Logo Search packages:      
Sourcecode: linux version File versions  Download package

lparcfg.c

/*
 * PowerPC64 LPAR Configuration Information Driver
 *
 * Dave Engebretsen engebret@us.ibm.com
 *    Copyright (c) 2003 Dave Engebretsen
 * Will Schmidt willschm@us.ibm.com
 *    SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
 *    seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
 * Nathan Lynch nathanl@austin.ibm.com
 *    Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 *
 * This driver creates a proc file at /proc/ppc64/lparcfg which contains
 * keyword - value pairs that specify the configuration of the partition.
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <asm/uaccess.h>
#include <asm/iseries/hv_lp_config.h>
#include <asm/lppaca.h>
#include <asm/hvcall.h>
#include <asm/firmware.h>
#include <asm/rtas.h>
#include <asm/system.h>
#include <asm/time.h>
#include <asm/prom.h>
#include <asm/vdso_datapage.h>
#include <asm/vio.h>

#define MODULE_VERS "1.8"
#define MODULE_NAME "lparcfg"

/* #define LPARCFG_DEBUG */

static struct proc_dir_entry *proc_ppc64_lparcfg;

/*
 * Track sum of all purrs across all processors. This is used to further
 * calculate usage values by different applications
 */
static unsigned long get_purr(void)
{
      unsigned long sum_purr = 0;
      int cpu;

      for_each_possible_cpu(cpu) {
            if (firmware_has_feature(FW_FEATURE_ISERIES))
                  sum_purr += lppaca[cpu].emulated_time_base;
            else {
                  struct cpu_usage *cu;

                  cu = &per_cpu(cpu_usage_array, cpu);
                  sum_purr += cu->current_tb;
            }
      }
      return sum_purr;
}

#ifdef CONFIG_PPC_ISERIES

/*
 * Methods used to fetch LPAR data when running on an iSeries platform.
 */
static int iseries_lparcfg_data(struct seq_file *m, void *v)
{
      unsigned long pool_id;
      int shared, entitled_capacity, max_entitled_capacity;
      int processors, max_processors;
      unsigned long purr = get_purr();

      shared = (int)(local_paca->lppaca_ptr->shared_proc);

      seq_printf(m, "system_active_processors=%d\n",
               (int)HvLpConfig_getSystemPhysicalProcessors());

      seq_printf(m, "system_potential_processors=%d\n",
               (int)HvLpConfig_getSystemPhysicalProcessors());

      processors = (int)HvLpConfig_getPhysicalProcessors();
      seq_printf(m, "partition_active_processors=%d\n", processors);

      max_processors = (int)HvLpConfig_getMaxPhysicalProcessors();
      seq_printf(m, "partition_potential_processors=%d\n", max_processors);

      if (shared) {
            entitled_capacity = HvLpConfig_getSharedProcUnits();
            max_entitled_capacity = HvLpConfig_getMaxSharedProcUnits();
      } else {
            entitled_capacity = processors * 100;
            max_entitled_capacity = max_processors * 100;
      }
      seq_printf(m, "partition_entitled_capacity=%d\n", entitled_capacity);

      seq_printf(m, "partition_max_entitled_capacity=%d\n",
               max_entitled_capacity);

      if (shared) {
            pool_id = HvLpConfig_getSharedPoolIndex();
            seq_printf(m, "pool=%d\n", (int)pool_id);
            seq_printf(m, "pool_capacity=%d\n",
                     (int)(HvLpConfig_getNumProcsInSharedPool(pool_id) *
                         100));
            seq_printf(m, "purr=%ld\n", purr);
      }

      seq_printf(m, "shared_processor_mode=%d\n", shared);

      return 0;
}

#else                   /* CONFIG_PPC_ISERIES */

static int iseries_lparcfg_data(struct seq_file *m, void *v)
{
      return 0;
}

#endif                        /* CONFIG_PPC_ISERIES */

#ifdef CONFIG_PPC_PSERIES
/*
 * Methods used to fetch LPAR data when running on a pSeries platform.
 */
/**
 * h_get_mpp
 * H_GET_MPP hcall returns info in 7 parms
 */
int h_get_mpp(struct hvcall_mpp_data *mpp_data)
{
      int rc;
      unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];

      rc = plpar_hcall9(H_GET_MPP, retbuf);

      mpp_data->entitled_mem = retbuf[0];
      mpp_data->mapped_mem = retbuf[1];

      mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
      mpp_data->pool_num = retbuf[2] & 0xffff;

      mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
      mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
      mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffff;

      mpp_data->pool_size = retbuf[4];
      mpp_data->loan_request = retbuf[5];
      mpp_data->backing_mem = retbuf[6];

      return rc;
}
EXPORT_SYMBOL(h_get_mpp);

struct hvcall_ppp_data {
      u64   entitlement;
      u64   unallocated_entitlement;
      u16   group_num;
      u16   pool_num;
      u8    capped;
      u8    weight;
      u8    unallocated_weight;
      u16   active_procs_in_pool;
      u16   active_system_procs;
};

