Logo Search packages:      
Sourcecode: linux version File versions  Download package

setup.c

/*
 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
 *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
 *
 *    Description:
 *      Architecture- / platform-specific boot-time initialization code for
 *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
 *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
 *      <dan@net4x.com>.
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#undef DEBUG

#include <linux/init.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/seq_file.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/root_dev.h>
#include <linux/kernel.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>

#include <asm/processor.h>
#include <asm/machdep.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/iommu.h>
#include <asm/firmware.h>
#include <asm/system.h>
#include <asm/time.h>
#include <asm/paca.h>
#include <asm/cache.h>
#include <asm/abs_addr.h>
#include <asm/iseries/hv_lp_config.h>
#include <asm/iseries/hv_call_event.h>
#include <asm/iseries/hv_call_xm.h>
#include <asm/iseries/it_lp_queue.h>
#include <asm/iseries/mf.h>
#include <asm/iseries/hv_lp_event.h>
#include <asm/iseries/lpar_map.h>
#include <asm/udbg.h>
#include <asm/irq.h>

#include "naca.h"
#include "setup.h"
#include "irq.h"
#include "vpd_areas.h"
#include "processor_vpd.h"
#include "it_lp_naca.h"
#include "main_store.h"
#include "call_sm.h"
#include "call_hpt.h"
#include "pci.h"

#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

/* Function Prototypes */
static unsigned long build_iSeries_Memory_Map(void);
static void iseries_shared_idle(void);
static void iseries_dedicated_idle(void);


struct MemoryBlock {
      unsigned long absStart;
      unsigned long absEnd;
      unsigned long logicalStart;
      unsigned long logicalEnd;
};

/*
 * Process the main store vpd to determine where the holes in memory are
 * and return the number of physical blocks and fill in the array of
 * block data.
 */
static unsigned long iSeries_process_Condor_mainstore_vpd(
            struct MemoryBlock *mb_array, unsigned long max_entries)
{
      unsigned long holeFirstChunk, holeSizeChunks;
      unsigned long numMemoryBlocks = 1;
      struct IoHriMainStoreSegment4 *msVpd =
            (struct IoHriMainStoreSegment4 *)xMsVpd;
      unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
      unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
      unsigned long holeSize = holeEnd - holeStart;

      printk("Mainstore_VPD: Condor\n");
      /*
       * Determine if absolute memory has any
       * holes so that we can interpret the
       * access map we get back from the hypervisor
       * correctly.
       */
      mb_array[0].logicalStart = 0;
      mb_array[0].logicalEnd = 0x100000000UL;
      mb_array[0].absStart = 0;
      mb_array[0].absEnd = 0x100000000UL;

      if (holeSize) {
            numMemoryBlocks = 2;
            holeStart = holeStart & 0x000fffffffffffffUL;
            holeStart = addr_to_chunk(holeStart);
            holeFirstChunk = holeStart;
            holeSize = addr_to_chunk(holeSize);
            holeSizeChunks = holeSize;
            printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
                        holeFirstChunk, holeSizeChunks );
            mb_array[0].logicalEnd = holeFirstChunk;
            mb_array[0].absEnd = holeFirstChunk;
            mb_array[1].logicalStart = holeFirstChunk;
            mb_array[1].logicalEnd = 0x100000000UL - holeSizeChunks;
            mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
            mb_array[1].absEnd = 0x100000000UL;
      }
      return numMemoryBlocks;
}

#define MaxSegmentAreas             32
#define MaxSegmentAdrRangeBlocks    128
#define MaxAreaRangeBlocks          4

static unsigned long iSeries_process_Regatta_mainstore_vpd(
            struct MemoryBlock *mb_array, unsigned long max_entries)
{
      struct IoHriMainStoreSegment5 *msVpdP =
            (struct IoHriMainStoreSegment5 *)xMsVpd;
      unsigned long numSegmentBlocks = 0;
      u32 existsBits = msVpdP->msAreaExists;
      unsigned long area_num;

      printk("Mainstore_VPD: Regatta\n");

      for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
            unsigned long numAreaBlocks;
            struct IoHriMainStoreArea4 *currentArea;

            if (existsBits & 0x80000000) {
                  unsigned long block_num;

                  currentArea = &msVpdP->msAreaArray[area_num];
                  numAreaBlocks = currentArea->numAdrRangeBlocks;
                  printk("ms_vpd: processing area %2ld  blocks=%ld",
                              area_num, numAreaBlocks);
                  for (block_num = 0; block_num < numAreaBlocks;
                              ++block_num ) {
                        /* Process an address range block */
                        struct MemoryBlock tempBlock;
                        unsigned long i;

