Logo Search packages:      
Sourcecode: linux version File versions

kvm-ia64.c

/*
 * kvm_ia64.c: Basic KVM suppport On Itanium series processors
 *
 *
 *    Copyright (C) 2007, Intel Corporation.
 *    Xiantao Zhang  (xiantao.zhang@intel.com)
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 */

#include <linux/module.h>
#include <linux/errno.h>
#include <linux/percpu.h>
#include <linux/gfp.h>
#include <linux/fs.h>
#include <linux/smp.h>
#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/bitops.h>
#include <linux/hrtimer.h>
#include <linux/uaccess.h>
#include <linux/intel-iommu.h>

#include <asm/pgtable.h>
#include <asm/gcc_intrin.h>
#include <asm/pal.h>
#include <asm/cacheflush.h>
#include <asm/div64.h>
#include <asm/tlb.h>
#include <asm/elf.h>

#include "misc.h"
#include "vti.h"
#include "iodev.h"
#include "ioapic.h"
#include "lapic.h"
#include "irq.h"

static unsigned long kvm_vmm_base;
static unsigned long kvm_vsa_base;
static unsigned long kvm_vm_buffer;
static unsigned long kvm_vm_buffer_size;
unsigned long kvm_vmm_gp;

static long vp_env_info;

static struct kvm_vmm_info *kvm_vmm_info;

static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);

struct kvm_stats_debugfs_item debugfs_entries[] = {
      { NULL }
};

static void kvm_flush_icache(unsigned long start, unsigned long len)
{
      int l;

      for (l = 0; l < (len + 32); l += 32)
            ia64_fc(start + l);

      ia64_sync_i();
      ia64_srlz_i();
}

static void kvm_flush_tlb_all(void)
{
      unsigned long i, j, count0, count1, stride0, stride1, addr;
      long flags;

      addr    = local_cpu_data->ptce_base;
      count0  = local_cpu_data->ptce_count[0];
      count1  = local_cpu_data->ptce_count[1];
      stride0 = local_cpu_data->ptce_stride[0];
      stride1 = local_cpu_data->ptce_stride[1];

      local_irq_save(flags);
      for (i = 0; i < count0; ++i) {
            for (j = 0; j < count1; ++j) {
                  ia64_ptce(addr);
                  addr += stride1;
            }
            addr += stride0;
      }
      local_irq_restore(flags);
      ia64_srlz_i();                /* srlz.i implies srlz.d */
}

long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
{
      struct ia64_pal_retval iprv;

      PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
                  (u64)opt_handler);

      return iprv.status;
}

static  DEFINE_SPINLOCK(vp_lock);

void kvm_arch_hardware_enable(void *garbage)
{
      long  status;
      long  tmp_base;
      unsigned long pte;
      unsigned long saved_psr;
      int slot;

      pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
                        PAGE_KERNEL));
      local_irq_save(saved_psr);
      slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
      local_irq_restore(saved_psr);
      if (slot < 0)
            return;

      spin_lock(&vp_lock);
      status = ia64_pal_vp_init_env(kvm_vsa_base ?
                        VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
                  __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
      if (status != 0) {
            printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
            return ;
      }

      if (!kvm_vsa_base) {
            kvm_vsa_base = tmp_base;
            printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
      }
      spin_unlock(&vp_lock);
      ia64_ptr_entry(0x3, slot);
}

void kvm_arch_hardware_disable(void *garbage)
{

      long status;
      int slot;
      unsigned long pte;
      unsigned long saved_psr;
      unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);

      pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
                        PAGE_KERNEL));

      local_irq_save(saved_psr);
      slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
      local_irq_restore(saved_psr);
      if (slot < 0)
            return;

      status = ia64_pal_vp_exit_env(host_iva);
      if (status)
            printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
                        status);
      ia64_ptr_entry(0x3, slot);
}

void kvm_arch_check_processor_compat(void *rtn)
{
      *(int *)rtn = 0;
}

int kvm_dev_ioctl_check_extension(long ext)
{

      int r;

      switch (ext) {
      case KVM_CAP_IRQCHIP:
      case KVM_CAP_USER_MEMORY:
      case KVM_CAP_MP_STATE:

            r = 1;
            break;
      case KVM_CAP_COALESCED_MMIO:
            r = KVM_COALESCED_MMIO_PAGE_OFFSET;
            break;
      case KVM_CAP_IOMMU:
            r = intel_iommu_found();
            break;
      default:
            r = 0;
      }
      return r;

}

static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
                              gpa_t addr, int len, int is_write)
{
      struct kvm_io_device *dev;

      dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);

      return dev;
}

static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
      kvm_run->hw.hardware_exit_reason = 1;
      return 0;
}

static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      struct kvm_mmio_req *p;
      struct kvm_io_device *mmio_dev;

      p = kvm_get_vcpu_ioreq(vcpu);

      if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
            goto mmio;
      vcpu->mmio_needed = 1;
      vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
      vcpu->mmio_size = kvm_run->mmio.len = p->size;
      vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;

      if (vcpu->mmio_is_write)
            memcpy(vcpu->mmio_data, &p->data, p->size);
      memcpy(kvm_run->mmio.data, &p->data, p->size);
      kvm_run->exit_reason = KVM_EXIT_MMIO;
      return 0;
mmio:
      mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
      if (mmio_dev) {
            if (!p->dir)
                  kvm_iodevice_write(mmio_dev, p->addr, p->size,
                                    &p->data);
            else
                  kvm_iodevice_read(mmio_dev, p->addr, p->size,
                                    &p->data);