/*
 * H_GET_PPP hcall returns info in 4 parms.
 *  entitled_capacity,unallocated_capacity,
 *  aggregation, resource_capability).
 *
 *  R4 = Entitled Processor Capacity Percentage.
 *  R5 = Unallocated Processor Capacity Percentage.
 *  R6 (AABBCCDDEEFFGGHH).
 *      XXXX - reserved (0)
 *          XXXX - reserved (0)
 *              XXXX - Group Number
 *                  XXXX - Pool Number.
 *  R7 (IIJJKKLLMMNNOOPP).
 *      XX - reserved. (0)
 *        XX - bit 0-6 reserved (0).   bit 7 is Capped indicator.
 *          XX - variable processor Capacity Weight
 *            XX - Unallocated Variable Processor Capacity Weight.
 *              XXXX - Active processors in Physical Processor Pool.
 *                  XXXX  - Processors active on platform.
 */
static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
{
      unsigned long rc;
      unsigned long retbuf[PLPAR_HCALL_BUFSIZE];

      rc = plpar_hcall(H_GET_PPP, retbuf);

      ppp_data->entitlement = retbuf[0];
      ppp_data->unallocated_entitlement = retbuf[1];

      ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
      ppp_data->pool_num = retbuf[2] & 0xffff;

      ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
      ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
      ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
      ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
      ppp_data->active_system_procs = retbuf[3] & 0xffff;

      return rc;
}

static unsigned h_pic(unsigned long *pool_idle_time,
                  unsigned long *num_procs)
{
      unsigned long rc;
      unsigned long retbuf[PLPAR_HCALL_BUFSIZE];

      rc = plpar_hcall(H_PIC, retbuf);

      *pool_idle_time = retbuf[0];
      *num_procs = retbuf[1];

      return rc;
}

/*
 * parse_ppp_data
 * Parse out the data returned from h_get_ppp and h_pic
 */
static void parse_ppp_data(struct seq_file *m)
{
      struct hvcall_ppp_data ppp_data;
      int rc;

      rc = h_get_ppp(&ppp_data);
      if (rc)
            return;

      seq_printf(m, "partition_entitled_capacity=%ld\n",
                 ppp_data.entitlement);
      seq_printf(m, "group=%d\n", ppp_data.group_num);
      seq_printf(m, "system_active_processors=%d\n",
                 ppp_data.active_system_procs);

      /* pool related entries are apropriate for shared configs */
      if (lppaca[0].shared_proc) {
            unsigned long pool_idle_time, pool_procs;

            seq_printf(m, "pool=%d\n", ppp_data.pool_num);

            /* report pool_capacity in percentage */
            seq_printf(m, "pool_capacity=%d\n",
                     ppp_data.active_procs_in_pool * 100);

            h_pic(&pool_idle_time, &pool_procs);
            seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
            seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
      }

      seq_printf(m, "unallocated_capacity_weight=%d\n",
               ppp_data.unallocated_weight);
      seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
      seq_printf(m, "capped=%d\n", ppp_data.capped);
      seq_printf(m, "unallocated_capacity=%ld\n",
               ppp_data.unallocated_entitlement);
}

/**
 * parse_mpp_data
 * Parse out data returned from h_get_mpp
 */
static void parse_mpp_data(struct seq_file *m)
{
      struct hvcall_mpp_data mpp_data;
      int rc;

      rc = h_get_mpp(&mpp_data);
      if (rc)
            return;

      seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);

      if (mpp_data.mapped_mem != -1)
            seq_printf(m, "mapped_entitled_memory=%ld\n",
                       mpp_data.mapped_mem);

      seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
      seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);

      seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
      seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
                 mpp_data.unallocated_mem_weight);
      seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
                 mpp_data.unallocated_entitlement);

      if (mpp_data.pool_size != -1)
            seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
                       mpp_data.pool_size);

      seq_printf(m, "entitled_memory_loan_request=%ld\n",
                 mpp_data.loan_request);

      seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
}

#define SPLPAR_CHARACTERISTICS_TOKEN 20
#define SPLPAR_MAXLENGTH 1026*(sizeof(char))