                        tempBlock.absStart =
                              (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
                        tempBlock.absEnd =
                              (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
                        tempBlock.logicalStart = 0;
                        tempBlock.logicalEnd   = 0;
                        printk("\n          block %ld absStart=%016lx absEnd=%016lx",
                                    block_num, tempBlock.absStart,
                                    tempBlock.absEnd);

                        for (i = 0; i < numSegmentBlocks; ++i) {
                              if (mb_array[i].absStart ==
                                          tempBlock.absStart)
                                    break;
                        }
                        if (i == numSegmentBlocks) {
                              if (numSegmentBlocks == max_entries)
                                    panic("iSeries_process_mainstore_vpd: too many memory blocks");
                              mb_array[numSegmentBlocks] = tempBlock;
                              ++numSegmentBlocks;
                        } else
                              printk(" (duplicate)");
                  }
                  printk("\n");
            }
            existsBits <<= 1;
      }
      /* Now sort the blocks found into ascending sequence */
      if (numSegmentBlocks > 1) {
            unsigned long m, n;

            for (m = 0; m < numSegmentBlocks - 1; ++m) {
                  for (n = numSegmentBlocks - 1; m < n; --n) {
                        if (mb_array[n].absStart <
                                    mb_array[n-1].absStart) {
                              struct MemoryBlock tempBlock;

                              tempBlock = mb_array[n];
                              mb_array[n] = mb_array[n-1];
                              mb_array[n-1] = tempBlock;
                        }
                  }
            }
      }
      /*
       * Assign "logical" addresses to each block.  These
       * addresses correspond to the hypervisor "bitmap" space.
       * Convert all addresses into units of 256K chunks.
       */
      {
      unsigned long i, nextBitmapAddress;

      printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
      nextBitmapAddress = 0;
      for (i = 0; i < numSegmentBlocks; ++i) {
            unsigned long length = mb_array[i].absEnd -
                  mb_array[i].absStart;

            mb_array[i].logicalStart = nextBitmapAddress;
            mb_array[i].logicalEnd = nextBitmapAddress + length;
            nextBitmapAddress += length;
            printk("          Bitmap range: %016lx - %016lx\n"
                        "        Absolute range: %016lx - %016lx\n",
                        mb_array[i].logicalStart,
                        mb_array[i].logicalEnd,
                        mb_array[i].absStart, mb_array[i].absEnd);
            mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
                        0x000fffffffffffffUL);
            mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
                        0x000fffffffffffffUL);
            mb_array[i].logicalStart =
                  addr_to_chunk(mb_array[i].logicalStart);
            mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
      }
      }

      return numSegmentBlocks;
}

static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
            unsigned long max_entries)
{
      unsigned long i;
      unsigned long mem_blocks = 0;

      if (cpu_has_feature(CPU_FTR_SLB))
            mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
                        max_entries);
      else
            mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
                        max_entries);

      printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
      for (i = 0; i < mem_blocks; ++i) {
            printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
                   "                             abs chunks %016lx - %016lx\n",
                  i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
                  mb_array[i].absStart, mb_array[i].absEnd);
      }
      return mem_blocks;
}

static void __init iSeries_get_cmdline(void)
{
      char *p, *q;

      /* copy the command line parameter from the primary VSP  */
      HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
                  HvLpDma_Direction_RemoteToLocal);

      p = cmd_line;
      q = cmd_line + 255;
      while(p < q) {
            if (!*p || *p == '\n')
                  break;
            ++p;
      }
      *p = 0;
}

static void __init iSeries_init_early(void)
{
      DBG(" -> iSeries_init_early()\n");

