Logo Search packages:      
Sourcecode: linux version File versions  Download package

mca.c

/*
 * File:    mca.c
 * Purpose: Generic MCA handling layer
 *
 * Copyright (C) 2003 Hewlett-Packard Co
 *    David Mosberger-Tang <davidm@hpl.hp.com>
 *
 * Copyright (C) 2002 Dell Inc.
 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
 *
 * Copyright (C) 2002 Intel
 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
 *
 * Copyright (C) 2001 Intel
 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
 *
 * Copyright (C) 2000 Intel
 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
 *
 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
 *
 * Copyright (C) 2006 FUJITSU LIMITED
 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
 *
 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
 *          Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
 *          added min save state dump, added INIT handler.
 *
 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
 *          Added setup of CMCI and CPEI IRQs, logging of corrected platform
 *          errors, completed code for logging of corrected & uncorrected
 *          machine check errors, and updated for conformance with Nov. 2000
 *          revision of the SAL 3.0 spec.
 *
 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
 *          Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
 *          set SAL default return values, changed error record structure to
 *          linked list, added init call to sal_get_state_info_size().
 *
 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
 *          GUID cleanups.
 *
 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
 *          Added INIT backtrace support.
 *
 * 2003-12-08 Keith Owens <kaos@sgi.com>
 *          smp_call_function() must not be called from interrupt context
 *          (can deadlock on tasklist_lock).
 *          Use keventd to call smp_call_function().
 *
 * 2004-02-01 Keith Owens <kaos@sgi.com>
 *          Avoid deadlock when using printk() for MCA and INIT records.
 *          Delete all record printing code, moved to salinfo_decode in user
 *          space.  Mark variables and functions static where possible.
 *          Delete dead variables and functions.  Reorder to remove the need
 *          for forward declarations and to consolidate related code.
 *
 * 2005-08-12 Keith Owens <kaos@sgi.com>
 *          Convert MCA/INIT handlers to use per event stacks and SAL/OS
 *          state.
 *
 * 2005-10-07 Keith Owens <kaos@sgi.com>
 *          Add notify_die() hooks.
 *
 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
 *          Add printing support for MCA/INIT.
 *
 * 2007-04-27 Russ Anderson <rja@sgi.com>
 *          Support multiple cpus going through OS_MCA in the same event.
 */
#include <linux/jiffies.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/bootmem.h>
#include <linux/acpi.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/workqueue.h>
#include <linux/cpumask.h>
#include <linux/kdebug.h>
#include <linux/cpu.h>

#include <asm/delay.h>
#include <asm/machvec.h>
#include <asm/meminit.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/sal.h>
#include <asm/mca.h>
#include <asm/kexec.h>

#include <asm/irq.h>
#include <asm/hw_irq.h>
#include <asm/tlb.h>

#include "mca_drv.h"
#include "entry.h"

#if defined(IA64_MCA_DEBUG_INFO)
# define IA64_MCA_DEBUG(fmt...)     printk(fmt)
#else
# define IA64_MCA_DEBUG(fmt...)
#endif

#define NOTIFY_INIT(event, regs, arg, spin)                       \
do {                                                  \
      if ((notify_die((event), "INIT", (regs), (arg), 0, 0)       \
                  == NOTIFY_STOP) && ((spin) == 1))         \
            ia64_mca_spin(__func__);                        \
} while (0)

#define NOTIFY_MCA(event, regs, arg, spin)                        \
do {                                                  \
      if ((notify_die((event), "MCA", (regs), (arg), 0, 0)        \
                  == NOTIFY_STOP) && ((spin) == 1))         \
            ia64_mca_spin(__func__);                        \
} while (0)

/* Used by mca_asm.S */
DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
DEFINE_PER_CPU(u64, ia64_mca_pal_pte);        /* PTE to map PAL code */
DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */

unsigned long __per_cpu_mca[NR_CPUS];

/* In mca_asm.S */
extern void             ia64_os_init_dispatch_monarch (void);
extern void             ia64_os_init_dispatch_slave (void);

static int monarch_cpu = -1;

static ia64_mc_info_t         ia64_mc_info;

#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
#define CPE_HISTORY_LENGTH    5
#define CMC_HISTORY_LENGTH    5

#ifdef CONFIG_ACPI
static struct timer_list cpe_poll_timer;
#endif
static struct timer_list cmc_poll_timer;
/*
 * This variable tells whether we are currently in polling mode.
 * Start with this in the wrong state so we won't play w/ timers
 * before the system is ready.
 */
static int cmc_polling_enabled = 1;