/*
 * parse_system_parameter_string()
 * Retrieve the potential_processors, max_entitled_capacity and friends
 * through the get-system-parameter rtas call.  Replace keyword strings as
 * necessary.
 */
static void parse_system_parameter_string(struct seq_file *m)
{
      int call_status;

      unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
      if (!local_buffer) {
            printk(KERN_ERR "%s %s kmalloc failure at line %d \n",
                   __FILE__, __func__, __LINE__);
            return;
      }

      spin_lock(&rtas_data_buf_lock);
      memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
      call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
                        NULL,
                        SPLPAR_CHARACTERISTICS_TOKEN,
                        __pa(rtas_data_buf),
                        RTAS_DATA_BUF_SIZE);
      memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
      spin_unlock(&rtas_data_buf_lock);

      if (call_status != 0) {
            printk(KERN_INFO
                   "%s %s Error calling get-system-parameter (0x%x)\n",
                   __FILE__, __func__, call_status);
      } else {
            int splpar_strlen;
            int idx, w_idx;
            char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
            if (!workbuffer) {
                  printk(KERN_ERR "%s %s kmalloc failure at line %d \n",
                         __FILE__, __func__, __LINE__);
                  kfree(local_buffer);
                  return;
            }
#ifdef LPARCFG_DEBUG
            printk(KERN_INFO "success calling get-system-parameter \n");
#endif
            splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
            local_buffer += 2;      /* step over strlen value */

            w_idx = 0;
            idx = 0;
            while ((*local_buffer) && (idx < splpar_strlen)) {
                  workbuffer[w_idx++] = local_buffer[idx++];
                  if ((local_buffer[idx] == ',')
                      || (local_buffer[idx] == '\0')) {
                        workbuffer[w_idx] = '\0';
                        if (w_idx) {
                              /* avoid the empty string */
                              seq_printf(m, "%s\n", workbuffer);
                        }
                        memset(workbuffer, 0, SPLPAR_MAXLENGTH);
                        idx++;      /* skip the comma */
                        w_idx = 0;
                  } else if (local_buffer[idx] == '=') {
                        /* code here to replace workbuffer contents
                           with different keyword strings */
                        if (0 == strcmp(workbuffer, "MaxEntCap")) {
                              strcpy(workbuffer,
                                     "partition_max_entitled_capacity");
                              w_idx = strlen(workbuffer);
                        }
                        if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
                              strcpy(workbuffer,
                                     "system_potential_processors");
                              w_idx = strlen(workbuffer);
                        }
                  }
            }
            kfree(workbuffer);
            local_buffer -= 2;      /* back up over strlen value */
      }
      kfree(local_buffer);
}

/* Return the number of processors in the system.
 * This function reads through the device tree and counts
 * the virtual processors, this does not include threads.
 */
static int lparcfg_count_active_processors(void)
{
      struct device_node *cpus_dn = NULL;
      int count = 0;

      while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) {
#ifdef LPARCFG_DEBUG
            printk(KERN_ERR "cpus_dn %p \n", cpus_dn);
#endif
            count++;
      }
      return count;
}

static void pseries_cmo_data(struct seq_file *m)
{
      int cpu;
      unsigned long cmo_faults = 0;
      unsigned long cmo_fault_time = 0;

      seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));

      if (!firmware_has_feature(FW_FEATURE_CMO))
            return;

      for_each_possible_cpu(cpu) {
            cmo_faults += lppaca[cpu].cmo_faults;
            cmo_fault_time += lppaca[cpu].cmo_fault_time;
      }

      seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
      seq_printf(m, "cmo_fault_time_usec=%lu\n",
               cmo_fault_time / tb_ticks_per_usec);
      seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
      seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
      seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
}

static int pseries_lparcfg_data(struct seq_file *m, void *v)
{
      int partition_potential_processors;
      int partition_active_processors;
      struct device_node *rtas_node;
      const int *lrdrp = NULL;

      rtas_node = of_find_node_by_path("/rtas");
      if (rtas_node)
            lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);

      if (lrdrp == NULL) {
            partition_potential_processors = vdso_data->processorCount;
      } else {
            partition_potential_processors = *(lrdrp + 4);
      }
      of_node_put(rtas_node);

