Logo Search packages:      
Sourcecode: linux version File versions

file.c

/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#undef DEBUG

#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/poll.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <linux/marker.h>

#include <asm/io.h>
#include <asm/time.h>
#include <asm/spu.h>
#include <asm/spu_info.h>
#include <asm/uaccess.h>

#include "spufs.h"

#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

/* Simple attribute files */
struct spufs_attr {
      int (*get)(void *, u64 *);
      int (*set)(void *, u64);
      char get_buf[24];       /* enough to store a u64 and "\n\0" */
      char set_buf[24];
      void *data;
      const char *fmt;        /* format for read operation */
      struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
            int (*get)(void *, u64 *), int (*set)(void *, u64),
            const char *fmt)
{
      struct spufs_attr *attr;

      attr = kmalloc(sizeof(*attr), GFP_KERNEL);
      if (!attr)
            return -ENOMEM;

      attr->get = get;
      attr->set = set;
      attr->data = inode->i_private;
      attr->fmt = fmt;
      mutex_init(&attr->mutex);
      file->private_data = attr;

      return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
      return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
            size_t len, loff_t *ppos)
{
      struct spufs_attr *attr;
      size_t size;
      ssize_t ret;

      attr = file->private_data;
      if (!attr->get)
            return -EACCES;

      ret = mutex_lock_interruptible(&attr->mutex);
      if (ret)
            return ret;

      if (*ppos) {            /* continued read */
            size = strlen(attr->get_buf);
      } else {          /* first read */
            u64 val;
            ret = attr->get(attr->data, &val);
            if (ret)
                  goto out;

            size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
                         attr->fmt, (unsigned long long)val);
      }

      ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
      mutex_unlock(&attr->mutex);
      return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
            size_t len, loff_t *ppos)
{
      struct spufs_attr *attr;
      u64 val;
      size_t size;
      ssize_t ret;

      attr = file->private_data;
      if (!attr->set)
            return -EACCES;

      ret = mutex_lock_interruptible(&attr->mutex);
      if (ret)
            return ret;

      ret = -EFAULT;
      size = min(sizeof(attr->set_buf) - 1, len);
      if (copy_from_user(attr->set_buf, buf, size))
            goto out;

      ret = len; /* claim we got the whole input */
      attr->set_buf[size] = '\0';
      val = simple_strtol(attr->set_buf, NULL, 0);
      attr->set(attr->data, val);
out:
      mutex_unlock(&attr->mutex);
      return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)      \
static int __fops ## _open(struct inode *inode, struct file *file)      \
{                                                     \
      __simple_attr_check_format(__fmt, 0ull);              \
      return spufs_attr_open(inode, file, __get, __set, __fmt);   \
}                                                     \
static struct file_operations __fops = {                    \
      .owner       = THIS_MODULE,                                 \
      .open  = __fops ## _open,                             \
      .release = spufs_attr_release,                              \
      .read  = spufs_attr_read,                             \
      .write       = spufs_attr_write,                            \
};


static int
spufs_mem_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      file->private_data = ctx;
      if (!i->i_openers++)
            ctx->local_store = inode->i_mapping;
      mutex_unlock(&ctx->mapping_lock);
      return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      if (!--i->i_openers)
            ctx->local_store = NULL;
      mutex_unlock(&ctx->mapping_lock);
      return 0;
}

static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
                  size_t size, loff_t *pos)
{
      char *local_store = ctx->ops->get_ls(ctx);
      return simple_read_from_buffer(buffer, size, pos, local_store,
                              LS_SIZE);
}

static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
                        size_t size, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      ssize_t ret;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      ret = __spufs_mem_read(ctx, buffer, size, pos);
      spu_release(ctx);

      return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
                              size_t size, loff_t *ppos)
{
      struct spu_context *ctx = file->private_data;
      char *local_store;
      loff_t pos = *ppos;
      int ret;

      if (pos < 0)
            return -EINVAL;
      if (pos > LS_SIZE)
            return -EFBIG;
      if (size > LS_SIZE - pos)
            size = LS_SIZE - pos;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;

      local_store = ctx->ops->get_ls(ctx);
      ret = copy_from_user(local_store + pos, buffer, size);
      spu_release(ctx);

      if (ret)
            return -EFAULT;
      *ppos = pos + size;
      return size;
}

static int
spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
      struct spu_context *ctx = vma->vm_file->private_data;
      unsigned long address = (unsigned long)vmf->virtual_address;
      unsigned long pfn, offset;

#ifdef CONFIG_SPU_FS_64K_LS
      struct spu_state *csa = &ctx->csa;
      int psize;

      /* Check what page size we are using */
      psize = get_slice_psize(vma->vm_mm, address);

      /* Some sanity checking */
      BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

      /* Wow, 64K, cool, we need to align the address though */
      if (csa->use_big_pages) {
            BUG_ON(vma->vm_start & 0xffff);
            address &= ~0xfffful;
      }
#endif /* CONFIG_SPU_FS_64K_LS */

      offset = vmf->pgoff << PAGE_SHIFT;
      if (offset >= LS_SIZE)
            return VM_FAULT_SIGBUS;

      pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
                  address, offset);

      if (spu_acquire(ctx))
            return VM_FAULT_NOPAGE;

      if (ctx->state == SPU_STATE_SAVED) {
            vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
                                          & ~_PAGE_NO_CACHE);
            pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
      } else {
            vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
                                   | _PAGE_NO_CACHE);
            pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
      }
      vm_insert_pfn(vma, address, pfn);

      spu_release(ctx);

      return VM_FAULT_NOPAGE;
}

static int spufs_mem_mmap_access(struct vm_area_struct *vma,
                        unsigned long address,
                        void *buf, int len, int write)
{
      struct spu_context *ctx = vma->vm_file->private_data;
      unsigned long offset = address - vma->vm_start;
      char *local_store;

      if (write && !(vma->vm_flags & VM_WRITE))
            return -EACCES;
      if (spu_acquire(ctx))
            return -EINTR;
      if ((offset + len) > vma->vm_end)
            len = vma->vm_end - offset;
      local_store = ctx->ops->get_ls(ctx);
      if (write)
            memcpy_toio(local_store + offset, buf, len);
      else
            memcpy_fromio(buf, local_store + offset, len);
      spu_release(ctx);
      return len;
}

static struct vm_operations_struct spufs_mem_mmap_vmops = {
      .fault = spufs_mem_mmap_fault,
      .access = spufs_mem_mmap_access,
};

static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
#ifdef CONFIG_SPU_FS_64K_LS
      struct spu_context      *ctx = file->private_data;
      struct spu_state  *csa = &ctx->csa;

      /* Sanity check VMA alignment */
      if (csa->use_big_pages) {
            pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
                   " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
                   vma->vm_pgoff);
            if (vma->vm_start & 0xffff)
                  return -EINVAL;
            if (vma->vm_pgoff & 0xf)
                  return -EINVAL;
      }
#endif /* CONFIG_SPU_FS_64K_LS */

      if (!(vma->vm_flags & VM_SHARED))
            return -EINVAL;

      vma->vm_flags |= VM_IO | VM_PFNMAP;
      vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
                             | _PAGE_NO_CACHE);

      vma->vm_ops = &spufs_mem_mmap_vmops;
      return 0;
}

#ifdef CONFIG_SPU_FS_64K_LS
static unsigned long spufs_get_unmapped_area(struct file *file,
            unsigned long addr, unsigned long len, unsigned long pgoff,
            unsigned long flags)
{
      struct spu_context      *ctx = file->private_data;
      struct spu_state  *csa = &ctx->csa;