/*
 * Clearing this variable prevents CPE polling from getting activated
 * in mca_late_init.  Use it if your system doesn't provide a CPEI,
 * but encounters problems retrieving CPE logs.  This should only be
 * necessary for debugging.
 */
static int cpe_poll_enabled = 1;

extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);

static int mca_init __initdata;

/*
 * limited & delayed printing support for MCA/INIT handler
 */

#define mprintk(fmt...) ia64_mca_printk(fmt)

#define MLOGBUF_SIZE (512+256*NR_CPUS)
#define MLOGBUF_MSGMAX 256
static char mlogbuf[MLOGBUF_SIZE];
static DEFINE_SPINLOCK(mlogbuf_wlock);    /* mca context only */
static DEFINE_SPINLOCK(mlogbuf_rlock);    /* normal context only */
static unsigned long mlogbuf_start;
static unsigned long mlogbuf_end;
static unsigned int mlogbuf_finished = 0;
static unsigned long mlogbuf_timestamp = 0;

static int loglevel_save = -1;
#define BREAK_LOGLEVEL(__console_loglevel)            \
      oops_in_progress = 1;                     \
      if (loglevel_save < 0)                    \
            loglevel_save = __console_loglevel; \
      __console_loglevel = 15;

#define RESTORE_LOGLEVEL(__console_loglevel)          \
      if (loglevel_save >= 0) {                 \
            __console_loglevel = loglevel_save; \
            loglevel_save = -1;                 \
      }                                   \
      mlogbuf_finished = 0;                     \
      oops_in_progress = 0;

/*
 * Push messages into buffer, print them later if not urgent.
 */
void ia64_mca_printk(const char *fmt, ...)
{
      va_list args;
      int printed_len;
      char temp_buf[MLOGBUF_MSGMAX];
      char *p;

      va_start(args, fmt);
      printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
      va_end(args);

      /* Copy the output into mlogbuf */
      if (oops_in_progress) {
            /* mlogbuf was abandoned, use printk directly instead. */
            printk(temp_buf);
      } else {
            spin_lock(&mlogbuf_wlock);
            for (p = temp_buf; *p; p++) {
                  unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
                  if (next != mlogbuf_start) {
                        mlogbuf[mlogbuf_end] = *p;
                        mlogbuf_end = next;
                  } else {
                        /* buffer full */
                        break;
                  }
            }
            mlogbuf[mlogbuf_end] = '\0';
            spin_unlock(&mlogbuf_wlock);
      }
}
EXPORT_SYMBOL(ia64_mca_printk);

/*
 * Print buffered messages.
 *  NOTE: call this after returning normal context. (ex. from salinfod)
 */
void ia64_mlogbuf_dump(void)
{
      char temp_buf[MLOGBUF_MSGMAX];
      char *p;
      unsigned long index;
      unsigned long flags;
      unsigned int printed_len;

      /* Get output from mlogbuf */
      while (mlogbuf_start != mlogbuf_end) {
            temp_buf[0] = '\0';
            p = temp_buf;
            printed_len = 0;

            spin_lock_irqsave(&mlogbuf_rlock, flags);

            index = mlogbuf_start;
            while (index != mlogbuf_end) {
                  *p = mlogbuf[index];
                  index = (index + 1) % MLOGBUF_SIZE;
                  if (!*p)
                        break;
                  p++;
                  if (++printed_len >= MLOGBUF_MSGMAX - 1)
                        break;
            }
            *p = '\0';
            if (temp_buf[0])
                  printk(temp_buf);
            mlogbuf_start = index;

            mlogbuf_timestamp = 0;
            spin_unlock_irqrestore(&mlogbuf_rlock, flags);
      }
}
EXPORT_SYMBOL(ia64_mlogbuf_dump);

/*
 * Call this if system is going to down or if immediate flushing messages to
 * console is required. (ex. recovery was failed, crash dump is going to be
 * invoked, long-wait rendezvous etc.)
 *  NOTE: this should be called from monarch.
 */
static void ia64_mlogbuf_finish(int wait)
{
      BREAK_LOGLEVEL(console_loglevel);

      spin_lock_init(&mlogbuf_rlock);
      ia64_mlogbuf_dump();
      printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
            "MCA/INIT might be dodgy or fail.\n");

      if (!wait)
            return;

