Logo Search packages:      
Sourcecode: linux version File versions

sram-alloc.c

/*
 * File:         arch/blackfin/mm/sram-alloc.c
 * Based on:
 * Author:
 *
 * Created:
 * Description:  SRAM allocator for Blackfin L1 and L2 memory
 *
 * Modified:
 *               Copyright 2004-2008 Analog Devices Inc.
 *
 * Bugs:         Enter bugs at http://blackfin.uclinux.org/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see the file COPYING, or write
 * to the Free Software Foundation, Inc.,
 * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/rtc.h>
#include <asm/blackfin.h>
#include "blackfin_sram.h"

static spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
static spinlock_t l2_sram_lock;

/* the data structure for L1 scratchpad and DATA SRAM */
struct sram_piece {
      void *paddr;
      int size;
      pid_t pid;
      struct sram_piece *next;
};

static struct sram_piece free_l1_ssram_head, used_l1_ssram_head;

#if L1_DATA_A_LENGTH != 0
static struct sram_piece free_l1_data_A_sram_head, used_l1_data_A_sram_head;
#endif

#if L1_DATA_B_LENGTH != 0
static struct sram_piece free_l1_data_B_sram_head, used_l1_data_B_sram_head;
#endif

#if L1_CODE_LENGTH != 0
static struct sram_piece free_l1_inst_sram_head, used_l1_inst_sram_head;
#endif

#if L2_LENGTH != 0
static struct sram_piece free_l2_sram_head, used_l2_sram_head;
#endif

static struct kmem_cache *sram_piece_cache;

/* L1 Scratchpad SRAM initialization function */
static void __init l1sram_init(void)
{
      free_l1_ssram_head.next =
            kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
      if (!free_l1_ssram_head.next) {
            printk(KERN_INFO "Failed to initialize Scratchpad data SRAM\n");
            return;
      }

      free_l1_ssram_head.next->paddr = (void *)L1_SCRATCH_START;
      free_l1_ssram_head.next->size = L1_SCRATCH_LENGTH;
      free_l1_ssram_head.next->pid = 0;
      free_l1_ssram_head.next->next = NULL;

      used_l1_ssram_head.next = NULL;

      /* mutex initialize */
      spin_lock_init(&l1sram_lock);

      printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
             L1_SCRATCH_LENGTH >> 10);
}

static void __init l1_data_sram_init(void)
{
#if L1_DATA_A_LENGTH != 0
      free_l1_data_A_sram_head.next =
            kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
      if (!free_l1_data_A_sram_head.next) {
            printk(KERN_INFO "Failed to initialize L1 Data A SRAM\n");
            return;
      }

      free_l1_data_A_sram_head.next->paddr =
            (void *)L1_DATA_A_START + (_ebss_l1 - _sdata_l1);
      free_l1_data_A_sram_head.next->size =
            L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
      free_l1_data_A_sram_head.next->pid = 0;
      free_l1_data_A_sram_head.next->next = NULL;

      used_l1_data_A_sram_head.next = NULL;

      printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
            L1_DATA_A_LENGTH >> 10,
            free_l1_data_A_sram_head.next->size >> 10);
#endif
#if L1_DATA_B_LENGTH != 0
      free_l1_data_B_sram_head.next =
            kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
      if (!free_l1_data_B_sram_head.next) {
            printk(KERN_INFO "Failed to initialize L1 Data B SRAM\n");
            return;
      }

      free_l1_data_B_sram_head.next->paddr =
            (void *)L1_DATA_B_START + (_ebss_b_l1 - _sdata_b_l1);
      free_l1_data_B_sram_head.next->size =
            L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
      free_l1_data_B_sram_head.next->pid = 0;
      free_l1_data_B_sram_head.next->next = NULL;

      used_l1_data_B_sram_head.next = NULL;

      printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
            L1_DATA_B_LENGTH >> 10,
            free_l1_data_B_sram_head.next->size >> 10);
#endif