      /* If not using big pages, fallback to normal MM g_u_a */
      if (!csa->use_big_pages)
            return current->mm->get_unmapped_area(file, addr, len,
                                          pgoff, flags);

      /* Else, try to obtain a 64K pages slice */
      return slice_get_unmapped_area(addr, len, flags,
                               MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

static const struct file_operations spufs_mem_fops = {
      .open             = spufs_mem_open,
      .release          = spufs_mem_release,
      .read             = spufs_mem_read,
      .write                  = spufs_mem_write,
      .llseek                 = generic_file_llseek,
      .mmap             = spufs_mem_mmap,
#ifdef CONFIG_SPU_FS_64K_LS
      .get_unmapped_area      = spufs_get_unmapped_area,
#endif
};

static int spufs_ps_fault(struct vm_area_struct *vma,
                            struct vm_fault *vmf,
                            unsigned long ps_offs,
                            unsigned long ps_size)
{
      struct spu_context *ctx = vma->vm_file->private_data;
      unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
      int ret = 0;

      spu_context_nospu_trace(spufs_ps_fault__enter, ctx);

      if (offset >= ps_size)
            return VM_FAULT_SIGBUS;

      if (fatal_signal_pending(current))
            return VM_FAULT_SIGBUS;

      /*
       * Because we release the mmap_sem, the context may be destroyed while
       * we're in spu_wait. Grab an extra reference so it isn't destroyed
       * in the meantime.
       */
      get_spu_context(ctx);

      /*
       * We have to wait for context to be loaded before we have
       * pages to hand out to the user, but we don't want to wait
       * with the mmap_sem held.
       * It is possible to drop the mmap_sem here, but then we need
       * to return VM_FAULT_NOPAGE because the mappings may have
       * hanged.
       */
      if (spu_acquire(ctx))
            goto refault;

      if (ctx->state == SPU_STATE_SAVED) {
            up_read(&current->mm->mmap_sem);
            spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
            ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
            spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
            down_read(&current->mm->mmap_sem);
      } else {
            area = ctx->spu->problem_phys + ps_offs;
            vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
                              (area + offset) >> PAGE_SHIFT);
            spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
      }

      if (!ret)
            spu_release(ctx);

refault:
      put_spu_context(ctx);
      return VM_FAULT_NOPAGE;
}

#if SPUFS_MMAP_4K
static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
                                 struct vm_fault *vmf)
{
      return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
      .fault = spufs_cntl_mmap_fault,
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
      if (!(vma->vm_flags & VM_SHARED))
            return -EINVAL;

      vma->vm_flags |= VM_IO | VM_PFNMAP;
      vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
                             | _PAGE_NO_CACHE | _PAGE_GUARDED);

      vma->vm_ops = &spufs_cntl_mmap_vmops;
      return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */

static int spufs_cntl_get(void *data, u64 *val)
{
      struct spu_context *ctx = data;
      int ret;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      *val = ctx->ops->status_read(ctx);
      spu_release(ctx);

      return 0;
}

static int spufs_cntl_set(void *data, u64 val)
{
      struct spu_context *ctx = data;
      int ret;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      ctx->ops->runcntl_write(ctx, val);
      spu_release(ctx);

      return 0;
}

static int spufs_cntl_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      file->private_data = ctx;
      if (!i->i_openers++)
            ctx->cntl = inode->i_mapping;
      mutex_unlock(&ctx->mapping_lock);
      return simple_attr_open(inode, file, spufs_cntl_get,
                              spufs_cntl_set, "0x%08lx");
}

static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      simple_attr_release(inode, file);

      mutex_lock(&ctx->mapping_lock);
      if (!--i->i_openers)
            ctx->cntl = NULL;
      mutex_unlock(&ctx->mapping_lock);
      return 0;
}

static const struct file_operations spufs_cntl_fops = {
      .open = spufs_cntl_open,
      .release = spufs_cntl_release,
      .read = simple_attr_read,
      .write = simple_attr_write,
      .mmap = spufs_cntl_mmap,
};

static int
spufs_regs_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      file->private_data = i->i_ctx;
      return 0;
}

static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
                  size_t size, loff_t *pos)
{
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      return simple_read_from_buffer(buffer, size, pos,
                              lscsa->gprs, sizeof lscsa->gprs);
}

static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
            size_t size, loff_t *pos)
{
      int ret;
      struct spu_context *ctx = file->private_data;

      /* pre-check for file position: if we'd return EOF, there's no point
       * causing a deschedule */
      if (*pos >= sizeof(ctx->csa.lscsa->gprs))
            return 0;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      ret = __spufs_regs_read(ctx, buffer, size, pos);
      spu_release_saved(ctx);
      return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
             size_t size, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      int ret;

      size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
      if (size <= 0)
            return -EFBIG;
      *pos += size;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;

      ret = copy_from_user(lscsa->gprs + *pos - size,
                       buffer, size) ? -EFAULT : size;

      spu_release_saved(ctx);
      return ret;
}

static const struct file_operations spufs_regs_fops = {
      .open  = spufs_regs_open,
      .read    = spufs_regs_read,
      .write   = spufs_regs_write,
      .llseek  = generic_file_llseek,
};

static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
                  size_t size, loff_t * pos)
{
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      return simple_read_from_buffer(buffer, size, pos,
                              &lscsa->fpcr, sizeof(lscsa->fpcr));
}

static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
            size_t size, loff_t * pos)
{
      int ret;
      struct spu_context *ctx = file->private_data;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      ret = __spufs_fpcr_read(ctx, buffer, size, pos);
      spu_release_saved(ctx);
      return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
             size_t size, loff_t * pos)
{
      struct spu_context *ctx = file->private_data;
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      int ret;

      size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
      if (size <= 0)
            return -EFBIG;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;

      *pos += size;
      ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
                       buffer, size) ? -EFAULT : size;

      spu_release_saved(ctx);
      return ret;
}

static const struct file_operations spufs_fpcr_fops = {
      .open = spufs_regs_open,
      .read = spufs_fpcr_read,
      .write = spufs_fpcr_write,
      .llseek = generic_file_llseek,
};

/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      file->private_data = i->i_ctx;

      return nonseekable_open(inode, file);
}

/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
                  size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      u32 mbox_data, __user *udata;
      ssize_t count;

      if (len < 4)
            return -EINVAL;

      if (!access_ok(VERIFY_WRITE, buf, len))
            return -EFAULT;

      udata = (void __user *)buf;

      count = spu_acquire(ctx);
      if (count)
            return count;

      for (count = 0; (count + 4) <= len; count += 4, udata++) {
            int ret;
            ret = ctx->ops->mbox_read(ctx, &mbox_data);
            if (ret == 0)
                  break;