      /* wait for console */
      printk("Delaying for 5 seconds...\n");
      udelay(5*1000000);

      mlogbuf_finished = 1;
}

/*
 * Print buffered messages from INIT context.
 */
static void ia64_mlogbuf_dump_from_init(void)
{
      if (mlogbuf_finished)
            return;

      if (mlogbuf_timestamp &&
                  time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
            printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
                  " and the system seems to be messed up.\n");
            ia64_mlogbuf_finish(0);
            return;
      }

      if (!spin_trylock(&mlogbuf_rlock)) {
            printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
                  "Generated messages other than stack dump will be "
                  "buffered to mlogbuf and will be printed later.\n");
            printk(KERN_ERR "INIT: If messages would not printed after "
                  "this INIT, wait 30sec and assert INIT again.\n");
            if (!mlogbuf_timestamp)
                  mlogbuf_timestamp = jiffies;
            return;
      }
      spin_unlock(&mlogbuf_rlock);
      ia64_mlogbuf_dump();
}

static void inline
ia64_mca_spin(const char *func)
{
      if (monarch_cpu == smp_processor_id())
            ia64_mlogbuf_finish(0);
      mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
      while (1)
            cpu_relax();
}
/*
 * IA64_MCA log support
 */
#define IA64_MAX_LOGS         2     /* Double-buffering for nested MCAs */
#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */

00350 typedef struct ia64_state_log_s
{
      spinlock_t  isl_lock;
      int         isl_index;
      unsigned long     isl_count;
      ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
} ia64_state_log_t;

static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];

#define IA64_LOG_ALLOCATE(it, size) \
      {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
            (ia64_err_rec_t *)alloc_bootmem(size); \
      ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
            (ia64_err_rec_t *)alloc_bootmem(size);}
#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
#define IA64_LOG_INDEX_INC(it) \
    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
    ia64_state_log[it].isl_count++;}
#define IA64_LOG_INDEX_DEC(it) \
    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count

/*
 * ia64_log_init
 *    Reset the OS ia64 log buffer
 * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 * Outputs  :     None
 */
static void __init
ia64_log_init(int sal_info_type)
{
      u64   max_size = 0;

      IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
      IA64_LOG_LOCK_INIT(sal_info_type);

      // SAL will tell us the maximum size of any error record of this type
      max_size = ia64_sal_get_state_info_size(sal_info_type);
      if (!max_size)
            /* alloc_bootmem() doesn't like zero-sized allocations! */
            return;

      // set up OS data structures to hold error info
      IA64_LOG_ALLOCATE(sal_info_type, max_size);
      memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
      memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
}

/*
 * ia64_log_get
 *
 *    Get the current MCA log from SAL and copy it into the OS log buffer.
 *
 *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 *              irq_safe    whether you can use printk at this point
 *  Outputs :   size        (total record length)
 *              *buffer     (ptr to error record)
 *
 */
static u64
ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
{
      sal_log_record_header_t     *log_buffer;
      u64                         total_len = 0;
      unsigned long               s;

      IA64_LOG_LOCK(sal_info_type);

      /* Get the process state information */
      log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);

      total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);

      if (total_len) {
            IA64_LOG_INDEX_INC(sal_info_type);
            IA64_LOG_UNLOCK(sal_info_type);
            if (irq_safe) {
                  IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
                               __func__, sal_info_type, total_len);
            }
            *buffer = (u8 *) log_buffer;
            return total_len;
      } else {
            IA64_LOG_UNLOCK(sal_info_type);
            return 0;
      }
}

/*
 *  ia64_mca_log_sal_error_record
 *
 *  This function retrieves a specified error record type from SAL
 *  and wakes up any processes waiting for error records.
 *
 *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
 *              FIXME: remove MCA and irq_safe.
 */
static void
ia64_mca_log_sal_error_record(int sal_info_type)
{
      u8 *buffer;
      sal_log_record_header_t *rh;
      u64 size;
      int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
#ifdef IA64_MCA_DEBUG_INFO
      static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
#endif

      size = ia64_log_get(sal_info_type, &buffer, irq_safe);
      if (!size)
            return;

      salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);

      if (irq_safe)
            IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
                  smp_processor_id(),
                  sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");

      /* Clear logs from corrected errors in case there's no user-level logger */
      rh = (sal_log_record_header_t *)buffer;
      if (rh->severity == sal_log_severity_corrected)
            ia64_sal_clear_state_info(sal_info_type);
}