      /* mutex initialize */
      spin_lock_init(&l1_data_sram_lock);
}

static void __init l1_inst_sram_init(void)
{
#if L1_CODE_LENGTH != 0
      free_l1_inst_sram_head.next =
            kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
      if (!free_l1_inst_sram_head.next) {
            printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
            return;
      }

      free_l1_inst_sram_head.next->paddr =
            (void *)L1_CODE_START + (_etext_l1 - _stext_l1);
      free_l1_inst_sram_head.next->size =
            L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
      free_l1_inst_sram_head.next->pid = 0;
      free_l1_inst_sram_head.next->next = NULL;

      used_l1_inst_sram_head.next = NULL;

      printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
            L1_CODE_LENGTH >> 10,
            free_l1_inst_sram_head.next->size >> 10);
#endif

      /* mutex initialize */
      spin_lock_init(&l1_inst_sram_lock);
}

static void __init l2_sram_init(void)
{
#if L2_LENGTH != 0
      free_l2_sram_head.next =
            kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
      if (!free_l2_sram_head.next) {
            printk(KERN_INFO "Failed to initialize L2 SRAM\n");
            return;
      }

      free_l2_sram_head.next->paddr =
            (void *)L2_START + (_ebss_l2 - _stext_l2);
      free_l2_sram_head.next->size =
            L2_LENGTH - (_ebss_l2 - _stext_l2);
      free_l2_sram_head.next->pid = 0;
      free_l2_sram_head.next->next = NULL;

      used_l2_sram_head.next = NULL;

      printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
            L2_LENGTH >> 10,
            free_l2_sram_head.next->size >> 10);
#endif

      /* mutex initialize */
      spin_lock_init(&l2_sram_lock);
}
void __init bfin_sram_init(void)
{
      sram_piece_cache = kmem_cache_create("sram_piece_cache",
                        sizeof(struct sram_piece),
                        0, SLAB_PANIC, NULL);

      l1sram_init();
      l1_data_sram_init();
      l1_inst_sram_init();
      l2_sram_init();
}

/* SRAM allocate function */
static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
            struct sram_piece *pused_head)
{
      struct sram_piece *pslot, *plast, *pavail;

      if (size <= 0 || !pfree_head || !pused_head)
            return NULL;

      /* Align the size */
      size = (size + 3) & ~3;

      pslot = pfree_head->next;
      plast = pfree_head;

      /* search an available piece slot */
      while (pslot != NULL && size > pslot->size) {
            plast = pslot;
            pslot = pslot->next;
      }

      if (!pslot)
            return NULL;

      if (pslot->size == size) {
            plast->next = pslot->next;
            pavail = pslot;
      } else {
            pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);

            if (!pavail)
                  return NULL;

            pavail->paddr = pslot->paddr;
            pavail->size = size;
            pslot->paddr += size;
            pslot->size -= size;
      }

      pavail->pid = current->pid;

      pslot = pused_head->next;
      plast = pused_head;

      /* insert new piece into used piece list !!! */
      while (pslot != NULL && pavail->paddr < pslot->paddr) {
            plast = pslot;
            pslot = pslot->next;
      }

      pavail->next = pslot;
      plast->next = pavail;

      return pavail->paddr;
}

/* Allocate the largest available block.  */
static void *_sram_alloc_max(struct sram_piece *pfree_head,
                        struct sram_piece *pused_head,
                        unsigned long *psize)
{
      struct sram_piece *pslot, *pmax;

      if (!pfree_head || !pused_head)
            return NULL;

      pmax = pslot = pfree_head->next;

      /* search an available piece slot */
      while (pslot != NULL) {
            if (pslot->size > pmax->size)
                  pmax = pslot;
            pslot = pslot->next;
      }

      if (!pmax)
            return NULL;

      *psize = pmax->size;

      return _sram_alloc(*psize, pfree_head, pused_head);
}

/* SRAM free function */
static int _sram_free(const void *addr,
                  struct sram_piece *pfree_head,
                  struct sram_piece *pused_head)
{
      struct sram_piece *pslot, *plast, *pavail;

      if (!pfree_head || !pused_head)
            return -1;

      /* search the relevant memory slot */
      pslot = pused_head->next;
      plast = pused_head;

      /* search an available piece slot */
      while (pslot != NULL && pslot->paddr != addr) {
            plast = pslot;
            pslot = pslot->next;
      }

      if (!pslot)
            return -1;

      plast->next = pslot->next;
      pavail = pslot;
      pavail->pid = 0;