            /*
             * at the end of the mapped area, we can fault
             * but still need to return the data we have
             * read successfully so far.
             */
            ret = __put_user(mbox_data, udata);
            if (ret) {
                  if (!count)
                        count = -EFAULT;
                  break;
            }
      }
      spu_release(ctx);

      if (!count)
            count = -EAGAIN;

      return count;
}

static const struct file_operations spufs_mbox_fops = {
      .open = spufs_pipe_open,
      .read = spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
                  size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      ssize_t ret;
      u32 mbox_stat;

      if (len < 4)
            return -EINVAL;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;

      mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

      spu_release(ctx);

      if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
            return -EFAULT;

      return 4;
}

static const struct file_operations spufs_mbox_stat_fops = {
      .open = spufs_pipe_open,
      .read = spufs_mbox_stat_read,
};

/* low-level ibox access function */
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
{
      return ctx->ops->ibox_read(ctx, data);
}

static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
      struct spu_context *ctx = file->private_data;

      return fasync_helper(fd, file, on, &ctx->ibox_fasync);
}

/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
{
      struct spu_context *ctx = spu->ctx;

      if (!ctx)
            return;

      wake_up_all(&ctx->ibox_wq);
      kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
}

/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
                  size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      u32 ibox_data, __user *udata;
      ssize_t count;

      if (len < 4)
            return -EINVAL;

      if (!access_ok(VERIFY_WRITE, buf, len))
            return -EFAULT;

      udata = (void __user *)buf;

      count = spu_acquire(ctx);
      if (count)
            goto out;

      /* wait only for the first element */
      count = 0;
      if (file->f_flags & O_NONBLOCK) {
            if (!spu_ibox_read(ctx, &ibox_data)) {
                  count = -EAGAIN;
                  goto out_unlock;
            }
      } else {
            count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
            if (count)
                  goto out;
      }

      /* if we can't write at all, return -EFAULT */
      count = __put_user(ibox_data, udata);
      if (count)
            goto out_unlock;

      for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
            int ret;
            ret = ctx->ops->ibox_read(ctx, &ibox_data);
            if (ret == 0)
                  break;
            /*
             * at the end of the mapped area, we can fault
             * but still need to return the data we have
             * read successfully so far.
             */
            ret = __put_user(ibox_data, udata);
            if (ret)
                  break;
      }

out_unlock:
      spu_release(ctx);
out:
      return count;
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
      struct spu_context *ctx = file->private_data;
      unsigned int mask;

      poll_wait(file, &ctx->ibox_wq, wait);

      /*
       * For now keep this uninterruptible and also ignore the rule
       * that poll should not sleep.  Will be fixed later.
       */
      mutex_lock(&ctx->state_mutex);
      mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
      spu_release(ctx);

      return mask;
}

static const struct file_operations spufs_ibox_fops = {
      .open = spufs_pipe_open,
      .read = spufs_ibox_read,
      .poll = spufs_ibox_poll,
      .fasync     = spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
                  size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      ssize_t ret;
      u32 ibox_stat;

      if (len < 4)
            return -EINVAL;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
      spu_release(ctx);

      if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
            return -EFAULT;

      return 4;
}

static const struct file_operations spufs_ibox_stat_fops = {
      .open = spufs_pipe_open,
      .read = spufs_ibox_stat_read,
};

/* low-level mailbox write */
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
{
      return ctx->ops->wbox_write(ctx, data);
}

static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
      struct spu_context *ctx = file->private_data;
      int ret;

      ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);

      return ret;
}

/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
{
      struct spu_context *ctx = spu->ctx;

      if (!ctx)
            return;

      wake_up_all(&ctx->wbox_wq);
      kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
}

/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
                  size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      u32 wbox_data, __user *udata;
      ssize_t count;

      if (len < 4)
            return -EINVAL;

      udata = (void __user *)buf;
      if (!access_ok(VERIFY_READ, buf, len))
            return -EFAULT;

      if (__get_user(wbox_data, udata))
            return -EFAULT;

      count = spu_acquire(ctx);
      if (count)
            goto out;

      /*
       * make sure we can at least write one element, by waiting
       * in case of !O_NONBLOCK
       */
      count = 0;
      if (file->f_flags & O_NONBLOCK) {
            if (!spu_wbox_write(ctx, wbox_data)) {
                  count = -EAGAIN;
                  goto out_unlock;
            }
      } else {
            count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
            if (count)
                  goto out;
      }


      /* write as much as possible */
      for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
            int ret;
            ret = __get_user(wbox_data, udata);
            if (ret)
                  break;

            ret = spu_wbox_write(ctx, wbox_data);
            if (ret == 0)
                  break;
      }

out_unlock:
      spu_release(ctx);
out:
      return count;
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
      struct spu_context *ctx = file->private_data;
      unsigned int mask;

      poll_wait(file, &ctx->wbox_wq, wait);

      /*
       * For now keep this uninterruptible and also ignore the rule
       * that poll should not sleep.  Will be fixed later.
       */
      mutex_lock(&ctx->state_mutex);
      mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
      spu_release(ctx);

      return mask;
}

static const struct file_operations spufs_wbox_fops = {
      .open = spufs_pipe_open,
      .write      = spufs_wbox_write,
      .poll = spufs_wbox_poll,
      .fasync     = spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
                  size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      ssize_t ret;
      u32 wbox_stat;

      if (len < 4)
            return -EINVAL;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
      spu_release(ctx);

      if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
            return -EFAULT;

      return 4;
}

static const struct file_operations spufs_wbox_stat_fops = {
      .open = spufs_pipe_open,
      .read = spufs_wbox_stat_read,
};

static int spufs_signal1_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      file->private_data = ctx;
      if (!i->i_openers++)
            ctx->signal1 = inode->i_mapping;
      mutex_unlock(&ctx->mapping_lock);
      return nonseekable_open(inode, file);
}

static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      if (!--i->i_openers)
            ctx->signal1 = NULL;
      mutex_unlock(&ctx->mapping_lock);
      return 0;
}

static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
                  size_t len, loff_t *pos)
{
      int ret = 0;
      u32 data;

      if (len < 4)
            return -EINVAL;

      if (ctx->csa.spu_chnlcnt_RW[3]) {
            data = ctx->csa.spu_chnldata_RW[3];
            ret = 4;
      }

      if (!ret)
            goto out;

      if (copy_to_user(buf, &data, 4))
            return -EFAULT;

out:
      return ret;
}

static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
                  size_t len, loff_t *pos)
{
      int ret;
      struct spu_context *ctx = file->private_data;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      ret = __spufs_signal1_read(ctx, buf, len, pos);
      spu_release_saved(ctx);

      return ret;
}

static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
                  size_t len, loff_t *pos)
{
      struct spu_context *ctx;
      ssize_t ret;
      u32 data;

      ctx = file->private_data;

      if (len < 4)
            return -EINVAL;

      if (copy_from_user(&data, buf, 4))
            return -EFAULT;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      ctx->ops->signal1_write(ctx, data);
      spu_release(ctx);

      return 4;
}

static int
spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
      return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
      /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
       * signal 1 and 2 area
       */
      return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
#else
#error unsupported page size
#endif
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
      .fault = spufs_signal1_mmap_fault,
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
      if (!(vma->vm_flags & VM_SHARED))
            return -EINVAL;