/*
 * search_mca_table
 *  See if the MCA surfaced in an instruction range
 *  that has been tagged as recoverable.
 *
 *  Inputs
 *    first First address range to check
 *    last  Last address range to check
 *    ip    Instruction pointer, address we are looking for
 *
 * Return value:
 *      1 on Success (in the table)/ 0 on Failure (not in the  table)
 */
int
search_mca_table (const struct mca_table_entry *first,
                const struct mca_table_entry *last,
                unsigned long ip)
{
        const struct mca_table_entry *curr;
        u64 curr_start, curr_end;

        curr = first;
        while (curr <= last) {
                curr_start = (u64) &curr->start_addr + curr->start_addr;
                curr_end = (u64) &curr->end_addr + curr->end_addr;

                if ((ip >= curr_start) && (ip <= curr_end)) {
                        return 1;
                }
                curr++;
        }
        return 0;
}

/* Given an address, look for it in the mca tables. */
int mca_recover_range(unsigned long addr)
{
      extern struct mca_table_entry __start___mca_table[];
      extern struct mca_table_entry __stop___mca_table[];

      return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
}
EXPORT_SYMBOL_GPL(mca_recover_range);

#ifdef CONFIG_ACPI

int cpe_vector = -1;
int ia64_cpe_irq = -1;

static irqreturn_t
ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
{
      static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
      static int        index;
      static DEFINE_SPINLOCK(cpe_history_lock);

      IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
                   __func__, cpe_irq, smp_processor_id());

      /* SAL spec states this should run w/ interrupts enabled */
      local_irq_enable();

      spin_lock(&cpe_history_lock);
      if (!cpe_poll_enabled && cpe_vector >= 0) {

            int i, count = 1; /* we know 1 happened now */
            unsigned long now = jiffies;

            for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
                  if (now - cpe_history[i] <= HZ)
                        count++;
            }

            IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
            if (count >= CPE_HISTORY_LENGTH) {

                  cpe_poll_enabled = 1;
                  spin_unlock(&cpe_history_lock);
                  disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));

                  /*
                   * Corrected errors will still be corrected, but
                   * make sure there's a log somewhere that indicates
                   * something is generating more than we can handle.
                   */
                  printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");

                  mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);

                  /* lock already released, get out now */
                  goto out;
            } else {
                  cpe_history[index++] = now;
                  if (index == CPE_HISTORY_LENGTH)
                        index = 0;
            }
      }
      spin_unlock(&cpe_history_lock);
out:
      /* Get the CPE error record and log it */
      ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);

      return IRQ_HANDLED;
}

#endif /* CONFIG_ACPI */

#ifdef CONFIG_ACPI
/*
 * ia64_mca_register_cpev
 *
 *  Register the corrected platform error vector with SAL.
 *
 *  Inputs
 *      cpev        Corrected Platform Error Vector number
 *
 *  Outputs
 *      None
 */
void
ia64_mca_register_cpev (int cpev)
{
      /* Register the CPE interrupt vector with SAL */
      struct ia64_sal_retval isrv;

      isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
      if (isrv.status) {
            printk(KERN_ERR "Failed to register Corrected Platform "
                   "Error interrupt vector with SAL (status %ld)\n", isrv.status);
            return;
      }

      IA64_MCA_DEBUG("%s: corrected platform error "
                   "vector %#x registered\n", __func__, cpev);
}
#endif /* CONFIG_ACPI */

/*
 * ia64_mca_cmc_vector_setup
 *
 *  Setup the corrected machine check vector register in the processor.
 *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
 *  This function is invoked on a per-processor basis.
 *
 * Inputs
 *      None
 *
 * Outputs
 *    None
 */
void __cpuinit
ia64_mca_cmc_vector_setup (void)
{
      cmcv_reg_t  cmcv;

      cmcv.cmcv_regval  = 0;
      cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
      cmcv.cmcv_vector  = IA64_CMC_VECTOR;
      ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);

      IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
                   __func__, smp_processor_id(), IA64_CMC_VECTOR);

      IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
                   __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
}

/*
 * ia64_mca_cmc_vector_disable
 *
 *  Mask the corrected machine check vector register in the processor.
 *  This function is invoked on a per-processor basis.
 *
 * Inputs
 *      dummy(unused)
 *
 * Outputs
 *    None
 */
static void
ia64_mca_cmc_vector_disable (void *dummy)
{
      cmcv_reg_t  cmcv;

      cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);

      cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
      ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);

      IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
                   __func__, smp_processor_id(), cmcv.cmcv_vector);
}