      } else
            printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
      p->state = STATE_IORESP_READY;

      return 1;
}

static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      struct exit_ctl_data *p;

      p = kvm_get_exit_data(vcpu);

      if (p->exit_reason == EXIT_REASON_PAL_CALL)
            return kvm_pal_emul(vcpu, kvm_run);
      else {
            kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
            kvm_run->hw.hardware_exit_reason = 2;
            return 0;
      }
}

static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      struct exit_ctl_data *p;

      p = kvm_get_exit_data(vcpu);

      if (p->exit_reason == EXIT_REASON_SAL_CALL) {
            kvm_sal_emul(vcpu);
            return 1;
      } else {
            kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
            kvm_run->hw.hardware_exit_reason = 3;
            return 0;
      }

}

/*
 *  offset: address offset to IPI space.
 *  value:  deliver value.
 */
static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
                        uint64_t vector)
{
      switch (dm) {
      case SAPIC_FIXED:
            kvm_apic_set_irq(vcpu, vector, 0);
            break;
      case SAPIC_NMI:
            kvm_apic_set_irq(vcpu, 2, 0);
            break;
      case SAPIC_EXTINT:
            kvm_apic_set_irq(vcpu, 0, 0);
            break;
      case SAPIC_INIT:
      case SAPIC_PMI:
      default:
            printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
            break;
      }
}

static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
                  unsigned long eid)
{
      union ia64_lid lid;
      int i;

      for (i = 0; i < KVM_MAX_VCPUS; i++) {
            if (kvm->vcpus[i]) {
                  lid.val = VCPU_LID(kvm->vcpus[i]);
                  if (lid.id == id && lid.eid == eid)
                        return kvm->vcpus[i];
            }
      }

      return NULL;
}

static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
      struct kvm_vcpu *target_vcpu;
      struct kvm_pt_regs *regs;
      union ia64_ipi_a addr = p->u.ipi_data.addr;
      union ia64_ipi_d data = p->u.ipi_data.data;

      target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
      if (!target_vcpu)
            return handle_vm_error(vcpu, kvm_run);

      if (!target_vcpu->arch.launched) {
            regs = vcpu_regs(target_vcpu);

            regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
            regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;

            target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
            if (waitqueue_active(&target_vcpu->wq))
                  wake_up_interruptible(&target_vcpu->wq);
      } else {
            vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
            if (target_vcpu != vcpu)
                  kvm_vcpu_kick(target_vcpu);
      }

      return 1;
}

struct call_data {
      struct kvm_ptc_g ptc_g_data;
      struct kvm_vcpu *vcpu;
};

static void vcpu_global_purge(void *info)
{
      struct call_data *p = (struct call_data *)info;
      struct kvm_vcpu *vcpu = p->vcpu;

      if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
            return;

      set_bit(KVM_REQ_PTC_G, &vcpu->requests);
      if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
            vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
                                          p->ptc_g_data;
      } else {
            clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
            vcpu->arch.ptc_g_count = 0;
            set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
      }
}

static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
      struct kvm *kvm = vcpu->kvm;
      struct call_data call_data;
      int i;

      call_data.ptc_g_data = p->u.ptc_g_data;

      for (i = 0; i < KVM_MAX_VCPUS; i++) {
            if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
                                    KVM_MP_STATE_UNINITIALIZED ||
                              vcpu == kvm->vcpus[i])
                  continue;

            if (waitqueue_active(&kvm->vcpus[i]->wq))
                  wake_up_interruptible(&kvm->vcpus[i]->wq);

            if (kvm->vcpus[i]->cpu != -1) {
                  call_data.vcpu = kvm->vcpus[i];
                  smp_call_function_single(kvm->vcpus[i]->cpu,
                              vcpu_global_purge, &call_data, 1);
            } else
                  printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");

      }
      return 1;
}

static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      return 1;
}

int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{

      ktime_t kt;
      long itc_diff;
      unsigned long vcpu_now_itc;
      unsigned long expires;
      struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
      unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
      struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);

      if (irqchip_in_kernel(vcpu->kvm)) {

            vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;

            if (time_after(vcpu_now_itc, vpd->itm)) {
                  vcpu->arch.timer_check = 1;
                  return 1;
            }
            itc_diff = vpd->itm - vcpu_now_itc;
            if (itc_diff < 0)
                  itc_diff = -itc_diff;

            expires = div64_u64(itc_diff, cyc_per_usec);
            kt = ktime_set(0, 1000 * expires);

            down_read(&vcpu->kvm->slots_lock);
            vcpu->arch.ht_active = 1;
            hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);

            vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
            kvm_vcpu_block(vcpu);
            hrtimer_cancel(p_ht);
            vcpu->arch.ht_active = 0;

            if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
                  if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
                        vcpu->arch.mp_state =
                              KVM_MP_STATE_RUNNABLE;
            up_read(&vcpu->kvm->slots_lock);

            if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
                  return -EINTR;
            return 1;
      } else {
            printk(KERN_ERR"kvm: Unsupported userspace halt!");
            return 0;
      }
}

static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
            struct kvm_run *kvm_run)
{
      kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
      return 0;
}

static int handle_external_interrupt(struct kvm_vcpu *vcpu,
            struct kvm_run *kvm_run)
{
      return 1;
}

static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
            struct kvm_run *kvm_run) = {
      [EXIT_REASON_VM_PANIC]              = handle_vm_error,
      [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
      [EXIT_REASON_PAL_CALL]              = handle_pal_call,
      [EXIT_REASON_SAL_CALL]              = handle_sal_call,
      [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
      [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
      [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
      [EXIT_REASON_IPI]           = handle_ipi,
      [EXIT_REASON_PTC_G]               = handle_global_purge,