      /* Snapshot the timebase, for use in later recalibration */
      iSeries_time_init_early();

      /*
       * Initialize the DMA/TCE management
       */
      iommu_init_early_iSeries();

      /* Initialize machine-dependency vectors */
#ifdef CONFIG_SMP
      smp_init_iSeries();
#endif

      /* Associate Lp Event Queue 0 with processor 0 */
      HvCallEvent_setLpEventQueueInterruptProc(0, 0);

      mf_init();

      DBG(" <- iSeries_init_early()\n");
}

struct mschunks_map mschunks_map = {
      /* XXX We don't use these, but Piranha might need them. */
      .chunk_size  = MSCHUNKS_CHUNK_SIZE,
      .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
      .chunk_mask  = MSCHUNKS_OFFSET_MASK,
};
EXPORT_SYMBOL(mschunks_map);

static void mschunks_alloc(unsigned long num_chunks)
{
      klimit = _ALIGN(klimit, sizeof(u32));
      mschunks_map.mapping = (u32 *)klimit;
      klimit += num_chunks * sizeof(u32);
      mschunks_map.num_chunks = num_chunks;
}

/*
 * The iSeries may have very large memories ( > 128 GB ) and a partition
 * may get memory in "chunks" that may be anywhere in the 2**52 real
 * address space.  The chunks are 256K in size.  To map this to the
 * memory model Linux expects, the AS/400 specific code builds a
 * translation table to translate what Linux thinks are "physical"
 * addresses to the actual real addresses.  This allows us to make
 * it appear to Linux that we have contiguous memory starting at
 * physical address zero while in fact this could be far from the truth.
 * To avoid confusion, I'll let the words physical and/or real address
 * apply to the Linux addresses while I'll use "absolute address" to
 * refer to the actual hardware real address.
 *
 * build_iSeries_Memory_Map gets information from the Hypervisor and
 * looks at the Main Store VPD to determine the absolute addresses
 * of the memory that has been assigned to our partition and builds
 * a table used to translate Linux's physical addresses to these
 * absolute addresses.  Absolute addresses are needed when
 * communicating with the hypervisor (e.g. to build HPT entries)
 *
 * Returns the physical memory size
 */

static unsigned long __init build_iSeries_Memory_Map(void)
{
      u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
      u32 nextPhysChunk;
      u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
      u32 totalChunks,moreChunks;
      u32 currChunk, thisChunk, absChunk;
      u32 currDword;
      u32 chunkBit;
      u64 map;
      struct MemoryBlock mb[32];
      unsigned long numMemoryBlocks, curBlock;

      /* Chunk size on iSeries is 256K bytes */
      totalChunks = (u32)HvLpConfig_getMsChunks();
      mschunks_alloc(totalChunks);

      /*
       * Get absolute address of our load area
       * and map it to physical address 0
       * This guarantees that the loadarea ends up at physical 0
       * otherwise, it might not be returned by PLIC as the first
       * chunks
       */

      loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
      loadAreaSize =  itLpNaca.xLoadAreaChunks;

      /*
       * Only add the pages already mapped here.
       * Otherwise we might add the hpt pages
       * The rest of the pages of the load area
       * aren't in the HPT yet and can still
       * be assigned an arbitrary physical address
       */
      if ((loadAreaSize * 64) > HvPagesToMap)
            loadAreaSize = HvPagesToMap / 64;

      loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;

      /*
       * TODO Do we need to do something if the HPT is in the 64MB load area?
       * This would be required if the itLpNaca.xLoadAreaChunks includes
       * the HPT size
       */

      printk("Mapping load area - physical addr = 0000000000000000\n"
            "                    absolute addr = %016lx\n",
            chunk_to_addr(loadAreaFirstChunk));
      printk("Load area size %dK\n", loadAreaSize * 256);

      for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
            mschunks_map.mapping[nextPhysChunk] =
                  loadAreaFirstChunk + nextPhysChunk;