/*
 * ia64_mca_cmc_vector_enable
 *
 *  Unmask the corrected machine check vector register in the processor.
 *  This function is invoked on a per-processor basis.
 *
 * Inputs
 *      dummy(unused)
 *
 * Outputs
 *    None
 */
static void
ia64_mca_cmc_vector_enable (void *dummy)
{
      cmcv_reg_t  cmcv;

      cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);

      cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
      ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);

      IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
                   __func__, smp_processor_id(), cmcv.cmcv_vector);
}

/*
 * ia64_mca_cmc_vector_disable_keventd
 *
 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 * disable the cmc interrupt vector.
 */
static void
ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
{
      on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
}

/*
 * ia64_mca_cmc_vector_enable_keventd
 *
 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 * enable the cmc interrupt vector.
 */
static void
ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
{
      on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
}

/*
 * ia64_mca_wakeup
 *
 *    Send an inter-cpu interrupt to wake-up a particular cpu.
 *
 *  Inputs  :   cpuid
 *  Outputs :   None
 */
static void
ia64_mca_wakeup(int cpu)
{
      platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
}

/*
 * ia64_mca_wakeup_all
 *
 *    Wakeup all the slave cpus which have rendez'ed previously.
 *
 *  Inputs  :   None
 *  Outputs :   None
 */
static void
ia64_mca_wakeup_all(void)
{
      int cpu;

      /* Clear the Rendez checkin flag for all cpus */
      for_each_online_cpu(cpu) {
            if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
                  ia64_mca_wakeup(cpu);
      }

}

/*
 * ia64_mca_rendez_interrupt_handler
 *
 *    This is handler used to put slave processors into spinloop
 *    while the monarch processor does the mca handling and later
 *    wake each slave up once the monarch is done.  The state
 *    IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
 *    in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
 *    the cpu has come out of OS rendezvous.
 *
 *  Inputs  :   None
 *  Outputs :   None
 */
static irqreturn_t
ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
{
      unsigned long flags;
      int cpu = smp_processor_id();
      struct ia64_mca_notify_die nd =
            { .sos = NULL, .monarch_cpu = &monarch_cpu };

      /* Mask all interrupts */
      local_irq_save(flags);

      NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);

      ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
      /* Register with the SAL monarch that the slave has
       * reached SAL
       */
      ia64_sal_mc_rendez();

      NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);

      /* Wait for the monarch cpu to exit. */
      while (monarch_cpu != -1)
             cpu_relax();     /* spin until monarch leaves */

      NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);

      ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
      /* Enable all interrupts */
      local_irq_restore(flags);
      return IRQ_HANDLED;
}

/*
 * ia64_mca_wakeup_int_handler
 *
 *    The interrupt handler for processing the inter-cpu interrupt to the
 *    slave cpu which was spinning in the rendez loop.
 *    Since this spinning is done by turning off the interrupts and
 *    polling on the wakeup-interrupt bit in the IRR, there is
 *    nothing useful to be done in the handler.
 *
 *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
 *    arg         (Interrupt handler specific argument)
 *  Outputs :   None
 *
 */
static irqreturn_t
ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
{
      return IRQ_HANDLED;
}

/* Function pointer for extra MCA recovery */
int (*ia64_mca_ucmc_extension)
      (void*,struct ia64_sal_os_state*)
      = NULL;

int
ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
{
      if (ia64_mca_ucmc_extension)
            return 1;

      ia64_mca_ucmc_extension = fn;
      return 0;
}

void
ia64_unreg_MCA_extension(void)
{
      if (ia64_mca_ucmc_extension)
            ia64_mca_ucmc_extension = NULL;
}

EXPORT_SYMBOL(ia64_reg_MCA_extension);
EXPORT_SYMBOL(ia64_unreg_MCA_extension);


static inline void
copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
{
      u64 fslot, tslot, nat;
      *tr = *fr;
      fslot = ((unsigned long)fr >> 3) & 63;
      tslot = ((unsigned long)tr >> 3) & 63;
      *tnat &= ~(1UL << tslot);
      nat = (fnat >> fslot) & 1;
      *tnat |= (nat << tslot);
}