};

static const int kvm_vti_max_exit_handlers =
            sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);

static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
{
      struct exit_ctl_data *p_exit_data;

      p_exit_data = kvm_get_exit_data(vcpu);
      return p_exit_data->exit_reason;
}

/*
 * The guest has exited.  See if we can fix it or if we need userspace
 * assistance.
 */
static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
      u32 exit_reason = kvm_get_exit_reason(vcpu);
      vcpu->arch.last_exit = exit_reason;

      if (exit_reason < kvm_vti_max_exit_handlers
                  && kvm_vti_exit_handlers[exit_reason])
            return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
      else {
            kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
            kvm_run->hw.hardware_exit_reason = exit_reason;
      }
      return 0;
}

static inline void vti_set_rr6(unsigned long rr6)
{
      ia64_set_rr(RR6, rr6);
      ia64_srlz_i();
}

static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
{
      unsigned long pte;
      struct kvm *kvm = vcpu->kvm;
      int r;

      /*Insert a pair of tr to map vmm*/
      pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
      r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
      if (r < 0)
            goto out;
      vcpu->arch.vmm_tr_slot = r;
      /*Insert a pairt of tr to map data of vm*/
      pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
      r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
                              pte, KVM_VM_DATA_SHIFT);
      if (r < 0)
            goto out;
      vcpu->arch.vm_tr_slot = r;
      r = 0;
out:
      return r;

}

static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
{

      ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
      ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);

}

static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
{
      int cpu = smp_processor_id();

      if (vcpu->arch.last_run_cpu != cpu ||
                  per_cpu(last_vcpu, cpu) != vcpu) {
            per_cpu(last_vcpu, cpu) = vcpu;
            vcpu->arch.last_run_cpu = cpu;
            kvm_flush_tlb_all();
      }

      vcpu->arch.host_rr6 = ia64_get_rr(RR6);
      vti_set_rr6(vcpu->arch.vmm_rr);
      return kvm_insert_vmm_mapping(vcpu);
}
static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
{
      kvm_purge_vmm_mapping(vcpu);
      vti_set_rr6(vcpu->arch.host_rr6);
}

static int  vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      union context *host_ctx, *guest_ctx;
      int r;

      /*Get host and guest context with guest address space.*/
      host_ctx = kvm_get_host_context(vcpu);
      guest_ctx = kvm_get_guest_context(vcpu);

      r = kvm_vcpu_pre_transition(vcpu);
      if (r < 0)
            goto out;
      kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
      kvm_vcpu_post_transition(vcpu);
      r = 0;
out:
      return r;
}

static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      int r;

again:
      preempt_disable();
      local_irq_disable();

      if (signal_pending(current)) {
            local_irq_enable();
            preempt_enable();
            r = -EINTR;
            kvm_run->exit_reason = KVM_EXIT_INTR;
            goto out;
      }

      vcpu->guest_mode = 1;
      kvm_guest_enter();
      down_read(&vcpu->kvm->slots_lock);
      r = vti_vcpu_run(vcpu, kvm_run);
      if (r < 0) {
            local_irq_enable();
            preempt_enable();
            kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
            goto out;
      }

      vcpu->arch.launched = 1;
      vcpu->guest_mode = 0;
      local_irq_enable();

      /*
       * We must have an instruction between local_irq_enable() and
       * kvm_guest_exit(), so the timer interrupt isn't delayed by
       * the interrupt shadow.  The stat.exits increment will do nicely.
       * But we need to prevent reordering, hence this barrier():
       */
      barrier();
      kvm_guest_exit();
      up_read(&vcpu->kvm->slots_lock);
      preempt_enable();

      r = kvm_handle_exit(kvm_run, vcpu);

      if (r > 0) {
            if (!need_resched())
                  goto again;
      }

out:
      if (r > 0) {
            kvm_resched(vcpu);
            goto again;
      }

      return r;
}

static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
{
      struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);

      if (!vcpu->mmio_is_write)
            memcpy(&p->data, vcpu->mmio_data, 8);
      p->state = STATE_IORESP_READY;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
      int r;
      sigset_t sigsaved;

      vcpu_load(vcpu);

      if (vcpu->sigset_active)
            sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

      if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
            kvm_vcpu_block(vcpu);
            clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
            r = -EAGAIN;
            goto out;
      }

      if (vcpu->mmio_needed) {
            memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
            kvm_set_mmio_data(vcpu);
            vcpu->mmio_read_completed = 1;
            vcpu->mmio_needed = 0;
      }
      r = __vcpu_run(vcpu, kvm_run);
out:
      if (vcpu->sigset_active)
            sigprocmask(SIG_SETMASK, &sigsaved, NULL);

      vcpu_put(vcpu);
      return r;
}

/*
 * Allocate 16M memory for every vm to hold its specific data.
 * Its memory map is defined in kvm_host.h.
 */
static struct kvm *kvm_alloc_kvm(void)
{

      struct kvm *kvm;
      uint64_t  vm_base;

      vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));

      if (!vm_base)
            return ERR_PTR(-ENOMEM);
      printk(KERN_DEBUG"kvm: VM data's base Address:0x%lx\n", vm_base);

