Logo Search packages:      
Sourcecode: linux version File versions  Download package

efi.c

/*
 * Extensible Firmware Interface
 *
 * Based on Extensible Firmware Interface Specification version 0.9
 * April 30, 1999
 *
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 1999-2003 Hewlett-Packard Co.
 *    David Mosberger-Tang <davidm@hpl.hp.com>
 *    Stephane Eranian <eranian@hpl.hp.com>
 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
 *    Bjorn Helgaas <bjorn.helgaas@hp.com>
 *
 * All EFI Runtime Services are not implemented yet as EFI only
 * supports physical mode addressing on SoftSDV. This is to be fixed
 * in a future version.  --drummond 1999-07-20
 *
 * Implemented EFI runtime services and virtual mode calls.  --davidm
 *
 * Goutham Rao: <goutham.rao@intel.com>
 *    Skip non-WB memory and ignore empty memory ranges.
 */
#include <linux/module.h>
#include <linux/bootmem.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/efi.h>
#include <linux/kexec.h>
#include <linux/mm.h>

#include <asm/io.h>
#include <asm/kregs.h>
#include <asm/meminit.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/mca.h>
#include <asm/tlbflush.h>

#define EFI_DEBUG 0

extern efi_status_t efi_call_phys (void *, ...);

struct efi efi;
EXPORT_SYMBOL(efi);
static efi_runtime_services_t *runtime;
static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;

#define efi_call_virt(f, args...)   (*(f))(args)

#define STUB_GET_TIME(prefix, adjust_arg)                          \
static efi_status_t                                                \
prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
{                                                            \
      struct ia64_fpreg fr[6];                                     \
      efi_time_cap_t *atc = NULL;                                  \
      efi_status_t ret;                                      \
                                                             \
      if (tc)                                                      \
            atc = adjust_arg(tc);                                  \
      ia64_save_scratch_fpregs(fr);                                \
      ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
                        adjust_arg(tm), atc);                      \
      ia64_load_scratch_fpregs(fr);                                \
      return ret;                                            \
}

#define STUB_SET_TIME(prefix, adjust_arg)                          \
static efi_status_t                                                \
prefix##_set_time (efi_time_t *tm)                                 \
{                                                            \
      struct ia64_fpreg fr[6];                                     \
      efi_status_t ret;                                      \
                                                             \
      ia64_save_scratch_fpregs(fr);                                \
      ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
                        adjust_arg(tm));                     \
      ia64_load_scratch_fpregs(fr);                                \
      return ret;                                            \
}

#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                         \
static efi_status_t                                                \
prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
                    efi_time_t *tm)                          \
{                                                            \
      struct ia64_fpreg fr[6];                                     \
      efi_status_t ret;                                      \
                                                             \
      ia64_save_scratch_fpregs(fr);                                \
      ret = efi_call_##prefix(                                     \
            (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
            adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
      ia64_load_scratch_fpregs(fr);                                \
      return ret;                                            \
}

#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                         \
static efi_status_t                                                \
prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
{                                                            \
      struct ia64_fpreg fr[6];                                     \
      efi_time_t *atm = NULL;                                      \
      efi_status_t ret;                                      \
                                                             \
      if (tm)                                                      \
            atm = adjust_arg(tm);                                  \
      ia64_save_scratch_fpregs(fr);                                \
      ret = efi_call_##prefix(                                     \
            (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
            enabled, atm);                                         \
      ia64_load_scratch_fpregs(fr);                                \
      return ret;                                            \
}

#define STUB_GET_VARIABLE(prefix, adjust_arg)                            \
static efi_status_t                                                \
prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
                   unsigned long *data_size, void *data)                 \
{                                                            \
      struct ia64_fpreg fr[6];                                     \
      u32 *aattr = NULL;                                           \
      efi_status_t ret;                                      \
                                                             \
      if (attr)                                              \
            aattr = adjust_arg(attr);                              \
      ia64_save_scratch_fpregs(fr);                                \
      ret = efi_call_##prefix(                                     \
            (efi_get_variable_t *) __va(runtime->get_variable),          \
            adjust_arg(name), adjust_arg(vendor), aattr,                 \
            adjust_arg(data_size), adjust_arg(data));              \
      ia64_load_scratch_fpregs(fr);                                \
      return ret;                                            \
}

#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                       \
static efi_status_t                                                \
prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
                      efi_guid_t *vendor)                          \
{                                                            \
      struct ia64_fpreg fr[6];                                     \
      efi_status_t ret;                                      \
                                                             \
      ia64_save_scratch_fpregs(fr);                                \
      ret = efi_call_##prefix(                                     \
            (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
            adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
      ia64_load_scratch_fpregs(fr);                                \
      return ret;                                            \
}