      /* insert free pieces back to the free list */
      pslot = pfree_head->next;
      plast = pfree_head;

      while (pslot != NULL && addr > pslot->paddr) {
            plast = pslot;
            pslot = pslot->next;
      }

      if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
            plast->size += pavail->size;
            kmem_cache_free(sram_piece_cache, pavail);
      } else {
            pavail->next = plast->next;
            plast->next = pavail;
            plast = pavail;
      }

      if (pslot && plast->paddr + plast->size == pslot->paddr) {
            plast->size += pslot->size;
            plast->next = pslot->next;
            kmem_cache_free(sram_piece_cache, pslot);
      }

      return 0;
}

int sram_free(const void *addr)
{

#if L1_CODE_LENGTH != 0
      if (addr >= (void *)L1_CODE_START
             && addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
            return l1_inst_sram_free(addr);
      else
#endif
#if L1_DATA_A_LENGTH != 0
      if (addr >= (void *)L1_DATA_A_START
             && addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
            return l1_data_A_sram_free(addr);
      else
#endif
#if L1_DATA_B_LENGTH != 0
      if (addr >= (void *)L1_DATA_B_START
             && addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
            return l1_data_B_sram_free(addr);
      else
#endif
#if L2_LENGTH != 0
      if (addr >= (void *)L2_START
             && addr < (void *)(L2_START + L2_LENGTH))
            return l2_sram_free(addr);
      else
#endif
            return -1;
}
EXPORT_SYMBOL(sram_free);

void *l1_data_A_sram_alloc(size_t size)
{
      unsigned long flags;
      void *addr = NULL;

      /* add mutex operation */
      spin_lock_irqsave(&l1_data_sram_lock, flags);

#if L1_DATA_A_LENGTH != 0
      addr = _sram_alloc(size, &free_l1_data_A_sram_head,
                  &used_l1_data_A_sram_head);
#endif

      /* add mutex operation */
      spin_unlock_irqrestore(&l1_data_sram_lock, flags);

      pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
             (long unsigned int)addr, size);

      return addr;
}
EXPORT_SYMBOL(l1_data_A_sram_alloc);

int l1_data_A_sram_free(const void *addr)
{
      unsigned long flags;
      int ret;

      /* add mutex operation */
      spin_lock_irqsave(&l1_data_sram_lock, flags);

#if L1_DATA_A_LENGTH != 0
      ret = _sram_free(addr, &free_l1_data_A_sram_head,
                  &used_l1_data_A_sram_head);
#else
      ret = -1;
#endif

      /* add mutex operation */
      spin_unlock_irqrestore(&l1_data_sram_lock, flags);

      return ret;
}
EXPORT_SYMBOL(l1_data_A_sram_free);

void *l1_data_B_sram_alloc(size_t size)
{
#if L1_DATA_B_LENGTH != 0
      unsigned long flags;
      void *addr;

      /* add mutex operation */
      spin_lock_irqsave(&l1_data_sram_lock, flags);

      addr = _sram_alloc(size, &free_l1_data_B_sram_head,
                  &used_l1_data_B_sram_head);

      /* add mutex operation */
      spin_unlock_irqrestore(&l1_data_sram_lock, flags);

      pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
             (long unsigned int)addr, size);

      return addr;
#else
      return NULL;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_alloc);

int l1_data_B_sram_free(const void *addr)
{
#if L1_DATA_B_LENGTH != 0
      unsigned long flags;
      int ret;

      /* add mutex operation */
      spin_lock_irqsave(&l1_data_sram_lock, flags);

      ret = _sram_free(addr, &free_l1_data_B_sram_head,
                  &used_l1_data_B_sram_head);