      /* Zero all pages before use! */
      memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);

      kvm = (struct kvm *)(vm_base + KVM_VM_OFS);
      kvm->arch.vm_base = vm_base;

      return kvm;
}

struct kvm_io_range {
      unsigned long start;
      unsigned long size;
      unsigned long type;
};

static const struct kvm_io_range io_ranges[] = {
      {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
      {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
      {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
      {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
      {PIB_START, PIB_SIZE, GPFN_PIB},
};

static void kvm_build_io_pmt(struct kvm *kvm)
{
      unsigned long i, j;

      /* Mark I/O ranges */
      for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
                                          i++) {
            for (j = io_ranges[i].start;
                        j < io_ranges[i].start + io_ranges[i].size;
                        j += PAGE_SIZE)
                  kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
                              io_ranges[i].type, 0);
      }

}

/*Use unused rids to virtualize guest rid.*/
#define GUEST_PHYSICAL_RR0    0x1739
#define GUEST_PHYSICAL_RR4    0x2739
#define VMM_INIT_RR           0x1660

static void kvm_init_vm(struct kvm *kvm)
{
      long vm_base;

      BUG_ON(!kvm);

      kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
      kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
      kvm->arch.vmm_init_rr = VMM_INIT_RR;

      vm_base = kvm->arch.vm_base;
      if (vm_base) {
            kvm->arch.vhpt_base = vm_base + KVM_VHPT_OFS;
            kvm->arch.vtlb_base = vm_base + KVM_VTLB_OFS;
            kvm->arch.vpd_base  = vm_base + KVM_VPD_OFS;
      }

      /*
       *Fill P2M entries for MMIO/IO ranges
       */
      kvm_build_io_pmt(kvm);

      INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);

      /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
      set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
}

struct  kvm *kvm_arch_create_vm(void)
{
      struct kvm *kvm = kvm_alloc_kvm();

      if (IS_ERR(kvm))
            return ERR_PTR(-ENOMEM);
      kvm_init_vm(kvm);

      return kvm;

}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
                              struct kvm_irqchip *chip)
{
      int r;

      r = 0;
      switch (chip->chip_id) {
      case KVM_IRQCHIP_IOAPIC:
            memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
                        sizeof(struct kvm_ioapic_state));
            break;
      default:
            r = -EINVAL;
            break;
      }
      return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
      int r;

      r = 0;
      switch (chip->chip_id) {
      case KVM_IRQCHIP_IOAPIC:
            memcpy(ioapic_irqchip(kvm),
                        &chip->chip.ioapic,
                        sizeof(struct kvm_ioapic_state));
            break;
      default:
            r = -EINVAL;
            break;
      }
      return r;
}

#define RESTORE_REGS(_x) vcpu->arch._x = regs->_x

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
      int i;
      struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
      int r;

      vcpu_load(vcpu);

      for (i = 0; i < 16; i++) {
            vpd->vgr[i] = regs->vpd.vgr[i];
            vpd->vbgr[i] = regs->vpd.vbgr[i];
      }
      for (i = 0; i < 128; i++)
            vpd->vcr[i] = regs->vpd.vcr[i];
      vpd->vhpi = regs->vpd.vhpi;
      vpd->vnat = regs->vpd.vnat;
      vpd->vbnat = regs->vpd.vbnat;
      vpd->vpsr = regs->vpd.vpsr;

      vpd->vpr = regs->vpd.vpr;

      r = -EFAULT;
      r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
                                    sizeof(union context));
      if (r)
            goto out;
      r = copy_from_user(vcpu + 1, regs->saved_stack +
                  sizeof(struct kvm_vcpu),
                  IA64_STK_OFFSET - sizeof(struct kvm_vcpu));
      if (r)
            goto out;
      vcpu->arch.exit_data =
            ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;

      RESTORE_REGS(mp_state);
      RESTORE_REGS(vmm_rr);
      memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
      memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
      RESTORE_REGS(itr_regions);
      RESTORE_REGS(dtr_regions);
      RESTORE_REGS(tc_regions);
      RESTORE_REGS(irq_check);
      RESTORE_REGS(itc_check);
      RESTORE_REGS(timer_check);
      RESTORE_REGS(timer_pending);
      RESTORE_REGS(last_itc);
      for (i = 0; i < 8; i++) {
            vcpu->arch.vrr[i] = regs->vrr[i];
            vcpu->arch.ibr[i] = regs->ibr[i];
            vcpu->arch.dbr[i] = regs->dbr[i];
      }
      for (i = 0; i < 4; i++)
            vcpu->arch.insvc[i] = regs->insvc[i];
      RESTORE_REGS(xtp);
      RESTORE_REGS(metaphysical_rr0);
      RESTORE_REGS(metaphysical_rr4);
      RESTORE_REGS(metaphysical_saved_rr0);
      RESTORE_REGS(metaphysical_saved_rr4);
      RESTORE_REGS(fp_psr);
      RESTORE_REGS(saved_gp);

      vcpu->arch.irq_new_pending = 1;
      vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
      set_bit(KVM_REQ_RESUME, &vcpu->requests);

      vcpu_put(vcpu);
      r = 0;
out:
      return r;
}

long kvm_arch_vm_ioctl(struct file *filp,
            unsigned int ioctl, unsigned long arg)
{
      struct kvm *kvm = filp->private_data;
      void __user *argp = (void __user *)arg;
      int r = -EINVAL;

      switch (ioctl) {
      case KVM_SET_MEMORY_REGION: {
            struct kvm_memory_region kvm_mem;
            struct kvm_userspace_memory_region kvm_userspace_mem;

