Logo Search packages:      
Sourcecode: linux version File versions  Download package

kgdb.c

/*
 * File:         arch/blackfin/kernel/kgdb.c
 * Based on:
 * Author:       Sonic Zhang
 *
 * Created:
 * Description:
 *
 * Rev:          $Id: kgdb_bfin_linux-2.6.x.patch 4934 2007-02-13 09:32:11Z sonicz $
 *
 * Modified:
 *               Copyright 2005-2006 Analog Devices Inc.
 *
 * Bugs:         Enter bugs at http://blackfin.uclinux.org/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see the file COPYING, or write
 * to the Free Software Foundation, Inc.,
 * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/ptrace.h>           /* for linux pt_regs struct */
#include <linux/kgdb.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/debugger.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <asm/system.h>
#include <asm/traps.h>
#include <asm/blackfin.h>

/* Put the error code here just in case the user cares.  */
int gdb_bf533errcode;
/* Likewise, the vector number here (since GDB only gets the signal
   number through the usual means, and that's not very specific).  */
int gdb_bf533vector = -1;

#if KGDB_MAX_NO_CPUS != 8
#error change the definition of slavecpulocks
#endif

void regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
      gdb_regs[BFIN_R0] = regs->r0;
      gdb_regs[BFIN_R1] = regs->r1;
      gdb_regs[BFIN_R2] = regs->r2;
      gdb_regs[BFIN_R3] = regs->r3;
      gdb_regs[BFIN_R4] = regs->r4;
      gdb_regs[BFIN_R5] = regs->r5;
      gdb_regs[BFIN_R6] = regs->r6;
      gdb_regs[BFIN_R7] = regs->r7;
      gdb_regs[BFIN_P0] = regs->p0;
      gdb_regs[BFIN_P1] = regs->p1;
      gdb_regs[BFIN_P2] = regs->p2;
      gdb_regs[BFIN_P3] = regs->p3;
      gdb_regs[BFIN_P4] = regs->p4;
      gdb_regs[BFIN_P5] = regs->p5;
      gdb_regs[BFIN_SP] = regs->reserved;
      gdb_regs[BFIN_FP] = regs->fp;
      gdb_regs[BFIN_I0] = regs->i0;
      gdb_regs[BFIN_I1] = regs->i1;
      gdb_regs[BFIN_I2] = regs->i2;
      gdb_regs[BFIN_I3] = regs->i3;
      gdb_regs[BFIN_M0] = regs->m0;
      gdb_regs[BFIN_M1] = regs->m1;
      gdb_regs[BFIN_M2] = regs->m2;
      gdb_regs[BFIN_M3] = regs->m3;
      gdb_regs[BFIN_B0] = regs->b0;
      gdb_regs[BFIN_B1] = regs->b1;
      gdb_regs[BFIN_B2] = regs->b2;
      gdb_regs[BFIN_B3] = regs->b3;
      gdb_regs[BFIN_L0] = regs->l0;
      gdb_regs[BFIN_L1] = regs->l1;
      gdb_regs[BFIN_L2] = regs->l2;
      gdb_regs[BFIN_L3] = regs->l3;
      gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
      gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
      gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
      gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
      gdb_regs[BFIN_ASTAT] = regs->astat;
      gdb_regs[BFIN_RETS] = regs->rets;
      gdb_regs[BFIN_LC0] = regs->lc0;
      gdb_regs[BFIN_LT0] = regs->lt0;
      gdb_regs[BFIN_LB0] = regs->lb0;
      gdb_regs[BFIN_LC1] = regs->lc1;
      gdb_regs[BFIN_LT1] = regs->lt1;
      gdb_regs[BFIN_LB1] = regs->lb1;
      gdb_regs[BFIN_CYCLES] = 0;
      gdb_regs[BFIN_CYCLES2] = 0;
      gdb_regs[BFIN_USP] = regs->usp;
      gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
      gdb_regs[BFIN_SYSCFG] = regs->syscfg;
      gdb_regs[BFIN_RETI] = regs->pc;
      gdb_regs[BFIN_RETX] = regs->retx;
      gdb_regs[BFIN_RETN] = regs->retn;
      gdb_regs[BFIN_RETE] = regs->rete;
      gdb_regs[BFIN_PC] = regs->pc;
      gdb_regs[BFIN_CC] = 0;
      gdb_regs[BFIN_EXTRA1] = 0;
      gdb_regs[BFIN_EXTRA2] = 0;
      gdb_regs[BFIN_EXTRA3] = 0;
      gdb_regs[BFIN_IPEND] = regs->ipend;
}