      /* add mutex operation */
      spin_unlock_irqrestore(&l1_data_sram_lock, flags);

      return ret;
#else
      return -1;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_free);

void *l1_data_sram_alloc(size_t size)
{
      void *addr = l1_data_A_sram_alloc(size);

      if (!addr)
            addr = l1_data_B_sram_alloc(size);

      return addr;
}
EXPORT_SYMBOL(l1_data_sram_alloc);

void *l1_data_sram_zalloc(size_t size)
{
      void *addr = l1_data_sram_alloc(size);

      if (addr)
            memset(addr, 0x00, size);

      return addr;
}
EXPORT_SYMBOL(l1_data_sram_zalloc);

int l1_data_sram_free(const void *addr)
{
      int ret;
      ret = l1_data_A_sram_free(addr);
      if (ret == -1)
            ret = l1_data_B_sram_free(addr);
      return ret;
}
EXPORT_SYMBOL(l1_data_sram_free);

void *l1_inst_sram_alloc(size_t size)
{
#if L1_CODE_LENGTH != 0
      unsigned long flags;
      void *addr;

      /* add mutex operation */
      spin_lock_irqsave(&l1_inst_sram_lock, flags);

      addr = _sram_alloc(size, &free_l1_inst_sram_head,
                  &used_l1_inst_sram_head);

      /* add mutex operation */
      spin_unlock_irqrestore(&l1_inst_sram_lock, flags);

      pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
             (long unsigned int)addr, size);

      return addr;
#else
      return NULL;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_alloc);

int l1_inst_sram_free(const void *addr)
{
#if L1_CODE_LENGTH != 0
      unsigned long flags;
      int ret;

      /* add mutex operation */
      spin_lock_irqsave(&l1_inst_sram_lock, flags);

      ret = _sram_free(addr, &free_l1_inst_sram_head,
                  &used_l1_inst_sram_head);

      /* add mutex operation */
      spin_unlock_irqrestore(&l1_inst_sram_lock, flags);

      return ret;
#else
      return -1;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_free);

/* L1 Scratchpad memory allocate function */
void *l1sram_alloc(size_t size)
{
      unsigned long flags;
      void *addr;

      /* add mutex operation */
      spin_lock_irqsave(&l1sram_lock, flags);

      addr = _sram_alloc(size, &free_l1_ssram_head,
                  &used_l1_ssram_head);

      /* add mutex operation */
      spin_unlock_irqrestore(&l1sram_lock, flags);

      return addr;
}

/* L1 Scratchpad memory allocate function */
void *l1sram_alloc_max(size_t *psize)
{
      unsigned long flags;
      void *addr;

      /* add mutex operation */
      spin_lock_irqsave(&l1sram_lock, flags);

      addr = _sram_alloc_max(&free_l1_ssram_head,
                  &used_l1_ssram_head, psize);

      /* add mutex operation */
      spin_unlock_irqrestore(&l1sram_lock, flags);

      return addr;
}

/* L1 Scratchpad memory free function */
int l1sram_free(const void *addr)
{
      unsigned long flags;
      int ret;

      /* add mutex operation */
      spin_lock_irqsave(&l1sram_lock, flags);

      ret = _sram_free(addr, &free_l1_ssram_head,
                  &used_l1_ssram_head);

      /* add mutex operation */
      spin_unlock_irqrestore(&l1sram_lock, flags);

      return ret;
}

void *l2_sram_alloc(size_t size)
{
#if L2_LENGTH != 0
      unsigned long flags;
      void *addr;

      /* add mutex operation */
      spin_lock_irqsave(&l2_sram_lock, flags);

      addr = _sram_alloc(size, &free_l2_sram_head,
                  &used_l2_sram_head);

      /* add mutex operation */
      spin_unlock_irqrestore(&l2_sram_lock, flags);

      pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
             (long unsigned int)addr, size);

      return addr;
#else
      return NULL;
#endif
}
EXPORT_SYMBOL(l2_sram_alloc);

void *l2_sram_zalloc(size_t size)
{
      void *addr = l2_sram_alloc(size);

      if (addr)
            memset(addr, 0x00, size);

      return addr;
}
EXPORT_SYMBOL(l2_sram_zalloc);

int l2_sram_free(const void *addr)
{
#if L2_LENGTH != 0
      unsigned long flags;
      int ret;

      /* add mutex operation */
      spin_lock_irqsave(&l2_sram_lock, flags);

      ret = _sram_free(addr, &free_l2_sram_head,
                  &used_l2_sram_head);