            r = -EFAULT;
            if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
                  goto out;
            kvm_userspace_mem.slot = kvm_mem.slot;
            kvm_userspace_mem.flags = kvm_mem.flags;
            kvm_userspace_mem.guest_phys_addr =
                              kvm_mem.guest_phys_addr;
            kvm_userspace_mem.memory_size = kvm_mem.memory_size;
            r = kvm_vm_ioctl_set_memory_region(kvm,
                              &kvm_userspace_mem, 0);
            if (r)
                  goto out;
            break;
            }
      case KVM_CREATE_IRQCHIP:
            r = -EFAULT;
            r = kvm_ioapic_init(kvm);
            if (r)
                  goto out;
            break;
      case KVM_IRQ_LINE: {
            struct kvm_irq_level irq_event;

            r = -EFAULT;
            if (copy_from_user(&irq_event, argp, sizeof irq_event))
                  goto out;
            if (irqchip_in_kernel(kvm)) {
                  mutex_lock(&kvm->lock);
                  kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
                            irq_event.irq, irq_event.level);
                  mutex_unlock(&kvm->lock);
                  r = 0;
            }
            break;
            }
      case KVM_GET_IRQCHIP: {
            /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
            struct kvm_irqchip chip;

            r = -EFAULT;
            if (copy_from_user(&chip, argp, sizeof chip))
                        goto out;
            r = -ENXIO;
            if (!irqchip_in_kernel(kvm))
                  goto out;
            r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
            if (r)
                  goto out;
            r = -EFAULT;
            if (copy_to_user(argp, &chip, sizeof chip))
                        goto out;
            r = 0;
            break;
            }
      case KVM_SET_IRQCHIP: {
            /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
            struct kvm_irqchip chip;

            r = -EFAULT;
            if (copy_from_user(&chip, argp, sizeof chip))
                        goto out;
            r = -ENXIO;
            if (!irqchip_in_kernel(kvm))
                  goto out;
            r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
            if (r)
                  goto out;
            r = 0;
            break;
            }
      default:
            ;
      }
out:
      return r;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
            struct kvm_sregs *sregs)
{
      return -EINVAL;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
            struct kvm_sregs *sregs)
{
      return -EINVAL;

}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
            struct kvm_translation *tr)
{

      return -EINVAL;
}

static int kvm_alloc_vmm_area(void)
{
      if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
            kvm_vmm_base = __get_free_pages(GFP_KERNEL,
                        get_order(KVM_VMM_SIZE));
            if (!kvm_vmm_base)
                  return -ENOMEM;

            memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
            kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;

            printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
                        kvm_vmm_base, kvm_vm_buffer);
      }

      return 0;
}

static void kvm_free_vmm_area(void)
{
      if (kvm_vmm_base) {
            /*Zero this area before free to avoid bits leak!!*/
            memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
            free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
            kvm_vmm_base  = 0;
            kvm_vm_buffer = 0;
            kvm_vsa_base = 0;
      }
}

static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
}

static int vti_init_vpd(struct kvm_vcpu *vcpu)
{
      int i;
      union cpuid3_t cpuid3;
      struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);

      if (IS_ERR(vpd))
            return PTR_ERR(vpd);

      /* CPUID init */
      for (i = 0; i < 5; i++)
            vpd->vcpuid[i] = ia64_get_cpuid(i);

      /* Limit the CPUID number to 5 */
      cpuid3.value = vpd->vcpuid[3];
      cpuid3.number = 4;      /* 5 - 1 */
      vpd->vcpuid[3] = cpuid3.value;

      /*Set vac and vdc fields*/
      vpd->vac.a_from_int_cr = 1;
      vpd->vac.a_to_int_cr = 1;
      vpd->vac.a_from_psr = 1;
      vpd->vac.a_from_cpuid = 1;
      vpd->vac.a_cover = 1;
      vpd->vac.a_bsw = 1;
      vpd->vac.a_int = 1;
      vpd->vdc.d_vmsw = 1;

      /*Set virtual buffer*/
      vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;

      return 0;
}

static int vti_create_vp(struct kvm_vcpu *vcpu)
{
      long ret;
      struct vpd *vpd = vcpu->arch.vpd;
      unsigned long  vmm_ivt;

      vmm_ivt = kvm_vmm_info->vmm_ivt;

      printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);

      ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);

      if (ret) {
            printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
            return -EINVAL;
      }
      return 0;
}

static void init_ptce_info(struct kvm_vcpu *vcpu)
{
      ia64_ptce_info_t ptce = {0};

      ia64_get_ptce(&ptce);
      vcpu->arch.ptce_base = ptce.base;
      vcpu->arch.ptce_count[0] = ptce.count[0];
      vcpu->arch.ptce_count[1] = ptce.count[1];
      vcpu->arch.ptce_stride[0] = ptce.stride[0];
      vcpu->arch.ptce_stride[1] = ptce.stride[1];
}

static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
{
      struct hrtimer *p_ht = &vcpu->arch.hlt_timer;

      if (hrtimer_cancel(p_ht))
            hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
}

static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
{
      struct kvm_vcpu *vcpu;
      wait_queue_head_t *q;

      vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
      q = &vcpu->wq;

      if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
            goto out;

      if (waitqueue_active(q))
            wake_up_interruptible(q);

out:
      vcpu->arch.timer_fired = 1;
      vcpu->arch.timer_check = 1;
      return HRTIMER_NORESTART;
}

#define PALE_RESET_ENTRY    0x80000000ffffffb0UL

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
      struct kvm_vcpu *v;
      int r;
      int i;
      long itc_offset;
      struct kvm *kvm = vcpu->kvm;
      struct kvm_pt_regs *regs = vcpu_regs(vcpu);

      union context *p_ctx = &vcpu->arch.guest;
      struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);