      vma->vm_flags |= VM_IO | VM_PFNMAP;
      vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
                             | _PAGE_NO_CACHE | _PAGE_GUARDED);

      vma->vm_ops = &spufs_signal1_mmap_vmops;
      return 0;
}

static const struct file_operations spufs_signal1_fops = {
      .open = spufs_signal1_open,
      .release = spufs_signal1_release,
      .read = spufs_signal1_read,
      .write = spufs_signal1_write,
      .mmap = spufs_signal1_mmap,
};

static const struct file_operations spufs_signal1_nosched_fops = {
      .open = spufs_signal1_open,
      .release = spufs_signal1_release,
      .write = spufs_signal1_write,
      .mmap = spufs_signal1_mmap,
};

static int spufs_signal2_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      file->private_data = ctx;
      if (!i->i_openers++)
            ctx->signal2 = inode->i_mapping;
      mutex_unlock(&ctx->mapping_lock);
      return nonseekable_open(inode, file);
}

static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      if (!--i->i_openers)
            ctx->signal2 = NULL;
      mutex_unlock(&ctx->mapping_lock);
      return 0;
}

static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
                  size_t len, loff_t *pos)
{
      int ret = 0;
      u32 data;

      if (len < 4)
            return -EINVAL;

      if (ctx->csa.spu_chnlcnt_RW[4]) {
            data =  ctx->csa.spu_chnldata_RW[4];
            ret = 4;
      }

      if (!ret)
            goto out;

      if (copy_to_user(buf, &data, 4))
            return -EFAULT;

out:
      return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
                  size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      int ret;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      ret = __spufs_signal2_read(ctx, buf, len, pos);
      spu_release_saved(ctx);

      return ret;
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
                  size_t len, loff_t *pos)
{
      struct spu_context *ctx;
      ssize_t ret;
      u32 data;

      ctx = file->private_data;

      if (len < 4)
            return -EINVAL;

      if (copy_from_user(&data, buf, 4))
            return -EFAULT;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      ctx->ops->signal2_write(ctx, data);
      spu_release(ctx);

      return 4;
}

#if SPUFS_MMAP_4K
static int
spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
      return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
      /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
       * signal 1 and 2 area
       */
      return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
#else
#error unsupported page size
#endif
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
      .fault = spufs_signal2_mmap_fault,
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
      if (!(vma->vm_flags & VM_SHARED))
            return -EINVAL;

      vma->vm_flags |= VM_IO | VM_PFNMAP;
      vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
                             | _PAGE_NO_CACHE | _PAGE_GUARDED);

      vma->vm_ops = &spufs_signal2_mmap_vmops;
      return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */

static const struct file_operations spufs_signal2_fops = {
      .open = spufs_signal2_open,
      .release = spufs_signal2_release,
      .read = spufs_signal2_read,
      .write = spufs_signal2_write,
      .mmap = spufs_signal2_mmap,
};

static const struct file_operations spufs_signal2_nosched_fops = {
      .open = spufs_signal2_open,
      .release = spufs_signal2_release,
      .write = spufs_signal2_write,
      .mmap = spufs_signal2_mmap,
};

/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE    0
#define SPU_ATTR_ACQUIRE      1
#define SPU_ATTR_ACQUIRE_SAVED      2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)  \
static int __##__get(void *data, u64 *val)                        \
{                                                     \
      struct spu_context *ctx = data;                             \
      int ret = 0;                                          \
                                                      \
      if (__acquire == SPU_ATTR_ACQUIRE) {                        \
            ret = spu_acquire(ctx);                         \
            if (ret)                                  \
                  return ret;                         \
            *val = __get(ctx);                              \
            spu_release(ctx);                         \
      } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) {           \
            ret = spu_acquire_saved(ctx);                   \
            if (ret)                                  \
                  return ret;                         \
            *val = __get(ctx);                              \
            spu_release_saved(ctx);                         \
      } else                                                \
            *val = __get(ctx);                              \
                                                      \
      return 0;                                       \
}                                                     \
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);

static int spufs_signal1_type_set(void *data, u64 val)
{
      struct spu_context *ctx = data;
      int ret;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      ctx->ops->signal1_type_set(ctx, val);
      spu_release(ctx);

      return 0;
}

static u64 spufs_signal1_type_get(struct spu_context *ctx)
{
      return ctx->ops->signal1_type_get(ctx);
}
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
                   spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);


static int spufs_signal2_type_set(void *data, u64 val)
{
      struct spu_context *ctx = data;
      int ret;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      ctx->ops->signal2_type_set(ctx, val);
      spu_release(ctx);

      return 0;
}

static u64 spufs_signal2_type_get(struct spu_context *ctx)
{
      return ctx->ops->signal2_type_get(ctx);
}
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
                   spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);

#if SPUFS_MMAP_4K
static int
spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
      return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
      .fault = spufs_mss_mmap_fault,
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
      if (!(vma->vm_flags & VM_SHARED))
            return -EINVAL;

      vma->vm_flags |= VM_IO | VM_PFNMAP;
      vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
                             | _PAGE_NO_CACHE | _PAGE_GUARDED);

      vma->vm_ops = &spufs_mss_mmap_vmops;
      return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */

static int spufs_mss_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      file->private_data = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      if (!i->i_openers++)
            ctx->mss = inode->i_mapping;
      mutex_unlock(&ctx->mapping_lock);
      return nonseekable_open(inode, file);
}

static int
spufs_mss_release(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      if (!--i->i_openers)
            ctx->mss = NULL;
      mutex_unlock(&ctx->mapping_lock);
      return 0;
}

static const struct file_operations spufs_mss_fops = {
      .open  = spufs_mss_open,
      .release = spufs_mss_release,
      .mmap  = spufs_mss_mmap,
};

static int
spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
      return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
      .fault = spufs_psmap_mmap_fault,
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
      if (!(vma->vm_flags & VM_SHARED))
            return -EINVAL;

      vma->vm_flags |= VM_IO | VM_PFNMAP;
      vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
                             | _PAGE_NO_CACHE | _PAGE_GUARDED);

      vma->vm_ops = &spufs_psmap_mmap_vmops;
      return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      file->private_data = i->i_ctx;
      if (!i->i_openers++)
            ctx->psmap = inode->i_mapping;
      mutex_unlock(&ctx->mapping_lock);
      return nonseekable_open(inode, file);
}

static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      if (!--i->i_openers)
            ctx->psmap = NULL;
      mutex_unlock(&ctx->mapping_lock);
      return 0;
}

static const struct file_operations spufs_psmap_fops = {
      .open  = spufs_psmap_open,
      .release = spufs_psmap_release,
      .mmap  = spufs_psmap_mmap,
};