      /* add mutex operation */
      spin_unlock_irqrestore(&l2_sram_lock, flags);

      return ret;
#else
      return -1;
#endif
}
EXPORT_SYMBOL(l2_sram_free);

int sram_free_with_lsl(const void *addr)
{
      struct sram_list_struct *lsl, **tmp;
      struct mm_struct *mm = current->mm;

      for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
            if ((*tmp)->addr == addr)
                  goto found;
      return -1;
found:
      lsl = *tmp;
      sram_free(addr);
      *tmp = lsl->next;
      kfree(lsl);

      return 0;
}
EXPORT_SYMBOL(sram_free_with_lsl);

void *sram_alloc_with_lsl(size_t size, unsigned long flags)
{
      void *addr = NULL;
      struct sram_list_struct *lsl = NULL;
      struct mm_struct *mm = current->mm;

      lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
      if (!lsl)
            return NULL;

      if (flags & L1_INST_SRAM)
            addr = l1_inst_sram_alloc(size);

      if (addr == NULL && (flags & L1_DATA_A_SRAM))
            addr = l1_data_A_sram_alloc(size);

      if (addr == NULL && (flags & L1_DATA_B_SRAM))
            addr = l1_data_B_sram_alloc(size);

      if (addr == NULL && (flags & L2_SRAM))
            addr = l2_sram_alloc(size);

      if (addr == NULL) {
            kfree(lsl);
            return NULL;
      }
      lsl->addr = addr;
      lsl->length = size;
      lsl->next = mm->context.sram_list;
      mm->context.sram_list = lsl;
      return addr;
}
EXPORT_SYMBOL(sram_alloc_with_lsl);

#ifdef CONFIG_PROC_FS
/* Once we get a real allocator, we'll throw all of this away.
 * Until then, we need some sort of visibility into the L1 alloc.
 */
/* Need to keep line of output the same.  Currently, that is 44 bytes
 * (including newline).
 */
static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
            struct sram_piece *pfree_head,
            struct sram_piece *pused_head)
{
      struct sram_piece *pslot;

      if (!pfree_head || !pused_head)
            return -1;

      *len += sprintf(&buf[*len], "--- SRAM %-14s Size   PID State     \n", desc);

      /* search the relevant memory slot */
      pslot = pused_head->next;

      while (pslot != NULL) {
            *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
                  pslot->paddr, pslot->paddr + pslot->size,
                  pslot->size, pslot->pid, "ALLOCATED");

            pslot = pslot->next;
      }

      pslot = pfree_head->next;

      while (pslot != NULL) {
            *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
                  pslot->paddr, pslot->paddr + pslot->size,
                  pslot->size, pslot->pid, "FREE");

            pslot = pslot->next;
      }

      return 0;
}
static int sram_proc_read(char *buf, char **start, off_t offset, int count,
            int *eof, void *data)
{
      int len = 0;

      if (_sram_proc_read(buf, &len, count, "Scratchpad",
                  &free_l1_ssram_head, &used_l1_ssram_head))
            goto not_done;
#if L1_DATA_A_LENGTH != 0
      if (_sram_proc_read(buf, &len, count, "L1 Data A",
                  &free_l1_data_A_sram_head,
                  &used_l1_data_A_sram_head))
            goto not_done;
#endif
#if L1_DATA_B_LENGTH != 0
      if (_sram_proc_read(buf, &len, count, "L1 Data B",
                  &free_l1_data_B_sram_head,
                  &used_l1_data_B_sram_head))
            goto not_done;
#endif
#if L1_CODE_LENGTH != 0
      if (_sram_proc_read(buf, &len, count, "L1 Instruction",
                  &free_l1_inst_sram_head, &used_l1_inst_sram_head))
            goto not_done;
#endif
#if L2_LENGTH != 0
      if (_sram_proc_read(buf, &len, count, "L2",
                  &free_l2_sram_head, &used_l2_sram_head))
            goto not_done;
#endif

      *eof = 1;
 not_done:
      return len;
}

static int __init sram_proc_init(void)
{
      struct proc_dir_entry *ptr;
      ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
      if (!ptr) {
            printk(KERN_WARNING "unable to create /proc/sram\n");
            return -1;
      }
      ptr->owner = THIS_MODULE;
      ptr->read_proc = sram_proc_read;
      return 0;
}
late_initcall(sram_proc_init);
#endif

Generated by  Doxygen 1.6.0   Back to index