      /*Init vcpu context for first run.*/
      if (IS_ERR(vmm_vcpu))
            return PTR_ERR(vmm_vcpu);

      if (vcpu->vcpu_id == 0) {
            vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;

            /*Set entry address for first run.*/
            regs->cr_iip = PALE_RESET_ENTRY;

            /*Initilize itc offset for vcpus*/
            itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
            for (i = 0; i < MAX_VCPU_NUM; i++) {
                  v = (struct kvm_vcpu *)((char *)vcpu + VCPU_SIZE * i);
                  v->arch.itc_offset = itc_offset;
                  v->arch.last_itc = 0;
            }
      } else
            vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;

      r = -ENOMEM;
      vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
      if (!vcpu->arch.apic)
            goto out;
      vcpu->arch.apic->vcpu = vcpu;

      p_ctx->gr[1] = 0;
      p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + IA64_STK_OFFSET);
      p_ctx->gr[13] = (unsigned long)vmm_vcpu;
      p_ctx->psr = 0x1008522000UL;
      p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
      p_ctx->caller_unat = 0;
      p_ctx->pr = 0x0;
      p_ctx->ar[36] = 0x0; /*unat*/
      p_ctx->ar[19] = 0x0; /*rnat*/
      p_ctx->ar[18] = (unsigned long)vmm_vcpu +
                        ((sizeof(struct kvm_vcpu)+15) & ~15);
      p_ctx->ar[64] = 0x0; /*pfs*/
      p_ctx->cr[0] = 0x7e04UL;
      p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
      p_ctx->cr[8] = 0x3c;

      /*Initilize region register*/
      p_ctx->rr[0] = 0x30;
      p_ctx->rr[1] = 0x30;
      p_ctx->rr[2] = 0x30;
      p_ctx->rr[3] = 0x30;
      p_ctx->rr[4] = 0x30;
      p_ctx->rr[5] = 0x30;
      p_ctx->rr[7] = 0x30;

      /*Initilize branch register 0*/
      p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;

      vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
      vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
      vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;

      hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
      vcpu->arch.hlt_timer.function = hlt_timer_fn;

      vcpu->arch.last_run_cpu = -1;
      vcpu->arch.vpd = (struct vpd *)VPD_ADDR(vcpu->vcpu_id);
      vcpu->arch.vsa_base = kvm_vsa_base;
      vcpu->arch.__gp = kvm_vmm_gp;
      vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
      vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_ADDR(vcpu->vcpu_id);
      vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_ADDR(vcpu->vcpu_id);
      init_ptce_info(vcpu);

      r = 0;
out:
      return r;
}

static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
{
      unsigned long psr;
      int r;

      local_irq_save(psr);
      r = kvm_insert_vmm_mapping(vcpu);
      if (r)
            goto fail;
      r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
      if (r)
            goto fail;

      r = vti_init_vpd(vcpu);
      if (r) {
            printk(KERN_DEBUG"kvm: vpd init error!!\n");
            goto uninit;
      }

      r = vti_create_vp(vcpu);
      if (r)
            goto uninit;

      kvm_purge_vmm_mapping(vcpu);
      local_irq_restore(psr);

      return 0;
uninit:
      kvm_vcpu_uninit(vcpu);
fail:
      local_irq_restore(psr);
      return r;
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
            unsigned int id)
{
      struct kvm_vcpu *vcpu;
      unsigned long vm_base = kvm->arch.vm_base;
      int r;
      int cpu;

      r = -ENOMEM;
      if (!vm_base) {
            printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
            goto fail;
      }
      vcpu = (struct kvm_vcpu *)(vm_base + KVM_VCPU_OFS + VCPU_SIZE * id);
      vcpu->kvm = kvm;

      cpu = get_cpu();
      vti_vcpu_load(vcpu, cpu);
      r = vti_vcpu_setup(vcpu, id);
      put_cpu();

      if (r) {
            printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
            goto fail;
      }

      return vcpu;
fail:
      return ERR_PTR(r);
}

int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
      return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
      return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
      return -EINVAL;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
            struct kvm_debug_guest *dbg)
{
      return -EINVAL;
}

static void free_kvm(struct kvm *kvm)
{
      unsigned long vm_base = kvm->arch.vm_base;

      if (vm_base) {
            memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
            free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
      }

}

static void kvm_release_vm_pages(struct kvm *kvm)
{
      struct kvm_memory_slot *memslot;
      int i, j;
      unsigned long base_gfn;

      for (i = 0; i < kvm->nmemslots; i++) {
            memslot = &kvm->memslots[i];
            base_gfn = memslot->base_gfn;

            for (j = 0; j < memslot->npages; j++) {
                  if (memslot->rmap[j])
                        put_page((struct page *)memslot->rmap[j]);
            }
      }
}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
      kvm_iommu_unmap_guest(kvm);
#ifdef  KVM_CAP_DEVICE_ASSIGNMENT
      kvm_free_all_assigned_devices(kvm);
#endif
      kfree(kvm->arch.vioapic);
      kvm_release_vm_pages(kvm);
      kvm_free_physmem(kvm);
      free_kvm(kvm);
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
      if (cpu != vcpu->cpu) {
            vcpu->cpu = cpu;
            if (vcpu->arch.ht_active)
                  kvm_migrate_hlt_timer(vcpu);
      }
}