#if SPUFS_MMAP_4K
static int
spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
      return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
      .fault = spufs_mfc_mmap_fault,
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
      if (!(vma->vm_flags & VM_SHARED))
            return -EINVAL;

      vma->vm_flags |= VM_IO | VM_PFNMAP;
      vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
                             | _PAGE_NO_CACHE | _PAGE_GUARDED);

      vma->vm_ops = &spufs_mfc_mmap_vmops;
      return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      /* we don't want to deal with DMA into other processes */
      if (ctx->owner != current->mm)
            return -EINVAL;

      if (atomic_read(&inode->i_count) != 1)
            return -EBUSY;

      mutex_lock(&ctx->mapping_lock);
      file->private_data = ctx;
      if (!i->i_openers++)
            ctx->mfc = inode->i_mapping;
      mutex_unlock(&ctx->mapping_lock);
      return nonseekable_open(inode, file);
}

static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;

      mutex_lock(&ctx->mapping_lock);
      if (!--i->i_openers)
            ctx->mfc = NULL;
      mutex_unlock(&ctx->mapping_lock);
      return 0;
}

/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
      struct spu_context *ctx = spu->ctx;

      if (!ctx)
            return;

      wake_up_all(&ctx->mfc_wq);

      pr_debug("%s %s\n", __func__, spu->name);
      if (ctx->mfc_fasync) {
            u32 free_elements, tagstatus;
            unsigned int mask;

            /* no need for spu_acquire in interrupt context */
            free_elements = ctx->ops->get_mfc_free_elements(ctx);
            tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

            mask = 0;
            if (free_elements & 0xffff)
                  mask |= POLLOUT;
            if (tagstatus & ctx->tagwait)
                  mask |= POLLIN;

            kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
      }
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
      /* See if there is one tag group is complete */
      /* FIXME we need locking around tagwait */
      *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
      ctx->tagwait &= ~*status;
      if (*status)
            return 1;

      /* enable interrupt waiting for any tag group,
         may silently fail if interrupts are already enabled */
      ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
      return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
                  size_t size, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      int ret = -EINVAL;
      u32 status;

      if (size != 4)
            goto out;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;

      ret = -EINVAL;
      if (file->f_flags & O_NONBLOCK) {
            status = ctx->ops->read_mfc_tagstatus(ctx);
            if (!(status & ctx->tagwait))
                  ret = -EAGAIN;
            else
                  /* XXX(hch): shouldn't we clear ret here? */
                  ctx->tagwait &= ~status;
      } else {
            ret = spufs_wait(ctx->mfc_wq,
                     spufs_read_mfc_tagstatus(ctx, &status));
            if (ret)
                  goto out;
      }
      spu_release(ctx);

      ret = 4;
      if (copy_to_user(buffer, &status, 4))
            ret = -EFAULT;

out:
      return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
      pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
             cmd->ea, cmd->size, cmd->tag, cmd->cmd);

      switch (cmd->cmd) {
      case MFC_PUT_CMD:
      case MFC_PUTF_CMD:
      case MFC_PUTB_CMD:
      case MFC_GET_CMD:
      case MFC_GETF_CMD:
      case MFC_GETB_CMD:
            break;
      default:
            pr_debug("invalid DMA opcode %x\n", cmd->cmd);
            return -EIO;
      }

      if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
            pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
                        cmd->ea, cmd->lsa);
            return -EIO;
      }

      switch (cmd->size & 0xf) {
      case 1:
            break;
      case 2:
            if (cmd->lsa & 1)
                  goto error;
            break;
      case 4:
            if (cmd->lsa & 3)
                  goto error;
            break;
      case 8:
            if (cmd->lsa & 7)
                  goto error;
            break;
      case 0:
            if (cmd->lsa & 15)
                  goto error;
            break;
      error:
      default:
            pr_debug("invalid DMA alignment %x for size %x\n",
                  cmd->lsa & 0xf, cmd->size);
            return -EIO;
      }

      if (cmd->size > 16 * 1024) {
            pr_debug("invalid DMA size %x\n", cmd->size);
            return -EIO;
      }

      if (cmd->tag & 0xfff0) {
            /* we reserve the higher tag numbers for kernel use */
            pr_debug("invalid DMA tag\n");
            return -EIO;
      }

      if (cmd->class) {
            /* not supported in this version */
            pr_debug("invalid DMA class\n");
            return -EIO;
      }

      return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
                        struct mfc_dma_command cmd,
                        int *error)
{
      *error = ctx->ops->send_mfc_command(ctx, &cmd);
      if (*error == -EAGAIN) {
            /* wait for any tag group to complete
               so we have space for the new command */
            ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
            /* try again, because the queue might be
               empty again */
            *error = ctx->ops->send_mfc_command(ctx, &cmd);
            if (*error == -EAGAIN)
                  return 0;
      }
      return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
                  size_t size, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      struct mfc_dma_command cmd;
      int ret = -EINVAL;

      if (size != sizeof cmd)
            goto out;

      ret = -EFAULT;
      if (copy_from_user(&cmd, buffer, sizeof cmd))
            goto out;

      ret = spufs_check_valid_dma(&cmd);
      if (ret)
            goto out;

      ret = spu_acquire(ctx);
      if (ret)
            goto out;

      ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
      if (ret)
            goto out;

      if (file->f_flags & O_NONBLOCK) {
            ret = ctx->ops->send_mfc_command(ctx, &cmd);
      } else {
            int status;
            ret = spufs_wait(ctx->mfc_wq,
                         spu_send_mfc_command(ctx, cmd, &status));
            if (ret)
                  goto out;
            if (status)
                  ret = status;
      }

      if (ret)
            goto out_unlock;

      ctx->tagwait |= 1 << cmd.tag;
      ret = size;

out_unlock:
      spu_release(ctx);
out:
      return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
      struct spu_context *ctx = file->private_data;
      u32 free_elements, tagstatus;
      unsigned int mask;

      poll_wait(file, &ctx->mfc_wq, wait);

      /*
       * For now keep this uninterruptible and also ignore the rule
       * that poll should not sleep.  Will be fixed later.
       */
      mutex_lock(&ctx->state_mutex);
      ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
      free_elements = ctx->ops->get_mfc_free_elements(ctx);
      tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
      spu_release(ctx);

      mask = 0;
      if (free_elements & 0xffff)
            mask |= POLLOUT | POLLWRNORM;
      if (tagstatus & ctx->tagwait)
            mask |= POLLIN | POLLRDNORM;

      pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
            free_elements, tagstatus, ctx->tagwait);

      return mask;
}

static int spufs_mfc_flush(struct file *file, fl_owner_t id)
{
      struct spu_context *ctx = file->private_data;
      int ret;

      ret = spu_acquire(ctx);
      if (ret)
            goto out;
#if 0
/* this currently hangs */
      ret = spufs_wait(ctx->mfc_wq,
                   ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
      if (ret)
            goto out;
      ret = spufs_wait(ctx->mfc_wq,
                   ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
      if (ret)
            goto out;
#else
      ret = 0;
#endif
      spu_release(ctx);
out:
      return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
                     int datasync)
{
      return spufs_mfc_flush(file, NULL);
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
      struct spu_context *ctx = file->private_data;

      return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

static const struct file_operations spufs_mfc_fops = {
      .open  = spufs_mfc_open,
      .release = spufs_mfc_release,
      .read  = spufs_mfc_read,
      .write       = spufs_mfc_write,
      .poll  = spufs_mfc_poll,
      .flush       = spufs_mfc_flush,
      .fsync       = spufs_mfc_fsync,
      .fasync      = spufs_mfc_fasync,
      .mmap  = spufs_mfc_mmap,
};