      partition_active_processors = lparcfg_count_active_processors();

      if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
            /* this call handles the ibm,get-system-parameter contents */
            parse_system_parameter_string(m);
            parse_ppp_data(m);
            parse_mpp_data(m);
            pseries_cmo_data(m);

            seq_printf(m, "purr=%ld\n", get_purr());
      } else {          /* non SPLPAR case */

            seq_printf(m, "system_active_processors=%d\n",
                     partition_potential_processors);

            seq_printf(m, "system_potential_processors=%d\n",
                     partition_potential_processors);

            seq_printf(m, "partition_max_entitled_capacity=%d\n",
                     partition_potential_processors * 100);

            seq_printf(m, "partition_entitled_capacity=%d\n",
                     partition_active_processors * 100);
      }

      seq_printf(m, "partition_active_processors=%d\n",
               partition_active_processors);

      seq_printf(m, "partition_potential_processors=%d\n",
               partition_potential_processors);

      seq_printf(m, "shared_processor_mode=%d\n", lppaca[0].shared_proc);

      return 0;
}

static ssize_t update_ppp(u64 *entitlement, u8 *weight)
{
      struct hvcall_ppp_data ppp_data;
      u8 new_weight;
      u64 new_entitled;
      ssize_t retval;

      /* Get our current parameters */
      retval = h_get_ppp(&ppp_data);
      if (retval)
            return retval;

      if (entitlement) {
            new_weight = ppp_data.weight;
            new_entitled = *entitlement;
      } else if (weight) {
            new_weight = *weight;
            new_entitled = ppp_data.entitlement;
      } else
            return -EINVAL;

      pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
             __func__, ppp_data.entitlement, ppp_data.weight);

      pr_debug("%s: new_entitled = %lu, new_weight = %u\n",
             __func__, new_entitled, new_weight);

      retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
      return retval;
}

/**
 * update_mpp
 *
 * Update the memory entitlement and weight for the partition.  Caller must
 * specify either a new entitlement or weight, not both, to be updated
 * since the h_set_mpp call takes both entitlement and weight as parameters.
 */
static ssize_t update_mpp(u64 *entitlement, u8 *weight)
{
      struct hvcall_mpp_data mpp_data;
      u64 new_entitled;
      u8 new_weight;
      ssize_t rc;

      if (entitlement) {
            /* Check with vio to ensure the new memory entitlement
             * can be handled.
             */
            rc = vio_cmo_entitlement_update(*entitlement);
            if (rc)
                  return rc;
      }

      rc = h_get_mpp(&mpp_data);
      if (rc)
            return rc;

      if (entitlement) {
            new_weight = mpp_data.mem_weight;
            new_entitled = *entitlement;
      } else if (weight) {
            new_weight = *weight;
            new_entitled = mpp_data.entitled_mem;
      } else
            return -EINVAL;

      pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
               __func__, mpp_data.entitled_mem, mpp_data.mem_weight);

      pr_debug("%s: new_entitled = %lu, new_weight = %u\n",
             __func__, new_entitled, new_weight);

      rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
      return rc;
}

/*
 * Interface for changing system parameters (variable capacity weight
 * and entitled capacity).  Format of input is "param_name=value";
 * anything after value is ignored.  Valid parameters at this time are
 * "partition_entitled_capacity" and "capacity_weight".  We use
 * H_SET_PPP to alter parameters.
 *
 * This function should be invoked only on systems with
 * FW_FEATURE_SPLPAR.
 */
static ssize_t lparcfg_write(struct file *file, const char __user * buf,
                       size_t count, loff_t * off)
{
      int kbuf_sz = 64;
      char kbuf[kbuf_sz];
      char *tmp;
      u64 new_entitled, *new_entitled_ptr = &new_entitled;
      u8 new_weight, *new_weight_ptr = &new_weight;
      ssize_t retval;

      if (!firmware_has_feature(FW_FEATURE_SPLPAR) ||
                  firmware_has_feature(FW_FEATURE_ISERIES))
            return -EINVAL;

      if (count > kbuf_sz)
            return -EINVAL;

      if (copy_from_user(kbuf, buf, count))
            return -EFAULT;

      kbuf[count - 1] = '\0';
      tmp = strchr(kbuf, '=');
      if (!tmp)
            return -EINVAL;