#define STUB_SET_VARIABLE(prefix, adjust_arg)                            \
static efi_status_t                                                \
prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
                   unsigned long attr, unsigned long data_size,          \
                   void *data)                                     \
{                                                            \
      struct ia64_fpreg fr[6];                                     \
      efi_status_t ret;                                      \
                                                             \
      ia64_save_scratch_fpregs(fr);                                \
      ret = efi_call_##prefix(                                     \
            (efi_set_variable_t *) __va(runtime->set_variable),          \
            adjust_arg(name), adjust_arg(vendor), attr, data_size,             \
            adjust_arg(data));                                     \
      ia64_load_scratch_fpregs(fr);                                \
      return ret;                                            \
}

#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                \
static efi_status_t                                                \
prefix##_get_next_high_mono_count (u32 *count)                           \
{                                                            \
      struct ia64_fpreg fr[6];                                     \
      efi_status_t ret;                                      \
                                                             \
      ia64_save_scratch_fpregs(fr);                                \
      ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)         \
                        __va(runtime->get_next_high_mono_count),       \
                        adjust_arg(count));                        \
      ia64_load_scratch_fpregs(fr);                                \
      return ret;                                            \
}

#define STUB_RESET_SYSTEM(prefix, adjust_arg)                            \
static void                                                  \
prefix##_reset_system (int reset_type, efi_status_t status,              \
                   unsigned long data_size, efi_char16_t *data)          \
{                                                            \
      struct ia64_fpreg fr[6];                                     \
      efi_char16_t *adata = NULL;                                  \
                                                             \
      if (data)                                              \
            adata = adjust_arg(data);                              \
                                                             \
      ia64_save_scratch_fpregs(fr);                                \
      efi_call_##prefix(                                           \
            (efi_reset_system_t *) __va(runtime->reset_system),          \
            reset_type, status, data_size, adata);                       \
      /* should not return, but just in case... */                       \
      ia64_load_scratch_fpregs(fr);                                \
}

#define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))

STUB_GET_TIME(phys, phys_ptr)
STUB_SET_TIME(phys, phys_ptr)
STUB_GET_WAKEUP_TIME(phys, phys_ptr)
STUB_SET_WAKEUP_TIME(phys, phys_ptr)
STUB_GET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
STUB_SET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
STUB_RESET_SYSTEM(phys, phys_ptr)

#define id(arg)   arg

STUB_GET_TIME(virt, id)
STUB_SET_TIME(virt, id)
STUB_GET_WAKEUP_TIME(virt, id)
STUB_SET_WAKEUP_TIME(virt, id)
STUB_GET_VARIABLE(virt, id)
STUB_GET_NEXT_VARIABLE(virt, id)
STUB_SET_VARIABLE(virt, id)
STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
STUB_RESET_SYSTEM(virt, id)

void
efi_gettimeofday (struct timespec *ts)
{
      efi_time_t tm;

      if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
            memset(ts, 0, sizeof(*ts));
            return;
      }

      ts->tv_sec = mktime(tm.year, tm.month, tm.day,
                      tm.hour, tm.minute, tm.second);
      ts->tv_nsec = tm.nanosecond;
}

static int
is_memory_available (efi_memory_desc_t *md)
{
      if (!(md->attribute & EFI_MEMORY_WB))
            return 0;

      switch (md->type) {
            case EFI_LOADER_CODE:
            case EFI_LOADER_DATA:
            case EFI_BOOT_SERVICES_CODE:
            case EFI_BOOT_SERVICES_DATA:
            case EFI_CONVENTIONAL_MEMORY:
            return 1;
      }
      return 0;
}

00262 typedef struct kern_memdesc {
      u64 attribute;
      u64 start;
      u64 num_pages;
} kern_memdesc_t;

static kern_memdesc_t *kern_memmap;

#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)

static inline u64
kmd_end(kern_memdesc_t *kmd)
{
      return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
}

static inline u64
efi_md_end(efi_memory_desc_t *md)
{
      return (md->phys_addr + efi_md_size(md));
}

static inline int
efi_wb(efi_memory_desc_t *md)
{
      return (md->attribute & EFI_MEMORY_WB);
}

static inline int
efi_uc(efi_memory_desc_t *md)
{
      return (md->attribute & EFI_MEMORY_UC);
}

static void
walk (efi_freemem_callback_t callback, void *arg, u64 attr)
{
      kern_memdesc_t *k;
      u64 start, end, voff;

      voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
      for (k = kern_memmap; k->start != ~0UL; k++) {
            if (k->attribute != attr)
                  continue;
            start = PAGE_ALIGN(k->start);
            end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
            if (start < end)
                  if ((*callback)(start + voff, end + voff, arg) < 0)
                        return;
      }
}

/*
 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 * descriptor that has memory that is available for OS use.
 */
void
efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
{
      walk(callback, arg, EFI_MEMORY_WB);
}