/* Change the comm field on the MCA/INT task to include the pid that
 * was interrupted, it makes for easier debugging.  If that pid was 0
 * (swapper or nested MCA/INIT) then use the start of the previous comm
 * field suffixed with its cpu.
 */

static void
ia64_mca_modify_comm(const struct task_struct *previous_current)
{
      char *p, comm[sizeof(current->comm)];
      if (previous_current->pid)
            snprintf(comm, sizeof(comm), "%s %d",
                  current->comm, previous_current->pid);
      else {
            int l;
            if ((p = strchr(previous_current->comm, ' ')))
                  l = p - previous_current->comm;
            else
                  l = strlen(previous_current->comm);
            snprintf(comm, sizeof(comm), "%s %*s %d",
                  current->comm, l, previous_current->comm,
                  task_thread_info(previous_current)->cpu);
      }
      memcpy(current->comm, comm, sizeof(current->comm));
}

static void
finish_pt_regs(struct pt_regs *regs, const pal_min_state_area_t *ms,
            unsigned long *nat)
{
      const u64 *bank;

      /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
       * pmsa_{xip,xpsr,xfs}
       */
      if (ia64_psr(regs)->ic) {
            regs->cr_iip = ms->pmsa_iip;
            regs->cr_ipsr = ms->pmsa_ipsr;
            regs->cr_ifs = ms->pmsa_ifs;
      } else {
            regs->cr_iip = ms->pmsa_xip;
            regs->cr_ipsr = ms->pmsa_xpsr;
            regs->cr_ifs = ms->pmsa_xfs;
      }
      regs->pr = ms->pmsa_pr;
      regs->b0 = ms->pmsa_br0;
      regs->ar_rsc = ms->pmsa_rsc;
      copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
      copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
      copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
      copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
      copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
      copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
      copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
      copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
      copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
      copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
      copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
      if (ia64_psr(regs)->bn)
            bank = ms->pmsa_bank1_gr;
      else
            bank = ms->pmsa_bank0_gr;
      copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
      copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
      copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
      copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
      copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
      copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
      copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
      copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
      copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
      copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
      copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
      copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
      copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
      copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
      copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
      copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
}

/* On entry to this routine, we are running on the per cpu stack, see
 * mca_asm.h.  The original stack has not been touched by this event.  Some of
 * the original stack's registers will be in the RBS on this stack.  This stack
 * also contains a partial pt_regs and switch_stack, the rest of the data is in
 * PAL minstate.
 *
 * The first thing to do is modify the original stack to look like a blocked
 * task so we can run backtrace on the original task.  Also mark the per cpu
 * stack as current to ensure that we use the correct task state, it also means
 * that we can do backtrace on the MCA/INIT handler code itself.
 */

static struct task_struct *
ia64_mca_modify_original_stack(struct pt_regs *regs,
            const struct switch_stack *sw,
            struct ia64_sal_os_state *sos,
            const char *type)
{
      char *p;
      ia64_va va;
      extern char ia64_leave_kernel[];    /* Need asm address, not function descriptor */
      const pal_min_state_area_t *ms = sos->pal_min_state;
      struct task_struct *previous_current;
      struct pt_regs *old_regs;
      struct switch_stack *old_sw;
      unsigned size = sizeof(struct pt_regs) +
                  sizeof(struct switch_stack) + 16;
      unsigned long *old_bspstore, *old_bsp;
      unsigned long *new_bspstore, *new_bsp;
      unsigned long old_unat, old_rnat, new_rnat, nat;
      u64 slots, loadrs = regs->loadrs;
      u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
      u64 ar_bspstore = regs->ar_bspstore;
      u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
      const char *msg;
      int cpu = smp_processor_id();

      previous_current = curr_task(cpu);
      set_curr_task(cpu, current);
      if ((p = strchr(current->comm, ' ')))
            *p = '\0';

      /* Best effort attempt to cope with MCA/INIT delivered while in
       * physical mode.
       */
      regs->cr_ipsr = ms->pmsa_ipsr;
      if (ia64_psr(regs)->dt == 0) {
            va.l = r12;
            if (va.f.reg == 0) {
                  va.f.reg = 7;
                  r12 = va.l;
            }
            va.l = r13;
            if (va.f.reg == 0) {
                  va.f.reg = 7;
                  r13 = va.l;
            }
      }
      if (ia64_psr(regs)->rt == 0) {
            va.l = ar_bspstore;
            if (va.f.reg == 0) {
                  va.f.reg = 7;
                  ar_bspstore = va.l;
            }
            va.l = ar_bsp;
            if (va.f.reg == 0) {
                  va.f.reg = 7;
                  ar_bsp = va.l;
            }
      }