      *tmp++ = '\0';

      if (!strcmp(kbuf, "partition_entitled_capacity")) {
            char *endp;
            *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
            if (endp == tmp)
                  return -EINVAL;

            retval = update_ppp(new_entitled_ptr, NULL);
      } else if (!strcmp(kbuf, "capacity_weight")) {
            char *endp;
            *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
            if (endp == tmp)
                  return -EINVAL;

            retval = update_ppp(NULL, new_weight_ptr);
      } else if (!strcmp(kbuf, "entitled_memory")) {
            char *endp;
            *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
            if (endp == tmp)
                  return -EINVAL;

            retval = update_mpp(new_entitled_ptr, NULL);
      } else if (!strcmp(kbuf, "entitled_memory_weight")) {
            char *endp;
            *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
            if (endp == tmp)
                  return -EINVAL;

            retval = update_mpp(NULL, new_weight_ptr);
      } else
            return -EINVAL;

      if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
            retval = count;
      } else if (retval == H_BUSY) {
            retval = -EBUSY;
      } else if (retval == H_HARDWARE) {
            retval = -EIO;
      } else if (retval == H_PARAMETER) {
            retval = -EINVAL;
      }

      return retval;
}

#else                   /* CONFIG_PPC_PSERIES */

static int pseries_lparcfg_data(struct seq_file *m, void *v)
{
      return 0;
}

static ssize_t lparcfg_write(struct file *file, const char __user * buf,
                       size_t count, loff_t * off)
{
      return -EINVAL;
}

#endif                        /* CONFIG_PPC_PSERIES */

static int lparcfg_data(struct seq_file *m, void *v)
{
      struct device_node *rootdn;
      const char *model = "";
      const char *system_id = "";
      const char *tmp;
      const unsigned int *lp_index_ptr;
      unsigned int lp_index = 0;

      seq_printf(m, "%s %s \n", MODULE_NAME, MODULE_VERS);

      rootdn = of_find_node_by_path("/");
      if (rootdn) {
            tmp = of_get_property(rootdn, "model", NULL);
            if (tmp) {
                  model = tmp;
                  /* Skip "IBM," - see platforms/iseries/dt.c */
                  if (firmware_has_feature(FW_FEATURE_ISERIES))
                        model += 4;
            }
            tmp = of_get_property(rootdn, "system-id", NULL);
            if (tmp) {
                  system_id = tmp;
                  /* Skip "IBM," - see platforms/iseries/dt.c */
                  if (firmware_has_feature(FW_FEATURE_ISERIES))
                        system_id += 4;
            }
            lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
                              NULL);
            if (lp_index_ptr)
                  lp_index = *lp_index_ptr;
            of_node_put(rootdn);
      }
      seq_printf(m, "serial_number=%s\n", system_id);
      seq_printf(m, "system_type=%s\n", model);
      seq_printf(m, "partition_id=%d\n", (int)lp_index);

      if (firmware_has_feature(FW_FEATURE_ISERIES))
            return iseries_lparcfg_data(m, v);
      return pseries_lparcfg_data(m, v);
}

static int lparcfg_open(struct inode *inode, struct file *file)
{
      return single_open(file, lparcfg_data, NULL);
}

static const struct file_operations lparcfg_fops = {
      .owner            = THIS_MODULE,
      .read       = seq_read,
      .write            = lparcfg_write,
      .open       = lparcfg_open,
      .release    = single_release,
};

static int __init lparcfg_init(void)
{
      struct proc_dir_entry *ent;
      mode_t mode = S_IRUSR | S_IRGRP | S_IROTH;

      /* Allow writing if we have FW_FEATURE_SPLPAR */
      if (firmware_has_feature(FW_FEATURE_SPLPAR) &&
                  !firmware_has_feature(FW_FEATURE_ISERIES))
            mode |= S_IWUSR;

      ent = proc_create("ppc64/lparcfg", mode, NULL, &lparcfg_fops);
      if (!ent) {
            printk(KERN_ERR "Failed to create ppc64/lparcfg\n");
            return -EIO;
      }

      proc_ppc64_lparcfg = ent;
      return 0;
}

static void __exit lparcfg_cleanup(void)
{
      if (proc_ppc64_lparcfg)
            remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent);
}

module_init(lparcfg_init);
module_exit(lparcfg_cleanup);
MODULE_DESCRIPTION("Interface for LPAR configuration data");
MODULE_AUTHOR("Dave Engebretsen");
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index