/*
 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 * descriptor that has memory that is available for uncached allocator.
 */
void
efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
{
      walk(callback, arg, EFI_MEMORY_UC);
}

/*
 * Look for the PAL_CODE region reported by EFI and map it using an
 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 * Abstraction Layer chapter 11 in ADAG
 */
void *
efi_get_pal_addr (void)
{
      void *efi_map_start, *efi_map_end, *p;
      efi_memory_desc_t *md;
      u64 efi_desc_size;
      int pal_code_count = 0;
      u64 vaddr, mask;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
            md = p;
            if (md->type != EFI_PAL_CODE)
                  continue;

            if (++pal_code_count > 1) {
                  printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
                         "dropped @ %lx\n", md->phys_addr);
                  continue;
            }
            /*
             * The only ITLB entry in region 7 that is used is the one
             * installed by __start().  That entry covers a 64MB range.
             */
            mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
            vaddr = PAGE_OFFSET + md->phys_addr;

            /*
             * We must check that the PAL mapping won't overlap with the
             * kernel mapping.
             *
             * PAL code is guaranteed to be aligned on a power of 2 between
             * 4k and 256KB and that only one ITR is needed to map it. This
             * implies that the PAL code is always aligned on its size,
             * i.e., the closest matching page size supported by the TLB.
             * Therefore PAL code is guaranteed never to cross a 64MB unless
             * it is bigger than 64MB (very unlikely!).  So for now the
             * following test is enough to determine whether or not we need
             * a dedicated ITR for the PAL code.
             */
            if ((vaddr & mask) == (KERNEL_START & mask)) {
                  printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
                         __func__);
                  continue;
            }

            if (efi_md_size(md) > IA64_GRANULE_SIZE)
                  panic("Whoa!  PAL code size bigger than a granule!");

#if EFI_DEBUG
            mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);

            printk(KERN_INFO "CPU %d: mapping PAL code "
                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
                       smp_processor_id(), md->phys_addr,
                       md->phys_addr + efi_md_size(md),
                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
#endif
            return __va(md->phys_addr);
      }
      printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
             __func__);
      return NULL;
}


static u8 __init palo_checksum(u8 *buffer, u32 length)
{
      u8 sum = 0;
      u8 *end = buffer + length;

      while (buffer < end)
            sum = (u8) (sum + *(buffer++));

      return sum;
}

/*
 * Parse and handle PALO table which is published at:
 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 */
static void __init handle_palo(unsigned long palo_phys)
{
      struct palo_table *palo = __va(palo_phys);
      u8  checksum;

      if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
            printk(KERN_INFO "PALO signature incorrect.\n");
            return;
      }

      checksum = palo_checksum((u8 *)palo, palo->length);
      if (checksum) {
            printk(KERN_INFO "PALO checksum incorrect.\n");
            return;
      }

      setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
}

void
efi_map_pal_code (void)
{
      void *pal_vaddr = efi_get_pal_addr ();
      u64 psr;

      if (!pal_vaddr)
            return;

      /*
       * Cannot write to CRx with PSR.ic=1
       */
      psr = ia64_clear_ic();
      ia64_itr(0x1, IA64_TR_PALCODE,
             GRANULEROUNDDOWN((unsigned long) pal_vaddr),
             pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
             IA64_GRANULE_SHIFT);
      ia64_set_psr(psr);            /* restore psr */
}

void __init
efi_init (void)
{
      void *efi_map_start, *efi_map_end;
      efi_config_table_t *config_tables;
      efi_char16_t *c16;
      u64 efi_desc_size;
      char *cp, vendor[100] = "unknown";
      int i;
      unsigned long palo_phys;

      /*
       * It's too early to be able to use the standard kernel command line
       * support...
       */
      for (cp = boot_command_line; *cp; ) {
            if (memcmp(cp, "mem=", 4) == 0) {
                  mem_limit = memparse(cp + 4, &cp);
            } else if (memcmp(cp, "max_addr=", 9) == 0) {
                  max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
            } else if (memcmp(cp, "min_addr=", 9) == 0) {
                  min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
            } else {
                  while (*cp != ' ' && *cp)
                        ++cp;
                  while (*cp == ' ')
                        ++cp;
            }
      }
      if (min_addr != 0UL)
            printk(KERN_INFO "Ignoring memory below %luMB\n",
                   min_addr >> 20);
      if (max_addr != ~0UL)
            printk(KERN_INFO "Ignoring memory above %luMB\n",
                   max_addr >> 20);

      efi.systab = __va(ia64_boot_param->efi_systab);

      /*
       * Verify the EFI Table
       */
      if (efi.systab == NULL)
            panic("Whoa! Can't find EFI system table.\n");
      if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
            panic("Whoa! EFI system table signature incorrect\n");
      if ((efi.systab->hdr.revision >> 16) == 0)
            printk(KERN_WARNING "Warning: EFI system table version "
                   "%d.%02d, expected 1.00 or greater\n",
                   efi.systab->hdr.revision >> 16,
                   efi.systab->hdr.revision & 0xffff);

      config_tables = __va(efi.systab->tables);