#define SAVE_REGS(_x)   regs->_x = vcpu->arch._x

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
      int i;
      int r;
      struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
      vcpu_load(vcpu);

      for (i = 0; i < 16; i++) {
            regs->vpd.vgr[i] = vpd->vgr[i];
            regs->vpd.vbgr[i] = vpd->vbgr[i];
      }
      for (i = 0; i < 128; i++)
            regs->vpd.vcr[i] = vpd->vcr[i];
      regs->vpd.vhpi = vpd->vhpi;
      regs->vpd.vnat = vpd->vnat;
      regs->vpd.vbnat = vpd->vbnat;
      regs->vpd.vpsr = vpd->vpsr;
      regs->vpd.vpr = vpd->vpr;

      r = -EFAULT;
      r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
                              sizeof(union context));
      if (r)
            goto out;
      r = copy_to_user(regs->saved_stack, (void *)vcpu, IA64_STK_OFFSET);
      if (r)
            goto out;
      SAVE_REGS(mp_state);
      SAVE_REGS(vmm_rr);
      memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
      memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
      SAVE_REGS(itr_regions);
      SAVE_REGS(dtr_regions);
      SAVE_REGS(tc_regions);
      SAVE_REGS(irq_check);
      SAVE_REGS(itc_check);
      SAVE_REGS(timer_check);
      SAVE_REGS(timer_pending);
      SAVE_REGS(last_itc);
      for (i = 0; i < 8; i++) {
            regs->vrr[i] = vcpu->arch.vrr[i];
            regs->ibr[i] = vcpu->arch.ibr[i];
            regs->dbr[i] = vcpu->arch.dbr[i];
      }
      for (i = 0; i < 4; i++)
            regs->insvc[i] = vcpu->arch.insvc[i];
      regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
      SAVE_REGS(xtp);
      SAVE_REGS(metaphysical_rr0);
      SAVE_REGS(metaphysical_rr4);
      SAVE_REGS(metaphysical_saved_rr0);
      SAVE_REGS(metaphysical_saved_rr4);
      SAVE_REGS(fp_psr);
      SAVE_REGS(saved_gp);
      vcpu_put(vcpu);
      r = 0;
out:
      return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{

      hrtimer_cancel(&vcpu->arch.hlt_timer);
      kfree(vcpu->arch.apic);
}


long kvm_arch_vcpu_ioctl(struct file *filp,
            unsigned int ioctl, unsigned long arg)
{
      return -EINVAL;
}

int kvm_arch_set_memory_region(struct kvm *kvm,
            struct kvm_userspace_memory_region *mem,
            struct kvm_memory_slot old,
            int user_alloc)
{
      unsigned long i;
      unsigned long pfn;
      int npages = mem->memory_size >> PAGE_SHIFT;
      struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
      unsigned long base_gfn = memslot->base_gfn;

      for (i = 0; i < npages; i++) {
            pfn = gfn_to_pfn(kvm, base_gfn + i);
            if (!kvm_is_mmio_pfn(pfn)) {
                  kvm_set_pmt_entry(kvm, base_gfn + i,
                              pfn << PAGE_SHIFT,
                        _PAGE_AR_RWX | _PAGE_MA_WB);
                  memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
            } else {
                  kvm_set_pmt_entry(kvm, base_gfn + i,
                              GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
                              _PAGE_MA_UC);
                  memslot->rmap[i] = 0;
                  }
      }

      return 0;
}

void kvm_arch_flush_shadow(struct kvm *kvm)
{
}

long kvm_arch_dev_ioctl(struct file *filp,
            unsigned int ioctl, unsigned long arg)
{
      return -EINVAL;
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
      kvm_vcpu_uninit(vcpu);
}

static int vti_cpu_has_kvm_support(void)
{
      long  avail = 1, status = 1, control = 1;
      long ret;

      ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
      if (ret)
            goto out;

      if (!(avail & PAL_PROC_VM_BIT))
            goto out;

      printk(KERN_DEBUG"kvm: Hardware Supports VT\n");

      ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
      if (ret)
            goto out;
      printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);

      if (!(vp_env_info & VP_OPCODE)) {
            printk(KERN_WARNING"kvm: No opcode ability on hardware, "
                        "vm_env_info:0x%lx\n", vp_env_info);
      }

      return 1;
out:
      return 0;
}

static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
                                    struct module *module)
{
      unsigned long module_base;
      unsigned long vmm_size;

      unsigned long vmm_offset, func_offset, fdesc_offset;
      struct fdesc *p_fdesc;

      BUG_ON(!module);

      if (!kvm_vmm_base) {
            printk("kvm: kvm area hasn't been initilized yet!!\n");
            return -EFAULT;
      }

      /*Calculate new position of relocated vmm module.*/
      module_base = (unsigned long)module->module_core;
      vmm_size = module->core_size;
      if (unlikely(vmm_size > KVM_VMM_SIZE))
            return -EFAULT;

      memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
      kvm_flush_icache(kvm_vmm_base, vmm_size);