static int spufs_npc_set(void *data, u64 val)
{
      struct spu_context *ctx = data;
      int ret;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;
      ctx->ops->npc_write(ctx, val);
      spu_release(ctx);

      return 0;
}

static u64 spufs_npc_get(struct spu_context *ctx)
{
      return ctx->ops->npc_read(ctx);
}
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
                   "0x%llx\n", SPU_ATTR_ACQUIRE);

static int spufs_decr_set(void *data, u64 val)
{
      struct spu_context *ctx = data;
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      int ret;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      lscsa->decr.slot[0] = (u32) val;
      spu_release_saved(ctx);

      return 0;
}

static u64 spufs_decr_get(struct spu_context *ctx)
{
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      return lscsa->decr.slot[0];
}
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
                   "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);

static int spufs_decr_status_set(void *data, u64 val)
{
      struct spu_context *ctx = data;
      int ret;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      if (val)
            ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
      else
            ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
      spu_release_saved(ctx);

      return 0;
}

static u64 spufs_decr_status_get(struct spu_context *ctx)
{
      if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
            return SPU_DECR_STATUS_RUNNING;
      else
            return 0;
}
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
                   spufs_decr_status_set, "0x%llx\n",
                   SPU_ATTR_ACQUIRE_SAVED);

static int spufs_event_mask_set(void *data, u64 val)
{
      struct spu_context *ctx = data;
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      int ret;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      lscsa->event_mask.slot[0] = (u32) val;
      spu_release_saved(ctx);

      return 0;
}

static u64 spufs_event_mask_get(struct spu_context *ctx)
{
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      return lscsa->event_mask.slot[0];
}

DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
                   spufs_event_mask_set, "0x%llx\n",
                   SPU_ATTR_ACQUIRE_SAVED);

static u64 spufs_event_status_get(struct spu_context *ctx)
{
      struct spu_state *state = &ctx->csa;
      u64 stat;
      stat = state->spu_chnlcnt_RW[0];
      if (stat)
            return state->spu_chnldata_RW[0];
      return 0;
}
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
                   NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)

static int spufs_srr0_set(void *data, u64 val)
{
      struct spu_context *ctx = data;
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      int ret;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      lscsa->srr0.slot[0] = (u32) val;
      spu_release_saved(ctx);

      return 0;
}

static u64 spufs_srr0_get(struct spu_context *ctx)
{
      struct spu_lscsa *lscsa = ctx->csa.lscsa;
      return lscsa->srr0.slot[0];
}
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
                   "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)

static u64 spufs_id_get(struct spu_context *ctx)
{
      u64 num;

      if (ctx->state == SPU_STATE_RUNNABLE)
            num = ctx->spu->number;
      else
            num = (unsigned int)-1;

      return num;
}
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
                   SPU_ATTR_ACQUIRE)

static u64 spufs_object_id_get(struct spu_context *ctx)
{
      /* FIXME: Should there really be no locking here? */
      return ctx->object_id;
}

static int spufs_object_id_set(void *data, u64 id)
{
      struct spu_context *ctx = data;
      ctx->object_id = id;

      return 0;
}

DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
                   spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);

static u64 spufs_lslr_get(struct spu_context *ctx)
{
      return ctx->csa.priv2.spu_lslr_RW;
}
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
                   SPU_ATTR_ACQUIRE_SAVED);

static int spufs_info_open(struct inode *inode, struct file *file)
{
      struct spufs_inode_info *i = SPUFS_I(inode);
      struct spu_context *ctx = i->i_ctx;
      file->private_data = ctx;
      return 0;
}

static int spufs_caps_show(struct seq_file *s, void *private)
{
      struct spu_context *ctx = s->private;

      if (!(ctx->flags & SPU_CREATE_NOSCHED))
            seq_puts(s, "sched\n");
      if (!(ctx->flags & SPU_CREATE_ISOLATE))
            seq_puts(s, "step\n");
      return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
      return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
      .open       = spufs_caps_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .release    = single_release,
};

static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
                  char __user *buf, size_t len, loff_t *pos)
{
      u32 data;

      /* EOF if there's no entry in the mbox */
      if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
            return 0;

      data = ctx->csa.prob.pu_mb_R;

      return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
                           size_t len, loff_t *pos)
{
      int ret;
      struct spu_context *ctx = file->private_data;

      if (!access_ok(VERIFY_WRITE, buf, len))
            return -EFAULT;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      spin_lock(&ctx->csa.register_lock);
      ret = __spufs_mbox_info_read(ctx, buf, len, pos);
      spin_unlock(&ctx->csa.register_lock);
      spu_release_saved(ctx);

      return ret;
}

static const struct file_operations spufs_mbox_info_fops = {
      .open = spufs_info_open,
      .read = spufs_mbox_info_read,
      .llseek  = generic_file_llseek,
};

static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
                        char __user *buf, size_t len, loff_t *pos)
{
      u32 data;

      /* EOF if there's no entry in the ibox */
      if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
            return 0;

      data = ctx->csa.priv2.puint_mb_R;

      return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
                           size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      int ret;

      if (!access_ok(VERIFY_WRITE, buf, len))
            return -EFAULT;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      spin_lock(&ctx->csa.register_lock);
      ret = __spufs_ibox_info_read(ctx, buf, len, pos);
      spin_unlock(&ctx->csa.register_lock);
      spu_release_saved(ctx);

      return ret;
}

static const struct file_operations spufs_ibox_info_fops = {
      .open = spufs_info_open,
      .read = spufs_ibox_info_read,
      .llseek  = generic_file_llseek,
};

static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
                  char __user *buf, size_t len, loff_t *pos)
{
      int i, cnt;
      u32 data[4];
      u32 wbox_stat;

      wbox_stat = ctx->csa.prob.mb_stat_R;
      cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
      for (i = 0; i < cnt; i++) {
            data[i] = ctx->csa.spu_mailbox_data[i];
      }

      return simple_read_from_buffer(buf, len, pos, &data,
                        cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
                           size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      int ret;

      if (!access_ok(VERIFY_WRITE, buf, len))
            return -EFAULT;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      spin_lock(&ctx->csa.register_lock);
      ret = __spufs_wbox_info_read(ctx, buf, len, pos);
      spin_unlock(&ctx->csa.register_lock);
      spu_release_saved(ctx);

      return ret;
}

static const struct file_operations spufs_wbox_info_fops = {
      .open = spufs_info_open,
      .read = spufs_wbox_info_read,
      .llseek  = generic_file_llseek,
};

static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
                  char __user *buf, size_t len, loff_t *pos)
{
      struct spu_dma_info info;
      struct mfc_cq_sr *qp, *spuqp;
      int i;

      info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
      info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
      info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
      info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
      info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
      for (i = 0; i < 16; i++) {
            qp = &info.dma_info_command_data[i];
            spuqp = &ctx->csa.priv2.spuq[i];

            qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
            qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
            qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
            qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
      }

      return simple_read_from_buffer(buf, len, pos, &info,
                        sizeof info);
}

static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
                        size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      int ret;