      /* Show what we know for posterity */
      c16 = __va(efi.systab->fw_vendor);
      if (c16) {
            for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
                  vendor[i] = *c16++;
            vendor[i] = '\0';
      }

      printk(KERN_INFO "EFI v%u.%.02u by %s:",
             efi.systab->hdr.revision >> 16,
             efi.systab->hdr.revision & 0xffff, vendor);

      efi.mps        = EFI_INVALID_TABLE_ADDR;
      efi.acpi       = EFI_INVALID_TABLE_ADDR;
      efi.acpi20     = EFI_INVALID_TABLE_ADDR;
      efi.smbios     = EFI_INVALID_TABLE_ADDR;
      efi.sal_systab = EFI_INVALID_TABLE_ADDR;
      efi.boot_info  = EFI_INVALID_TABLE_ADDR;
      efi.hcdp       = EFI_INVALID_TABLE_ADDR;
      efi.uga        = EFI_INVALID_TABLE_ADDR;

      palo_phys      = EFI_INVALID_TABLE_ADDR;

      for (i = 0; i < (int) efi.systab->nr_tables; i++) {
            if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
                  efi.mps = config_tables[i].table;
                  printk(" MPS=0x%lx", config_tables[i].table);
            } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
                  efi.acpi20 = config_tables[i].table;
                  printk(" ACPI 2.0=0x%lx", config_tables[i].table);
            } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
                  efi.acpi = config_tables[i].table;
                  printk(" ACPI=0x%lx", config_tables[i].table);
            } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
                  efi.smbios = config_tables[i].table;
                  printk(" SMBIOS=0x%lx", config_tables[i].table);
            } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
                  efi.sal_systab = config_tables[i].table;
                  printk(" SALsystab=0x%lx", config_tables[i].table);
            } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
                  efi.hcdp = config_tables[i].table;
                  printk(" HCDP=0x%lx", config_tables[i].table);
            } else if (efi_guidcmp(config_tables[i].guid,
                   PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
                  palo_phys = config_tables[i].table;
                  printk(" PALO=0x%lx", config_tables[i].table);
            }
      }
      printk("\n");

      if (palo_phys != EFI_INVALID_TABLE_ADDR)
            handle_palo(palo_phys);

      runtime = __va(efi.systab->runtime);
      efi.get_time = phys_get_time;
      efi.set_time = phys_set_time;
      efi.get_wakeup_time = phys_get_wakeup_time;
      efi.set_wakeup_time = phys_set_wakeup_time;
      efi.get_variable = phys_get_variable;
      efi.get_next_variable = phys_get_next_variable;
      efi.set_variable = phys_set_variable;
      efi.get_next_high_mono_count = phys_get_next_high_mono_count;
      efi.reset_system = phys_reset_system;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

#if EFI_DEBUG
      /* print EFI memory map: */
      {
            efi_memory_desc_t *md;
            void *p;

            for (i = 0, p = efi_map_start; p < efi_map_end;
                 ++i, p += efi_desc_size)
            {
                  const char *unit;
                  unsigned long size;

                  md = p;
                  size = md->num_pages << EFI_PAGE_SHIFT;

                  if ((size >> 40) > 0) {
                        size >>= 40;
                        unit = "TB";
                  } else if ((size >> 30) > 0) {
                        size >>= 30;
                        unit = "GB";
                  } else if ((size >> 20) > 0) {
                        size >>= 20;
                        unit = "MB";
                  } else {
                        size >>= 10;
                        unit = "KB";
                  }

                  printk("mem%02d: type=%2u, attr=0x%016lx, "
                         "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
                         i, md->type, md->attribute, md->phys_addr,
                         md->phys_addr + efi_md_size(md), size, unit);
            }
      }
#endif

      efi_map_pal_code();
      efi_enter_virtual_mode();
}

void
efi_enter_virtual_mode (void)
{
      void *efi_map_start, *efi_map_end, *p;
      efi_memory_desc_t *md;
      efi_status_t status;
      u64 efi_desc_size;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
            md = p;
            if (md->attribute & EFI_MEMORY_RUNTIME) {
                  /*
                   * Some descriptors have multiple bits set, so the
                   * order of the tests is relevant.
                   */
                  if (md->attribute & EFI_MEMORY_WB) {
                        md->virt_addr = (u64) __va(md->phys_addr);
                  } else if (md->attribute & EFI_MEMORY_UC) {
                        md->virt_addr = (u64) ioremap(md->phys_addr, 0);
                  } else if (md->attribute & EFI_MEMORY_WC) {
#if 0
                        md->virt_addr = ia64_remap(md->phys_addr,
                                             (_PAGE_A |
                                              _PAGE_P |
                                              _PAGE_D |
                                              _PAGE_MA_WC |
                                              _PAGE_PL_0 |
                                              _PAGE_AR_RW));
#else
                        printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
                        md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
                  } else if (md->attribute & EFI_MEMORY_WT) {
#if 0
                        md->virt_addr = ia64_remap(md->phys_addr,
                                             (_PAGE_A |
                                              _PAGE_P |
                                              _PAGE_D |
                                              _PAGE_MA_WT |
                                              _PAGE_PL_0 |
                                              _PAGE_AR_RW));
#else
                        printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
                        md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
                  }
            }
      }

