid, ssuid;

      sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
      seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
      ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
      return sys_setresuid(sruid, seuid, ssuid);
}

asmlinkage long
sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
{
      gid_t srgid, segid;

      srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
      segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
      return sys_setregid(srgid, segid);
}

asmlinkage long
sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
            compat_gid_t sgid)
{
      gid_t srgid, segid, ssgid;

      srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
      segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
      ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
      return sys_setresgid(srgid, segid, ssgid);
}
#endif /* NOTYET */

Generated by  Doxygen 1.6.0   Back to index