/*
 * Extracts ebp, esp and eip values understandable by gdb from the values
 * saved by switch_to.
 * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
 * prior to entering switch_to is 8 greater then the value that is saved.
 * If switch_to changes, change following code appropriately.
 */
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
      gdb_regs[BFIN_SP] = p->thread.ksp;
      gdb_regs[BFIN_PC] = p->thread.pc;
      gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
}

void gdb_regs_to_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
      regs->r0 = gdb_regs[BFIN_R0];
      regs->r1 = gdb_regs[BFIN_R1];
      regs->r2 = gdb_regs[BFIN_R2];
      regs->r3 = gdb_regs[BFIN_R3];
      regs->r4 = gdb_regs[BFIN_R4];
      regs->r5 = gdb_regs[BFIN_R5];
      regs->r6 = gdb_regs[BFIN_R6];
      regs->r7 = gdb_regs[BFIN_R7];
      regs->p0 = gdb_regs[BFIN_P0];
      regs->p1 = gdb_regs[BFIN_P1];
      regs->p2 = gdb_regs[BFIN_P2];
      regs->p3 = gdb_regs[BFIN_P3];
      regs->p4 = gdb_regs[BFIN_P4];
      regs->p5 = gdb_regs[BFIN_P5];
      regs->fp = gdb_regs[BFIN_FP];
      regs->i0 = gdb_regs[BFIN_I0];
      regs->i1 = gdb_regs[BFIN_I1];
      regs->i2 = gdb_regs[BFIN_I2];
      regs->i3 = gdb_regs[BFIN_I3];
      regs->m0 = gdb_regs[BFIN_M0];
      regs->m1 = gdb_regs[BFIN_M1];
      regs->m2 = gdb_regs[BFIN_M2];
      regs->m3 = gdb_regs[BFIN_M3];
      regs->b0 = gdb_regs[BFIN_B0];
      regs->b1 = gdb_regs[BFIN_B1];
      regs->b2 = gdb_regs[BFIN_B2];
      regs->b3 = gdb_regs[BFIN_B3];
      regs->l0 = gdb_regs[BFIN_L0];
      regs->l1 = gdb_regs[BFIN_L1];
      regs->l2 = gdb_regs[BFIN_L2];
      regs->l3 = gdb_regs[BFIN_L3];
      regs->a0x = gdb_regs[BFIN_A0_DOT_X];
      regs->a0w = gdb_regs[BFIN_A0_DOT_W];
      regs->a1x = gdb_regs[BFIN_A1_DOT_X];
      regs->a1w = gdb_regs[BFIN_A1_DOT_W];
      regs->rets = gdb_regs[BFIN_RETS];
      regs->lc0 = gdb_regs[BFIN_LC0];
      regs->lt0 = gdb_regs[BFIN_LT0];
      regs->lb0 = gdb_regs[BFIN_LB0];
      regs->lc1 = gdb_regs[BFIN_LC1];
      regs->lt1 = gdb_regs[BFIN_LT1];
      regs->lb1 = gdb_regs[BFIN_LB1];
      regs->usp = gdb_regs[BFIN_USP];
      regs->syscfg = gdb_regs[BFIN_SYSCFG];
      regs->retx = gdb_regs[BFIN_PC];
      regs->retn = gdb_regs[BFIN_RETN];
      regs->rete = gdb_regs[BFIN_RETE];
      regs->pc = gdb_regs[BFIN_PC];