      status = efi_call_phys(__va(runtime->set_virtual_address_map),
                         ia64_boot_param->efi_memmap_size,
                         efi_desc_size,
                         ia64_boot_param->efi_memdesc_version,
                         ia64_boot_param->efi_memmap);
      if (status != EFI_SUCCESS) {
            printk(KERN_WARNING "warning: unable to switch EFI into "
                   "virtual mode (status=%lu)\n", status);
            return;
      }

      /*
       * Now that EFI is in virtual mode, we call the EFI functions more
       * efficiently:
       */
      efi.get_time = virt_get_time;
      efi.set_time = virt_set_time;
      efi.get_wakeup_time = virt_get_wakeup_time;
      efi.set_wakeup_time = virt_set_wakeup_time;
      efi.get_variable = virt_get_variable;
      efi.get_next_variable = virt_get_next_variable;
      efi.set_variable = virt_set_variable;
      efi.get_next_high_mono_count = virt_get_next_high_mono_count;
      efi.reset_system = virt_reset_system;
}

/*
 * Walk the EFI memory map looking for the I/O port range.  There can only be
 * one entry of this type, other I/O port ranges should be described via ACPI.
 */
u64
efi_get_iobase (void)
{
      void *efi_map_start, *efi_map_end, *p;
      efi_memory_desc_t *md;
      u64 efi_desc_size;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
            md = p;
            if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
                  if (md->attribute & EFI_MEMORY_UC)
                        return md->phys_addr;
            }
      }
      return 0;
}

static struct kern_memdesc *
kern_memory_descriptor (unsigned long phys_addr)
{
      struct kern_memdesc *md;

      for (md = kern_memmap; md->start != ~0UL; md++) {
            if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
                   return md;
      }
      return NULL;
}

static efi_memory_desc_t *
efi_memory_descriptor (unsigned long phys_addr)
{
      void *efi_map_start, *efi_map_end, *p;
      efi_memory_desc_t *md;
      u64 efi_desc_size;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
            md = p;

            if (phys_addr - md->phys_addr < efi_md_size(md))
                   return md;
      }
      return NULL;
}

static int
efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
{
      void *efi_map_start, *efi_map_end, *p;
      efi_memory_desc_t *md;
      u64 efi_desc_size;
      unsigned long end;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      end = phys_addr + size;

      for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
            md = p;
            if (md->phys_addr < end && efi_md_end(md) > phys_addr)
                  return 1;
      }
      return 0;
}

u32
efi_mem_type (unsigned long phys_addr)
{
      efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);

      if (md)
            return md->type;
      return 0;
}

u64
efi_mem_attributes (unsigned long phys_addr)
{
      efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);

      if (md)
            return md->attribute;
      return 0;
}
EXPORT_SYMBOL(efi_mem_attributes);

u64
efi_mem_attribute (unsigned long phys_addr, unsigned long size)
{
      unsigned long end = phys_addr + size;
      efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
      u64 attr;

      if (!md)
            return 0;

      /*
       * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
       * the kernel that firmware needs this region mapped.
       */
      attr = md->attribute & ~EFI_MEMORY_RUNTIME;
      do {
            unsigned long md_end = efi_md_end(md);

            if (end <= md_end)
                  return attr;

            md = efi_memory_descriptor(md_end);
            if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
                  return 0;
      } while (md);
      return 0;   /* never reached */
}

u64
kern_mem_attribute (unsigned long phys_addr, unsigned long size)
{
      unsigned long end = phys_addr + size;
      struct kern_memdesc *md;
      u64 attr;

      /*
       * This is a hack for ioremap calls before we set up kern_memmap.
       * Maybe we should do efi_memmap_init() earlier instead.
       */
      if (!kern_memmap) {
            attr = efi_mem_attribute(phys_addr, size);
            if (attr & EFI_MEMORY_WB)
                  return EFI_MEMORY_WB;
            return 0;
      }

      md = kern_memory_descriptor(phys_addr);
      if (!md)
            return 0;

      attr = md->attribute;
      do {
            unsigned long md_end = kmd_end(md);

            if (end <= md_end)
                  return attr;

            md = kern_memory_descriptor(md_end);
            if (!md || md->attribute != attr)
                  return 0;
      } while (md);
      return 0;   /* never reached */
}
EXPORT_SYMBOL(kern_mem_attribute);

int
valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
{
      u64 attr;