      if (!access_ok(VERIFY_WRITE, buf, len))
            return -EFAULT;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      spin_lock(&ctx->csa.register_lock);
      ret = __spufs_dma_info_read(ctx, buf, len, pos);
      spin_unlock(&ctx->csa.register_lock);
      spu_release_saved(ctx);

      return ret;
}

static const struct file_operations spufs_dma_info_fops = {
      .open = spufs_info_open,
      .read = spufs_dma_info_read,
};

static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
                  char __user *buf, size_t len, loff_t *pos)
{
      struct spu_proxydma_info info;
      struct mfc_cq_sr *qp, *puqp;
      int ret = sizeof info;
      int i;

      if (len < ret)
            return -EINVAL;

      if (!access_ok(VERIFY_WRITE, buf, len))
            return -EFAULT;

      info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
      info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
      info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
      for (i = 0; i < 8; i++) {
            qp = &info.proxydma_info_command_data[i];
            puqp = &ctx->csa.priv2.puq[i];

            qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
            qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
            qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
            qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
      }

      return simple_read_from_buffer(buf, len, pos, &info,
                        sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
                           size_t len, loff_t *pos)
{
      struct spu_context *ctx = file->private_data;
      int ret;

      ret = spu_acquire_saved(ctx);
      if (ret)
            return ret;
      spin_lock(&ctx->csa.register_lock);
      ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
      spin_unlock(&ctx->csa.register_lock);
      spu_release_saved(ctx);

      return ret;
}

static const struct file_operations spufs_proxydma_info_fops = {
      .open = spufs_info_open,
      .read = spufs_proxydma_info_read,
};

static int spufs_show_tid(struct seq_file *s, void *private)
{
      struct spu_context *ctx = s->private;

      seq_printf(s, "%d\n", ctx->tid);
      return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
      return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
      .open       = spufs_tid_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .release    = single_release,
};

static const char *ctx_state_names[] = {
      "user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
            enum spu_utilization_state state)
{
      struct timespec ts;
      unsigned long long time = ctx->stats.times[state];

      /*
       * In general, utilization statistics are updated by the controlling
       * thread as the spu context moves through various well defined
       * state transitions, but if the context is lazily loaded its
       * utilization statistics are not updated as the controlling thread
       * is not tightly coupled with the execution of the spu context.  We
       * calculate and apply the time delta from the last recorded state
       * of the spu context.
       */
      if (ctx->spu && ctx->stats.util_state == state) {
            ktime_get_ts(&ts);
            time += timespec_to_ns(&ts) - ctx->stats.tstamp;
      }

      return time / NSEC_PER_MSEC;
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
      unsigned long long slb_flts = ctx->stats.slb_flt;

      if (ctx->state == SPU_STATE_RUNNABLE) {
            slb_flts += (ctx->spu->stats.slb_flt -
                       ctx->stats.slb_flt_base);
      }

      return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
      unsigned long long class2_intrs = ctx->stats.class2_intr;

      if (ctx->state == SPU_STATE_RUNNABLE) {
            class2_intrs += (ctx->spu->stats.class2_intr -
                         ctx->stats.class2_intr_base);
      }

      return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
      struct spu_context *ctx = s->private;
      int ret;

      ret = spu_acquire(ctx);
      if (ret)
            return ret;

      seq_printf(s, "%s %llu %llu %llu %llu "
                  "%llu %llu %llu %llu %llu %llu %llu %llu\n",
            ctx_state_names[ctx->stats.util_state],
            spufs_acct_time(ctx, SPU_UTIL_USER),
            spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
            spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
            spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
            ctx->stats.vol_ctx_switch,
            ctx->stats.invol_ctx_switch,
            spufs_slb_flts(ctx),
            ctx->stats.hash_flt,
            ctx->stats.min_flt,
            ctx->stats.maj_flt,
            spufs_class2_intrs(ctx),
            ctx->stats.libassist);
      spu_release(ctx);
      return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
      return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
      .open       = spufs_stat_open,
      .read       = seq_read,
      .llseek           = seq_lseek,
      .release    = single_release,
};

static inline int spufs_switch_log_used(struct spu_context *ctx)
{
      return (ctx->switch_log->head - ctx->switch_log->tail) %
            SWITCH_LOG_BUFSIZE;
}

static inline int spufs_switch_log_avail(struct spu_context *ctx)
{
      return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
}

static int spufs_switch_log_open(struct inode *inode, struct file *file)
{
      struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
      int rc;

      rc = spu_acquire(ctx);
      if (rc)
            return rc;

      if (ctx->switch_log) {
            rc = -EBUSY;
            goto out;
      }

      ctx->switch_log = kmalloc(sizeof(struct switch_log) +
            SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
            GFP_KERNEL);

      if (!ctx->switch_log) {
            rc = -ENOMEM;
            goto out;
      }

      ctx->switch_log->head = ctx->switch_log->tail = 0;
      init_waitqueue_head(&ctx->switch_log->wait);
      rc = 0;

out:
      spu_release(ctx);
      return rc;
}

static int spufs_switch_log_release(struct inode *inode, struct file *file)
{
      struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
      int rc;

      rc = spu_acquire(ctx);
      if (rc)
            return rc;

      kfree(ctx->switch_log);
      ctx->switch_log = NULL;
      spu_release(ctx);

      return 0;
}

static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
{
      struct switch_log_entry *p;

      p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;

      return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
                  (unsigned int) p->tstamp.tv_sec,
                  (unsigned int) p->tstamp.tv_nsec,
                  p->spu_id,
                  (unsigned int) p->type,
                  (unsigned int) p->val,
                  (unsigned long long) p->timebase);
}

static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
                       size_t len, loff_t *ppos)
{
      struct inode *inode = file->f_path.dentry->d_inode;
      struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
      int error = 0, cnt = 0;

      if (!buf || len < 0)
            return -EINVAL;

      error = spu_acquire(ctx);
      if (error)
            return error;

      while (cnt < len) {
            char tbuf[128];
            int width;

            if (spufs_switch_log_used(ctx) == 0) {
                  if (cnt > 0) {
                        /* If there's data ready to go, we can
                         * just return straight away */
                        break;

                  } else if (file->f_flags & O_NONBLOCK) {
                        error = -EAGAIN;
                        break;

                  } else {
                        /* spufs_wait will drop the mutex and
                         * re-acquire, but since we're in read(), the
                         * file cannot be _released (and so
                         * ctx->switch_log is stable).
                         */
                        error = spufs_wait(ctx->switch_log->wait,
                                    spufs_switch_log_used(ctx) > 0);

                        /* On error, spufs_wait returns without the
                         * state mutex held */
                        if (error)
                              return error;