#if 0                   /* can't change these */
      regs->astat = gdb_regs[BFIN_ASTAT];
      regs->seqstat = gdb_regs[BFIN_SEQSTAT];
      regs->ipend = gdb_regs[BFIN_IPEND];
#endif
}

struct hw_breakpoint {
      unsigned int occupied:1;
      unsigned int skip:1;
      unsigned int enabled:1;
      unsigned int type:1;
      unsigned int dataacc:2;
      unsigned short count;
      unsigned int addr;
} breakinfo[HW_BREAKPOINT_NUM];

int kgdb_arch_init(void)
{
      debugger_step = 0;

      kgdb_remove_all_hw_break();
      return 0;
}

int kgdb_set_hw_break(unsigned long addr)
{
      int breakno;
      for (breakno = 0; breakno < HW_BREAKPOINT_NUM; breakno++)
            if (!breakinfo[breakno].occupied) {
                  breakinfo[breakno].occupied = 1;
                  breakinfo[breakno].enabled = 1;
                  breakinfo[breakno].type = 1;
                  breakinfo[breakno].addr = addr;
                  return 0;
            }

      return -ENOSPC;
}

int kgdb_remove_hw_break(unsigned long addr)
{
      int breakno;
      for (breakno = 0; breakno < HW_BREAKPOINT_NUM; breakno++)
            if (breakinfo[breakno].addr == addr)
                  memset(&(breakinfo[breakno]), 0, sizeof(struct hw_breakpoint));

      return 0;
}

void kgdb_remove_all_hw_break(void)
{
      memset(breakinfo, 0, sizeof(struct hw_breakpoint)*8);
}

/*
void kgdb_show_info(void)
{
      printk(KERN_DEBUG "hwd: wpia0=0x%x, wpiacnt0=%d, wpiactl=0x%x, wpstat=0x%x\n",
            bfin_read_WPIA0(), bfin_read_WPIACNT0(),
            bfin_read_WPIACTL(), bfin_read_WPSTAT());
}
*/

void kgdb_correct_hw_break(void)
{
      int breakno;
      int correctit;
      uint32_t wpdactl = bfin_read_WPDACTL();

      correctit = 0;
      for (breakno = 0; breakno < HW_BREAKPOINT_NUM; breakno++) {
            if (breakinfo[breakno].type == 1) {
                  switch (breakno) {
                  case 0:
                        if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN0)) {
                              correctit = 1;
                              wpdactl &= ~(WPIREN01|EMUSW0);
                              wpdactl |= WPIAEN0|WPICNTEN0;
                              bfin_write_WPIA0(breakinfo[breakno].addr);
                              bfin_write_WPIACNT0(breakinfo[breakno].skip);
                        } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN0)) {
                              correctit = 1;
                              wpdactl &= ~WPIAEN0;
                        }
                        break;

                  case 1:
                        if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN1)) {
                              correctit = 1;
                              wpdactl &= ~(WPIREN01|EMUSW1);
                              wpdactl |= WPIAEN1|WPICNTEN1;
                              bfin_write_WPIA1(breakinfo[breakno].addr);
                              bfin_write_WPIACNT1(breakinfo[breakno].skip);
                        } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN1)) {
                              correctit = 1;
                              wpdactl &= ~WPIAEN1;
                        }
                        break;

                  case 2:
                        if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN2)) {
                              correctit = 1;
                              wpdactl &= ~(WPIREN23|EMUSW2);
                              wpdactl |= WPIAEN2|WPICNTEN2;
                              bfin_write_WPIA2(breakinfo[breakno].addr);
                              bfin_write_WPIACNT2(breakinfo[breakno].skip);
                        } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN2)) {
                              correctit = 1;
                              wpdactl &= ~WPIAEN2;
                        }
                        break;