      /*
       * /dev/mem reads and writes use copy_to_user(), which implicitly
       * uses a granule-sized kernel identity mapping.  It's really
       * only safe to do this for regions in kern_memmap.  For more
       * details, see Documentation/ia64/aliasing.txt.
       */
      attr = kern_mem_attribute(phys_addr, size);
      if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
            return 1;
      return 0;
}

int
valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
{
      unsigned long phys_addr = pfn << PAGE_SHIFT;
      u64 attr;

      attr = efi_mem_attribute(phys_addr, size);

      /*
       * /dev/mem mmap uses normal user pages, so we don't need the entire
       * granule, but the entire region we're mapping must support the same
       * attribute.
       */
      if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
            return 1;

      /*
       * Intel firmware doesn't tell us about all the MMIO regions, so
       * in general we have to allow mmap requests.  But if EFI *does*
       * tell us about anything inside this region, we should deny it.
       * The user can always map a smaller region to avoid the overlap.
       */
      if (efi_memmap_intersects(phys_addr, size))
            return 0;

      return 1;
}

pgprot_t
phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
                 pgprot_t vma_prot)
{
      unsigned long phys_addr = pfn << PAGE_SHIFT;
      u64 attr;

      /*
       * For /dev/mem mmap, we use user mappings, but if the region is
       * in kern_memmap (and hence may be covered by a kernel mapping),
       * we must use the same attribute as the kernel mapping.
       */
      attr = kern_mem_attribute(phys_addr, size);
      if (attr & EFI_MEMORY_WB)
            return pgprot_cacheable(vma_prot);
      else if (attr & EFI_MEMORY_UC)
            return pgprot_noncached(vma_prot);

      /*
       * Some chipsets don't support UC access to memory.  If
       * WB is supported, we prefer that.
       */
      if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
            return pgprot_cacheable(vma_prot);

      return pgprot_noncached(vma_prot);
}

int __init
efi_uart_console_only(void)
{
      efi_status_t status;
      char *s, name[] = "ConOut";
      efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
      efi_char16_t *utf16, name_utf16[32];
      unsigned char data[1024];
      unsigned long size = sizeof(data);
      struct efi_generic_dev_path *hdr, *end_addr;
      int uart = 0;

      /* Convert to UTF-16 */
      utf16 = name_utf16;
      s = name;
      while (*s)
            *utf16++ = *s++ & 0x7f;
      *utf16 = 0;

      status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
      if (status != EFI_SUCCESS) {
            printk(KERN_ERR "No EFI %s variable?\n", name);
            return 0;
      }

      hdr = (struct efi_generic_dev_path *) data;
      end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
      while (hdr < end_addr) {
            if (hdr->type == EFI_DEV_MSG &&
                hdr->sub_type == EFI_DEV_MSG_UART)
                  uart = 1;
            else if (hdr->type == EFI_DEV_END_PATH ||
                    hdr->type == EFI_DEV_END_PATH2) {
                  if (!uart)
                        return 0;
                  if (hdr->sub_type == EFI_DEV_END_ENTIRE)
                        return 1;
                  uart = 0;
            }
            hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
      }
      printk(KERN_ERR "Malformed %s value\n", name);
      return 0;
}

/*
 * Look for the first granule aligned memory descriptor memory
 * that is big enough to hold EFI memory map. Make sure this
 * descriptor is atleast granule sized so it does not get trimmed
 */
struct kern_memdesc *
find_memmap_space (void)
{
      u64   contig_low=0, contig_high=0;
      u64   as = 0, ae;
      void *efi_map_start, *efi_map_end, *p, *q;
      efi_memory_desc_t *md, *pmd = NULL, *check_md;
      u64   space_needed, efi_desc_size;
      unsigned long total_mem = 0;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      /*
       * Worst case: we need 3 kernel descriptors for each efi descriptor
       * (if every entry has a WB part in the middle, and UC head and tail),
       * plus one for the end marker.
       */
      space_needed = sizeof(kern_memdesc_t) *
            (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);

      for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
            md = p;
            if (!efi_wb(md)) {
                  continue;
            }
            if (pmd == NULL || !efi_wb(pmd) ||
                efi_md_end(pmd) != md->phys_addr) {
                  contig_low = GRANULEROUNDUP(md->phys_addr);
                  contig_high = efi_md_end(md);
                  for (q = p + efi_desc_size; q < efi_map_end;
                       q += efi_desc_size) {
                        check_md = q;
                        if (!efi_wb(check_md))
                              break;
                        if (contig_high != check_md->phys_addr)
                              break;
                        contig_high = efi_md_end(check_md);
                  }
                  contig_high = GRANULEROUNDDOWN(contig_high);
            }
            if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
                  continue;