      /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
       * have been copied to the old stack, the old stack may fail the
       * validation tests below.  So ia64_old_stack() must restore the dirty
       * registers from the new stack.  The old and new bspstore probably
       * have different alignments, so loadrs calculated on the old bsp
       * cannot be used to restore from the new bsp.  Calculate a suitable
       * loadrs for the new stack and save it in the new pt_regs, where
       * ia64_old_stack() can get it.
       */
      old_bspstore = (unsigned long *)ar_bspstore;
      old_bsp = (unsigned long *)ar_bsp;
      slots = ia64_rse_num_regs(old_bspstore, old_bsp);
      new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
      new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
      regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;

      /* Verify the previous stack state before we change it */
      if (user_mode(regs)) {
            msg = "occurred in user space";
            /* previous_current is guaranteed to be valid when the task was
             * in user space, so ...
             */
            ia64_mca_modify_comm(previous_current);
            goto no_mod;
      }

      if (r13 != sos->prev_IA64_KR_CURRENT) {
            msg = "inconsistent previous current and r13";
            goto no_mod;
      }

      if (!mca_recover_range(ms->pmsa_iip)) {
            if ((r12 - r13) >= KERNEL_STACK_SIZE) {
                  msg = "inconsistent r12 and r13";
                  goto no_mod;
            }
            if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
                  msg = "inconsistent ar.bspstore and r13";
                  goto no_mod;
            }
            va.p = old_bspstore;
            if (va.f.reg < 5) {
                  msg = "old_bspstore is in the wrong region";
                  goto no_mod;
            }
            if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
                  msg = "inconsistent ar.bsp and r13";
                  goto no_mod;
            }
            size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
            if (ar_bspstore + size > r12) {
                  msg = "no room for blocked state";
                  goto no_mod;
            }
      }

      ia64_mca_modify_comm(previous_current);

      /* Make the original task look blocked.  First stack a struct pt_regs,
       * describing the state at the time of interrupt.  mca_asm.S built a
       * partial pt_regs, copy it and fill in the blanks using minstate.
       */
      p = (char *)r12 - sizeof(*regs);
      old_regs = (struct pt_regs *)p;
      memcpy(old_regs, regs, sizeof(*regs));
      old_regs->loadrs = loadrs;
      old_unat = old_regs->ar_unat;
      finish_pt_regs(old_regs, ms, &old_unat);

      /* Next stack a struct switch_stack.  mca_asm.S built a partial
       * switch_stack, copy it and fill in the blanks using pt_regs and
       * minstate.
       *
       * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
       * ar.pfs is set to 0.
       *
       * unwind.c::unw_unwind() does special processing for interrupt frames.
       * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
       * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
       * that this is documented, of course.  Set PRED_NON_SYSCALL in the
       * switch_stack on the original stack so it will unwind correctly when
       * unwind.c reads pt_regs.
       *
       * thread.ksp is updated to point to the synthesized switch_stack.
       */
      p -= sizeof(struct switch_stack);
      old_sw = (struct switch_stack *)p;
      memcpy(old_sw, sw, sizeof(*sw));
      old_sw->caller_unat = old_unat;
      old_sw->ar_fpsr = old_regs->ar_fpsr;
      copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
      copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
      copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
      copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
      old_sw->b0 = (u64)ia64_leave_kernel;
      old_sw->b1 = ms->pmsa_br1;
      old_sw->ar_pfs = 0;
      old_sw->ar_unat = old_unat;
      old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
      previous_current->thread.ksp = (u64)p - 16;

      /* Finally copy the original stack's registers back to its RBS.
       * Registers from ar.bspstore through ar.bsp at the time of the event
       * are in the current RBS, copy them back to the original stack.  The
       * copy must be done register by register because the original bspstore
       * and the current one have different alignments, so the saved RNAT
       * data occurs at different places.
       *
       * mca_asm does cover, so the old_bsp already includes all registers at
       * the time of MCA/INIT.  It also does flushrs, so all registers before
       * this function have been written to backing store on the MCA/INIT
       * stack.
       */
      new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
      old_rnat = regs->ar_rnat;
      while (slots--) {
            if (ia64_rse_is_rnat_slot(new_bspstore)) {
                  new_rnat = ia64_get_rnat(new_bspstore++);
            }
            if (ia64_rse_is_rnat_slot(old_bspstore)) {
                  *old_bspstore++ = old_rnat;
                  old_rnat = 0;
            }
            nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
            old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
            old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
            *old_bspstore++ = *new_bspstore++;
      }
      old_sw->ar_bspstore = (unsigned long)old_bspstore;
      old_sw->ar_rnat = old_rnat;

      sos->prev_task = previous_current;
      return previous_current;

no_mod:
      mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
                  smp_processor_id(), type, msg);
      old_unat = regs->ar_unat;
      finish_pt_regs(regs, ms, &old_unat);
      return previous_current;
}