      /*
       * Get absolute address of our HPT and remember it so
       * we won't map it to any physical address
       */
      hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
      hptSizePages = (u32)HvCallHpt_getHptPages();
      hptSizeChunks = hptSizePages >>
            (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
      hptLastChunk = hptFirstChunk + hptSizeChunks - 1;

      printk("HPT absolute addr = %016lx, size = %dK\n",
                  chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);

      /*
       * Determine if absolute memory has any
       * holes so that we can interpret the
       * access map we get back from the hypervisor
       * correctly.
       */
      numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);

      /*
       * Process the main store access map from the hypervisor
       * to build up our physical -> absolute translation table
       */
      curBlock = 0;
      currChunk = 0;
      currDword = 0;
      moreChunks = totalChunks;

      while (moreChunks) {
            map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
                        currDword);
            thisChunk = currChunk;
            while (map) {
                  chunkBit = map >> 63;
                  map <<= 1;
                  if (chunkBit) {
                        --moreChunks;
                        while (thisChunk >= mb[curBlock].logicalEnd) {
                              ++curBlock;
                              if (curBlock >= numMemoryBlocks)
                                    panic("out of memory blocks");
                        }
                        if (thisChunk < mb[curBlock].logicalStart)
                              panic("memory block error");

                        absChunk = mb[curBlock].absStart +
                              (thisChunk - mb[curBlock].logicalStart);
                        if (((absChunk < hptFirstChunk) ||
                             (absChunk > hptLastChunk)) &&
                            ((absChunk < loadAreaFirstChunk) ||
                             (absChunk > loadAreaLastChunk))) {
                              mschunks_map.mapping[nextPhysChunk] =
                                    absChunk;
                              ++nextPhysChunk;
                        }
                  }
                  ++thisChunk;
            }
            ++currDword;
            currChunk += 64;
      }

      /*
       * main store size (in chunks) is
       *   totalChunks - hptSizeChunks
       * which should be equal to
       *   nextPhysChunk
       */
      return chunk_to_addr(nextPhysChunk);
}

/*
 * Document me.
 */
static void __init iSeries_setup_arch(void)
{
      if (get_lppaca()->shared_proc) {
            ppc_md.idle_loop = iseries_shared_idle;
            printk(KERN_DEBUG "Using shared processor idle loop\n");
      } else {
            ppc_md.idle_loop = iseries_dedicated_idle;
            printk(KERN_DEBUG "Using dedicated idle loop\n");
      }

      /* Setup the Lp Event Queue */
      setup_hvlpevent_queue();

      printk("Max  logical processors = %d\n",
                  itVpdAreas.xSlicMaxLogicalProcs);
      printk("Max physical processors = %d\n",
                  itVpdAreas.xSlicMaxPhysicalProcs);

      iSeries_pcibios_init();
}

static void iSeries_show_cpuinfo(struct seq_file *m)
{
      seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
}

static void __init iSeries_progress(char * st, unsigned short code)
{
      printk("Progress: [%04x] - %s\n", (unsigned)code, st);
      mf_display_progress(code);
}

static void __init iSeries_fixup_klimit(void)
{
      /*
       * Change klimit to take into account any ram disk
       * that may be included
       */
      if (naca.xRamDisk)
            klimit = KERNELBASE + (u64)naca.xRamDisk +
                  (naca.xRamDiskSize * HW_PAGE_SIZE);
}

static int __init iSeries_src_init(void)
{
        /* clear the progress line */
      if (firmware_has_feature(FW_FEATURE_ISERIES))
            ppc_md.progress(" ", 0xffff);
        return 0;
}

late_initcall(iSeries_src_init);

static inline void process_iSeries_events(void)
{
      asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
}

static void yield_shared_processor(void)
{
      unsigned long tb;

      HvCall_setEnabledInterrupts(HvCall_MaskIPI |
                            HvCall_MaskLpEvent |
                            HvCall_MaskLpProd |
                            HvCall_MaskTimeout);

      tb = get_tb();
      /* Compute future tb value when yield should expire */
      HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);