            /* Round ends inward to granule boundaries */
            as = max(contig_low, md->phys_addr);
            ae = min(contig_high, efi_md_end(md));

            /* keep within max_addr= and min_addr= command line arg */
            as = max(as, min_addr);
            ae = min(ae, max_addr);
            if (ae <= as)
                  continue;

            /* avoid going over mem= command line arg */
            if (total_mem + (ae - as) > mem_limit)
                  ae -= total_mem + (ae - as) - mem_limit;

            if (ae <= as)
                  continue;

            if (ae - as > space_needed)
                  break;
      }
      if (p >= efi_map_end)
            panic("Can't allocate space for kernel memory descriptors");

      return __va(as);
}

/*
 * Walk the EFI memory map and gather all memory available for kernel
 * to use.  We can allocate partial granules only if the unavailable
 * parts exist, and are WB.
 */
unsigned long
efi_memmap_init(unsigned long *s, unsigned long *e)
{
      struct kern_memdesc *k, *prev = NULL;
      u64   contig_low=0, contig_high=0;
      u64   as, ae, lim;
      void *efi_map_start, *efi_map_end, *p, *q;
      efi_memory_desc_t *md, *pmd = NULL, *check_md;
      u64   efi_desc_size;
      unsigned long total_mem = 0;

      k = kern_memmap = find_memmap_space();

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
            md = p;
            if (!efi_wb(md)) {
                  if (efi_uc(md) &&
                      (md->type == EFI_CONVENTIONAL_MEMORY ||
                       md->type == EFI_BOOT_SERVICES_DATA)) {
                        k->attribute = EFI_MEMORY_UC;
                        k->start = md->phys_addr;
                        k->num_pages = md->num_pages;
                        k++;
                  }
                  continue;
            }
            if (pmd == NULL || !efi_wb(pmd) ||
                efi_md_end(pmd) != md->phys_addr) {
                  contig_low = GRANULEROUNDUP(md->phys_addr);
                  contig_high = efi_md_end(md);
                  for (q = p + efi_desc_size; q < efi_map_end;
                       q += efi_desc_size) {
                        check_md = q;
                        if (!efi_wb(check_md))
                              break;
                        if (contig_high != check_md->phys_addr)
                              break;
                        contig_high = efi_md_end(check_md);
                  }
                  contig_high = GRANULEROUNDDOWN(contig_high);
            }
            if (!is_memory_available(md))
                  continue;

#ifdef CONFIG_CRASH_DUMP
            /* saved_max_pfn should ignore max_addr= command line arg */
            if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
                  saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
#endif
            /*
             * Round ends inward to granule boundaries
             * Give trimmings to uncached allocator
             */
            if (md->phys_addr < contig_low) {
                  lim = min(efi_md_end(md), contig_low);
                  if (efi_uc(md)) {
                        if (k > kern_memmap &&
                            (k-1)->attribute == EFI_MEMORY_UC &&
                            kmd_end(k-1) == md->phys_addr) {
                              (k-1)->num_pages +=
                                    (lim - md->phys_addr)
                                    >> EFI_PAGE_SHIFT;
                        } else {
                              k->attribute = EFI_MEMORY_UC;
                              k->start = md->phys_addr;
                              k->num_pages = (lim - md->phys_addr)
                                    >> EFI_PAGE_SHIFT;
                              k++;
                        }
                  }
                  as = contig_low;
            } else
                  as = md->phys_addr;

            if (efi_md_end(md) > contig_high) {
                  lim = max(md->phys_addr, contig_high);
                  if (efi_uc(md)) {
                        if (lim == md->phys_addr && k > kern_memmap &&
                            (k-1)->attribute == EFI_MEMORY_UC &&
                            kmd_end(k-1) == md->phys_addr) {
                              (k-1)->num_pages += md->num_pages;
                        } else {
                              k->attribute = EFI_MEMORY_UC;
                              k->start = lim;
                              k->num_pages = (efi_md_end(md) - lim)
                                    >> EFI_PAGE_SHIFT;
                              k++;
                        }
                  }
                  ae = contig_high;
            } else
                  ae = efi_md_end(md);

            /* keep within max_addr= and min_addr= command line arg */
            as = max(as, min_addr);
            ae = min(ae, max_addr);
            if (ae <= as)
                  continue;

            /* avoid going over mem= command line arg */
            if (total_mem + (ae - as) > mem_limit)
                  ae -= total_mem + (ae - as) - mem_limit;

            if (ae <= as)
                  continue;
            if (prev && kmd_end(prev) == md->phys_addr) {
                  prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
                  total_mem += ae - as;
                  continue;
            }
            k->attribute = EFI_MEMORY_WB;
            k->start = as;
            k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
            total_mem += ae - as;
            prev = k++;
      }
      k->start = ~0L; /* end-marker */