                        /* We may have had entries read from underneath
                         * us while we dropped the mutex in spufs_wait,
                         * so re-check */
                        if (spufs_switch_log_used(ctx) == 0)
                              continue;
                  }
            }

            width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
            if (width < len)
                  ctx->switch_log->tail =
                        (ctx->switch_log->tail + 1) %
                         SWITCH_LOG_BUFSIZE;
            else
                  /* If the record is greater than space available return
                   * partial buffer (so far) */
                  break;

            error = copy_to_user(buf + cnt, tbuf, width);
            if (error)
                  break;
            cnt += width;
      }

      spu_release(ctx);

      return cnt == 0 ? error : cnt;
}

static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
{
      struct inode *inode = file->f_path.dentry->d_inode;
      struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
      unsigned int mask = 0;
      int rc;

      poll_wait(file, &ctx->switch_log->wait, wait);

      rc = spu_acquire(ctx);
      if (rc)
            return rc;

      if (spufs_switch_log_used(ctx) > 0)
            mask |= POLLIN;

      spu_release(ctx);

      return mask;
}

static const struct file_operations spufs_switch_log_fops = {
      .owner            = THIS_MODULE,
      .open       = spufs_switch_log_open,
      .read       = spufs_switch_log_read,
      .poll       = spufs_switch_log_poll,
      .release    = spufs_switch_log_release,
};

/**
 * Log a context switch event to a switch log reader.
 *
 * Must be called with ctx->state_mutex held.
 */
void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
            u32 type, u32 val)
{
      if (!ctx->switch_log)
            return;

      if (spufs_switch_log_avail(ctx) > 1) {
            struct switch_log_entry *p;

            p = ctx->switch_log->log + ctx->switch_log->head;
            ktime_get_ts(&p->tstamp);
            p->timebase = get_tb();
            p->spu_id = spu ? spu->number : -1;
            p->type = type;
            p->val = val;

            ctx->switch_log->head =
                  (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
      }

      wake_up(&ctx->switch_log->wait);
}

static int spufs_show_ctx(struct seq_file *s, void *private)
{
      struct spu_context *ctx = s->private;
      u64 mfc_control_RW;

      mutex_lock(&ctx->state_mutex);
      if (ctx->spu) {
            struct spu *spu = ctx->spu;
            struct spu_priv2 __iomem *priv2 = spu->priv2;

            spin_lock_irq(&spu->register_lock);
            mfc_control_RW = in_be64(&priv2->mfc_control_RW);
            spin_unlock_irq(&spu->register_lock);
      } else {
            struct spu_state *csa = &ctx->csa;

            mfc_control_RW = csa->priv2.mfc_control_RW;
      }

      seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
            " %c %lx %lx %lx %lx %x %x\n",
            ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
            ctx->flags,
            ctx->sched_flags,
            ctx->prio,
            ctx->time_slice,
            ctx->spu ? ctx->spu->number : -1,
            !list_empty(&ctx->rq) ? 'q' : ' ',
            ctx->csa.class_0_pending,
            ctx->csa.class_0_dar,
            ctx->csa.class_1_dsisr,
            mfc_control_RW,
            ctx->ops->runcntl_read(ctx),
            ctx->ops->status_read(ctx));

      mutex_unlock(&ctx->state_mutex);

      return 0;
}

static int spufs_ctx_open(struct inode *inode, struct file *file)
{
      return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_ctx_fops = {
      .open           = spufs_ctx_open,
      .read           = seq_read,
      .llseek         = seq_lseek,
      .release        = single_release,
};

struct spufs_tree_descr spufs_dir_contents[] = {
      { "capabilities", &spufs_caps_fops, 0444, },
      { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
      { "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
      { "mbox", &spufs_mbox_fops, 0444, },
      { "ibox", &spufs_ibox_fops, 0444, },
      { "wbox", &spufs_wbox_fops, 0222, },
      { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
      { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
      { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
      { "signal1", &spufs_signal1_fops, 0666, },
      { "signal2", &spufs_signal2_fops, 0666, },
      { "signal1_type", &spufs_signal1_type, 0666, },
      { "signal2_type", &spufs_signal2_type, 0666, },
      { "cntl", &spufs_cntl_fops,  0666, },
      { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
      { "lslr", &spufs_lslr_ops, 0444, },
      { "mfc", &spufs_mfc_fops, 0666, },
      { "mss", &spufs_mss_fops, 0666, },
      { "npc", &spufs_npc_ops, 0666, },
      { "srr0", &spufs_srr0_ops, 0666, },
      { "decr", &spufs_decr_ops, 0666, },
      { "decr_status", &spufs_decr_status_ops, 0666, },
      { "event_mask", &spufs_event_mask_ops, 0666, },
      { "event_status", &spufs_event_status_ops, 0444, },
      { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
      { "phys-id", &spufs_id_ops, 0666, },
      { "object-id", &spufs_object_id_ops, 0666, },
      { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
      { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
      { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
      { "dma_info", &spufs_dma_info_fops, 0444,
            sizeof(struct spu_dma_info), },
      { "proxydma_info", &spufs_proxydma_info_fops, 0444,
            sizeof(struct spu_proxydma_info)},
      { "tid", &spufs_tid_fops, 0444, },
      { "stat", &spufs_stat_fops, 0444, },
      { "switch_log", &spufs_switch_log_fops, 0444 },
      {},
};

struct spufs_tree_descr spufs_dir_nosched_contents[] = {
      { "capabilities", &spufs_caps_fops, 0444, },
      { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
      { "mbox", &spufs_mbox_fops, 0444, },
      { "ibox", &spufs_ibox_fops, 0444, },
      { "wbox", &spufs_wbox_fops, 0222, },
      { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
      { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
      { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
      { "signal1", &spufs_signal1_nosched_fops, 0222, },
      { "signal2", &spufs_signal2_nosched_fops, 0222, },
      { "signal1_type", &spufs_signal1_type, 0666, },
      { "signal2_type", &spufs_signal2_type, 0666, },
      { "mss", &spufs_mss_fops, 0666, },
      { "mfc", &spufs_mfc_fops, 0666, },
      { "cntl", &spufs_cntl_fops,  0666, },
      { "npc", &spufs_npc_ops, 0666, },
      { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
      { "phys-id", &spufs_id_ops, 0666, },
      { "object-id", &spufs_object_id_ops, 0666, },
      { "tid", &spufs_tid_fops, 0444, },
      { "stat", &spufs_stat_fops, 0444, },
      {},
};

struct spufs_tree_descr spufs_dir_debug_contents[] = {
      { ".ctx", &spufs_ctx_fops, 0444, },
      {},
};

struct spufs_coredump_reader spufs_coredump_read[] = {
      { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
      { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
      { "lslr", NULL, spufs_lslr_get, 19 },
      { "decr", NULL, spufs_decr_get, 19 },
      { "decr_status", NULL, spufs_decr_status_get, 19 },
      { "mem", __spufs_mem_read, NULL, LS_SIZE, },
      { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
      { "signal1_type", NULL, spufs_signal1_type_get, 19 },
      { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
      { "signal2_type", NULL, spufs_signal2_type_get, 19 },
      { "event_mask", NULL, spufs_event_mask_get, 19 },
      { "event_status", NULL, spufs_event_status_get, 19 },
      { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
      { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
      { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
      { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
      { "proxydma_info", __spufs_proxydma_info_read,
                     NULL, sizeof(struct spu_proxydma_info)},
      { "object-id", NULL, spufs_object_id_get, 19 },
      { "npc", NULL, spufs_npc_get, 19 },
      { NULL },
};

Generated by  Doxygen 1.6.0   Back to index