      /*
       * The decrementer stops during the yield.  Force a fake decrementer
       * here and let the timer_interrupt code sort out the actual time.
       */
      get_lppaca()->int_dword.fields.decr_int = 1;
      ppc64_runlatch_on();
      process_iSeries_events();
}

static void iseries_shared_idle(void)
{
      while (1) {
            tick_nohz_stop_sched_tick(1);
            while (!need_resched() && !hvlpevent_is_pending()) {
                  local_irq_disable();
                  ppc64_runlatch_off();

                  /* Recheck with irqs off */
                  if (!need_resched() && !hvlpevent_is_pending())
                        yield_shared_processor();

                  HMT_medium();
                  local_irq_enable();
            }

            ppc64_runlatch_on();
            tick_nohz_restart_sched_tick();

            if (hvlpevent_is_pending())
                  process_iSeries_events();

            preempt_enable_no_resched();
            schedule();
            preempt_disable();
      }
}

static void iseries_dedicated_idle(void)
{
      set_thread_flag(TIF_POLLING_NRFLAG);

      while (1) {
            tick_nohz_stop_sched_tick(1);
            if (!need_resched()) {
                  while (!need_resched()) {
                        ppc64_runlatch_off();
                        HMT_low();

                        if (hvlpevent_is_pending()) {
                              HMT_medium();
                              ppc64_runlatch_on();
                              process_iSeries_events();
                        }
                  }

                  HMT_medium();
            }

            ppc64_runlatch_on();
            tick_nohz_restart_sched_tick();
            preempt_enable_no_resched();
            schedule();
            preempt_disable();
      }
}

static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
                             unsigned long flags)
{
      return (void __iomem *)address;
}

static void iseries_iounmap(volatile void __iomem *token)
{
}

static int __init iseries_probe(void)
{
      unsigned long root = of_get_flat_dt_root();
      if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
            return 0;

      hpte_init_iSeries();
      /* iSeries does not support 16M pages */
      cur_cpu_spec->cpu_features &= ~CPU_FTR_16M_PAGE;

      return 1;
}

define_machine(iseries) {
      .name             = "iSeries",
      .setup_arch       = iSeries_setup_arch,
      .show_cpuinfo           = iSeries_show_cpuinfo,
      .init_IRQ         = iSeries_init_IRQ,
      .get_irq          = iSeries_get_irq,
      .init_early       = iSeries_init_early,
      .pcibios_fixup          = iSeries_pci_final_fixup,
      .pcibios_fixup_resources= iSeries_pcibios_fixup_resources,
      .restart          = mf_reboot,
      .power_off        = mf_power_off,
      .halt             = mf_power_off,
      .get_boot_time          = iSeries_get_boot_time,
      .set_rtc_time           = iSeries_set_rtc_time,
      .get_rtc_time           = iSeries_get_rtc_time,
      .calibrate_decr         = generic_calibrate_decr,
      .progress         = iSeries_progress,
      .probe                  = iseries_probe,
      .ioremap          = iseries_ioremap,
      .iounmap          = iseries_iounmap,
      /* XXX Implement enable_pmcs for iSeries */
};

void * __init iSeries_early_setup(void)
{
      unsigned long phys_mem_size;

      /* Identify CPU type. This is done again by the common code later
       * on but calling this function multiple times is fine.
       */
      identify_cpu(0, mfspr(SPRN_PVR));

      powerpc_firmware_features |= FW_FEATURE_ISERIES;
      powerpc_firmware_features |= FW_FEATURE_LPAR;

      iSeries_fixup_klimit();

      /*
       * Initialize the table which translate Linux physical addresses to
       * AS/400 absolute addresses
       */
      phys_mem_size = build_iSeries_Memory_Map();

      iSeries_get_cmdline();

      return (void *) __pa(build_flat_dt(phys_mem_size));
}

static void hvputc(char c)
{
      if (c == '\n')
            hvputc('\r');

      HvCall_writeLogBuffer(&c, 1);
}

void __init udbg_init_iseries(void)
{
      udbg_putc = hvputc;
}

Generated by  Doxygen 1.6.0   Back to index