                  case 3:
                        if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN3)) {
                              correctit = 1;
                              wpdactl &= ~(WPIREN23|EMUSW3);
                              wpdactl |= WPIAEN3|WPICNTEN3;
                              bfin_write_WPIA3(breakinfo[breakno].addr);
                              bfin_write_WPIACNT3(breakinfo[breakno].skip);
                        } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN3)) {
                              correctit = 1;
                              wpdactl &= ~WPIAEN3;
                        }
                        break;
                  case 4:
                        if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN4)) {
                              correctit = 1;
                              wpdactl &= ~(WPIREN45|EMUSW4);
                              wpdactl |= WPIAEN4|WPICNTEN4;
                              bfin_write_WPIA4(breakinfo[breakno].addr);
                              bfin_write_WPIACNT4(breakinfo[breakno].skip);
                        } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN4)) {
                              correctit = 1;
                              wpdactl &= ~WPIAEN4;
                        }
                        break;
                  case 5:
                        if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN5)) {
                              correctit = 1;
                              wpdactl &= ~(WPIREN45|EMUSW5);
                              wpdactl |= WPIAEN5|WPICNTEN5;
                              bfin_write_WPIA5(breakinfo[breakno].addr);
                              bfin_write_WPIACNT5(breakinfo[breakno].skip);
                        } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN5)) {
                              correctit = 1;
                              wpdactl &= ~WPIAEN5;
                        }
                        break;
                  }
            }
      }
      if (correctit) {
            wpdactl &= ~WPAND;
            wpdactl |= WPPWR;
            /*printk("correct_hw_break: wpdactl=0x%x\n", wpdactl);*/
            bfin_write_WPDACTL(wpdactl);
            CSYNC();
            /*kgdb_show_info();*/
      }
}

void kgdb_disable_hw_debug(struct pt_regs *regs)
{
      /* Disable hardware debugging while we are in kgdb */
      bfin_write_WPIACTL(bfin_read_WPIACTL() & ~0x1);
      CSYNC();
}

void kgdb_post_master_code(struct pt_regs *regs, int eVector, int err_code)
{
      /* Master processor is completely in the debugger */
      gdb_bf533vector = eVector;
      gdb_bf533errcode = err_code;
}

int kgdb_arch_handle_exception(int exceptionVector, int signo,
                         int err_code, char *remcom_in_buffer,
                         char *remcom_out_buffer,
                         struct pt_regs *linux_regs)
{
      long addr;
      long breakno;
      char *ptr;
      int newPC;
      int wp_status;
      int i;

      switch (remcom_in_buffer[0]) {
      case 'c':
      case 's':
            if (kgdb_contthread && kgdb_contthread != current) {
                  strcpy(remcom_out_buffer, "E00");
                  break;
            }

            kgdb_contthread = NULL;

            /* try to read optional parameter, pc unchanged if no parm */
            ptr = &remcom_in_buffer[1];
            if (kgdb_hex2long(&ptr, &addr)) {
                  linux_regs->retx = addr;
            }
            newPC = linux_regs->retx;

            /* clear the trace bit */
            linux_regs->syscfg &= 0xfffffffe;

            /* set the trace bit if we're stepping */
            if (remcom_in_buffer[0] == 's') {
                  linux_regs->syscfg |= 0x1;
                  debugger_step = linux_regs->ipend;
                  debugger_step >>= 6;
                  for (i = 10; i > 0; i--, debugger_step >>= 1)
                        if (debugger_step & 1)
                              break;
                  /* i indicate event priority of current stopped instruction
                   * user space instruction is 0, IVG15 is 1, IVTMR is 10.
                   * debugger_step > 0 means in single step mode
                   */
                  debugger_step = i + 1;
            } else {
                  debugger_step = 0;
            }

            wp_status = bfin_read_WPSTAT();
            CSYNC();

            if (exceptionVector == VEC_WATCH) {
                  for (breakno = 0; breakno < 6; ++breakno) {
                        if (wp_status & (1 << breakno)) {
                              breakinfo->skip = 1;
                              break;
                        }
                  }
            }
            kgdb_correct_hw_break();

            bfin_write_WPSTAT(0);

            return 0;
      }                 /* switch */
      return -1;        /* this means that we do not want to exit from the handler */
}

struct kgdb_arch arch_kgdb_ops = {
      .gdb_bpt_instr = {0xa1},
      .flags = KGDB_HW_BREAKPOINT,
};

Generated by  Doxygen 1.6.0   Back to index