      /* reserve the memory we are using for kern_memmap */
      *s = (u64)kern_memmap;
      *e = (u64)++k;

      return total_mem;
}

void
efi_initialize_iomem_resources(struct resource *code_resource,
                         struct resource *data_resource,
                         struct resource *bss_resource)
{
      struct resource *res;
      void *efi_map_start, *efi_map_end, *p;
      efi_memory_desc_t *md;
      u64 efi_desc_size;
      char *name;
      unsigned long flags;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      res = NULL;

      for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
            md = p;

            if (md->num_pages == 0) /* should not happen */
                  continue;

            flags = IORESOURCE_MEM | IORESOURCE_BUSY;
            switch (md->type) {

                  case EFI_MEMORY_MAPPED_IO:
                  case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
                        continue;

                  case EFI_LOADER_CODE:
                  case EFI_LOADER_DATA:
                  case EFI_BOOT_SERVICES_DATA:
                  case EFI_BOOT_SERVICES_CODE:
                  case EFI_CONVENTIONAL_MEMORY:
                        if (md->attribute & EFI_MEMORY_WP) {
                              name = "System ROM";
                              flags |= IORESOURCE_READONLY;
                        } else if (md->attribute == EFI_MEMORY_UC)
                              name = "Uncached RAM";
                        else
                              name = "System RAM";
                        break;

                  case EFI_ACPI_MEMORY_NVS:
                        name = "ACPI Non-volatile Storage";
                        break;

                  case EFI_UNUSABLE_MEMORY:
                        name = "reserved";
                        flags |= IORESOURCE_DISABLED;
                        break;

                  case EFI_RESERVED_TYPE:
                  case EFI_RUNTIME_SERVICES_CODE:
                  case EFI_RUNTIME_SERVICES_DATA:
                  case EFI_ACPI_RECLAIM_MEMORY:
                  default:
                        name = "reserved";
                        break;
            }

            if ((res = kzalloc(sizeof(struct resource),
                           GFP_KERNEL)) == NULL) {
                  printk(KERN_ERR
                         "failed to allocate resource for iomem\n");
                  return;
            }

            res->name = name;
            res->start = md->phys_addr;
            res->end = md->phys_addr + efi_md_size(md) - 1;
            res->flags = flags;

            if (insert_resource(&iomem_resource, res) < 0)
                  kfree(res);
            else {
                  /*
                   * We don't know which region contains
                   * kernel data so we try it repeatedly and
                   * let the resource manager test it.
                   */
                  insert_resource(res, code_resource);
                  insert_resource(res, data_resource);
                  insert_resource(res, bss_resource);
#ifdef CONFIG_KEXEC
                        insert_resource(res, &efi_memmap_res);
                        insert_resource(res, &boot_param_res);
                  if (crashk_res.end > crashk_res.start)
                        insert_resource(res, &crashk_res);
#endif
            }
      }
}

#ifdef CONFIG_KEXEC
/* find a block of memory aligned to 64M exclude reserved regions
   rsvd_regions are sorted
 */
unsigned long __init
kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
{
      int i;
      u64 start, end;
      u64 alignment = 1UL << _PAGE_SIZE_64M;
      void *efi_map_start, *efi_map_end, *p;
      efi_memory_desc_t *md;
      u64 efi_desc_size;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
            md = p;
            if (!efi_wb(md))
                  continue;
            start = ALIGN(md->phys_addr, alignment);
            end = efi_md_end(md);
            for (i = 0; i < n; i++) {
                  if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
                        if (__pa(r[i].start) > start + size)
                              return start;
                        start = ALIGN(__pa(r[i].end), alignment);
                        if (i < n-1 &&
                            __pa(r[i+1].start) < start + size)
                              continue;
                        else
                              break;
                  }
            }
            if (end > start + size)
                  return start;
      }

      printk(KERN_WARNING
             "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
      return ~0UL;
}
#endif

#ifdef CONFIG_CRASH_DUMP
/* locate the size find a the descriptor at a certain address */
unsigned long __init
vmcore_find_descriptor_size (unsigned long address)
{
      void *efi_map_start, *efi_map_end, *p;
      efi_memory_desc_t *md;
      u64 efi_desc_size;
      unsigned long ret = 0;

      efi_map_start = __va(ia64_boot_param->efi_memmap);
      efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
      efi_desc_size = ia64_boot_param->efi_memdesc_size;

      for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
            md = p;
            if (efi_wb(md) && md->type == EFI_LOADER_DATA
                && md->phys_addr == address) {
                  ret = efi_md_size(md);
                  break;
            }
      }

      if (ret == 0)
            printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");

      return ret;
}
#endif

Generated by  Doxygen 1.6.0   Back to index