      /*Recalculate kvm_vmm_info based on new VMM*/
      vmm_offset = vmm_info->vmm_ivt - module_base;
      kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
      printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
                  kvm_vmm_info->vmm_ivt);

      fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
      kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
                                          fdesc_offset);
      func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
      p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
      p_fdesc->ip = KVM_VMM_BASE + func_offset;
      p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);

      printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
                  KVM_VMM_BASE+func_offset);

      fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
      kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
                  fdesc_offset);
      func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
      p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
      p_fdesc->ip = KVM_VMM_BASE + func_offset;
      p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);

      kvm_vmm_gp = p_fdesc->gp;

      printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
                                    kvm_vmm_info->vmm_entry);
      printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
                                    KVM_VMM_BASE + func_offset);

      return 0;
}

int kvm_arch_init(void *opaque)
{
      int r;
      struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;

      if (!vti_cpu_has_kvm_support()) {
            printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
            r = -EOPNOTSUPP;
            goto out;
      }

      if (kvm_vmm_info) {
            printk(KERN_ERR "kvm: Already loaded VMM module!\n");
            r = -EEXIST;
            goto out;
      }

      r = -ENOMEM;
      kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
      if (!kvm_vmm_info)
            goto out;

      if (kvm_alloc_vmm_area())
            goto out_free0;

      r = kvm_relocate_vmm(vmm_info, vmm_info->module);
      if (r)
            goto out_free1;

      return 0;

out_free1:
      kvm_free_vmm_area();
out_free0:
      kfree(kvm_vmm_info);
out:
      return r;
}

void kvm_arch_exit(void)
{
      kvm_free_vmm_area();
      kfree(kvm_vmm_info);
      kvm_vmm_info = NULL;
}

static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
            struct kvm_dirty_log *log)
{
      struct kvm_memory_slot *memslot;
      int r, i;
      long n, base;
      unsigned long *dirty_bitmap = (unsigned long *)((void *)kvm - KVM_VM_OFS
                              + KVM_MEM_DIRTY_LOG_OFS);

      r = -EINVAL;
      if (log->slot >= KVM_MEMORY_SLOTS)
            goto out;

      memslot = &kvm->memslots[log->slot];
      r = -ENOENT;
      if (!memslot->dirty_bitmap)
            goto out;

      n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
      base = memslot->base_gfn / BITS_PER_LONG;

      for (i = 0; i < n/sizeof(long); ++i) {
            memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
            dirty_bitmap[base + i] = 0;
      }
      r = 0;
out:
      return r;
}

int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
            struct kvm_dirty_log *log)
{
      int r;
      int n;
      struct kvm_memory_slot *memslot;
      int is_dirty = 0;

      spin_lock(&kvm->arch.dirty_log_lock);

      r = kvm_ia64_sync_dirty_log(kvm, log);
      if (r)
            goto out;

      r = kvm_get_dirty_log(kvm, log, &is_dirty);
      if (r)
            goto out;

      /* If nothing is dirty, don't bother messing with page tables. */
      if (is_dirty) {
            kvm_flush_remote_tlbs(kvm);
            memslot = &kvm->memslots[log->slot];
            n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
            memset(memslot->dirty_bitmap, 0, n);
      }
      r = 0;
out:
      spin_unlock(&kvm->arch.dirty_log_lock);
      return r;
}

int kvm_arch_hardware_setup(void)
{
      return 0;
}

void kvm_arch_hardware_unsetup(void)
{
}

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
      struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
      printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
      int ipi_pcpu = vcpu->cpu;
      int cpu = get_cpu();

      if (waitqueue_active(&vcpu->wq))
            wake_up_interruptible(&vcpu->wq);

      if (vcpu->guest_mode && cpu != ipi_pcpu)
            smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
      put_cpu();
}

int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
{

      struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);

      if (!test_and_set_bit(vec, &vpd->irr[0])) {
            vcpu->arch.irq_new_pending = 1;
            kvm_vcpu_kick(vcpu);
            return 1;
      }
      return 0;
}

int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
{
      return apic->vcpu->vcpu_id == dest;
}

int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
{
      return 0;
}

struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
                               unsigned long bitmap)
{
      struct kvm_vcpu *lvcpu = kvm->vcpus[0];
      int i;

      for (i = 1; i < KVM_MAX_VCPUS; i++) {
            if (!kvm->vcpus[i])
                  continue;
            if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
                  lvcpu = kvm->vcpus[i];
      }

      return lvcpu;
}

static int find_highest_bits(int *dat)
{
      u32  bits, bitnum;
      int i;

      /* loop for all 256 bits */
      for (i = 7; i >= 0 ; i--) {
            bits = dat[i];
            if (bits) {
                  bitnum = fls(bits);
                  return i * 32 + bitnum - 1;
            }
      }

      return -1;
}

int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
{
    struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);

    if (vpd->irr[0] & (1UL << NMI_VECTOR))
            return NMI_VECTOR;
    if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
            return ExtINT_VECTOR;

    return find_highest_bits((int *)&vpd->irr[0]);
}

int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
{
      if (kvm_highest_pending_irq(vcpu) != -1)
            return 1;
      return 0;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
      return vcpu->arch.timer_fired;
}

gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
      return gfn;
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
      return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
                            struct kvm_mp_state *mp_state)
{
      vcpu_load(vcpu);
      mp_state->mp_state = vcpu->arch.mp_state;
      vcpu_put(vcpu);
      return 0;
}

static int vcpu_reset(struct kvm_vcpu *vcpu)
{
      int r;
      long psr;
      local_irq_save(psr);
      r = kvm_insert_vmm_mapping(vcpu);
      if (r)
            goto fail;

      vcpu->arch.launched = 0;
      kvm_arch_vcpu_uninit(vcpu);
      r = kvm_arch_vcpu_init(vcpu);
      if (r)
            goto fail;

      kvm_purge_vmm_mapping(vcpu);
      r = 0;
fail:
      local_irq_restore(psr);
      return r;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
                            struct kvm_mp_state *mp_state)
{
      int r = 0;

      vcpu_load(vcpu);
      vcpu->arch.mp_state = mp_state->mp_state;
      if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
            r = vcpu_reset(vcpu);
      vcpu_put(vcpu);
      return r;
}

Generated by  Doxygen 1.6.0   Back to index