/* The monarch/slave interaction is based on monarch_cpu and requires that all
 * slaves have entered rendezvous before the monarch leaves.  If any cpu has
 * not entered rendezvous yet then wait a bit.  The assumption is that any
 * slave that has not rendezvoused after a reasonable time is never going to do
 * so.  In this context, slave includes cpus that respond to the MCA rendezvous
 * interrupt, as well as cpus that receive the INIT slave event.
 */

static void
ia64_wait_for_slaves(int monarch, const char *type)
{
      int c, i , wait;

      /*
       * wait 5 seconds total for slaves (arbitrary)
       */
      for (i = 0; i < 5000; i++) {
            wait = 0;
            for_each_online_cpu(c) {
                  if (c == monarch)
                        continue;
                  if (ia64_mc_info.imi_rendez_checkin[c]
                              == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
                        udelay(1000);           /* short wait */
                        wait = 1;
                        break;
                  }
            }
            if (!wait)
                  goto all_in;
      }

      /*
       * Maybe slave(s) dead. Print buffered messages immediately.
       */
      ia64_mlogbuf_finish(0);
      mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
      for_each_online_cpu(c) {
            if (c == monarch)
                  continue;
            if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
                  mprintk(" %d", c);
      }
      mprintk("\n");
      return;

all_in:
      mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
      return;
}

/*  mca_insert_tr
 *
 *  Switch rid when TR reload and needed!
 *  iord: 1: itr, 2: itr;
 *
*/
static void mca_insert_tr(u64 iord)
{

      int i;
      u64 old_rr;
      struct ia64_tr_entry *p;
      unsigned long psr;
      int cpu = smp_processor_id();

      psr = ia64_clear_ic();
      for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
            p = &__per_cpu_idtrs[cpu][iord-1][i];
            if (p->pte & 0x1) {
                  old_rr = ia64_get_rr(p->ifa);
                  if (old_rr != p->rr) {
                        ia64_set_rr(p->ifa, p->rr);
                        ia64_srlz_d();
                  }
                  ia64_ptr(iord, p->ifa, p->itir >> 2);
                  ia64_srlz_i();
                  if (iord & 0x1) {
                        ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
                        ia64_srlz_i();
                  }
                  if (iord & 0x2) {
                        ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
                        ia64_srlz_i();
                  }
                  if (old_rr != p->rr) {
                        ia64_set_rr(p->ifa, old_rr);
                        ia64_srlz_d();
                  }
            }
      }
      ia64_set_psr(psr);
}

/*
 * ia64_mca_handler
 *
 *    This is uncorrectable machine check handler called from OS_MCA
 *    dispatch code which is in turn called from SAL_CHECK().
 *    This is the place where the core of OS MCA handling is done.
 *    Right now the logs are extracted and displayed in a well-defined
 *    format. This handler code is supposed to be run only on the
 *    monarch processor. Once the monarch is done with MCA handling
 *    further MCA logging is enabled by clearing logs.
 *    Monarch also has the duty of sending wakeup-IPIs to pull the
 *    slave processors out of rendezvous spinloop.
 *
 *    If multiple processors call into OS_MCA, the first will become
 *    the monarch.  Subsequent cpus will be recorded in the mca_cpu
 *    bitmask.  After the first monarch has processed its MCA, it
 *    will wake up the next cpu in the mca_cpu bitmask and then go
 *    into the rendezvous loop.  When all processors have serviced
 *    their MCA, the last monarch frees up the rest of the processors.
 */
void
ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
             struct ia64_sal_os_state *sos)
{
      int recover, cpu = smp_processor_id();
      struct task_struct *previous_current;
      struct ia64_mca_notify_die nd =
            { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
      static atomic_t mca_count;
      static cpumask_t mca_cpu;

      if (atomic_add_return(1, &mca_count) == 1) {
            monarch_cpu = cpu;
            sos->monarch = 1;
      } else {
            cpu_set(cpu, mca_cpu);
            sos->monarch = 0;
      }
      mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
            "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);

      previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");

      NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);

      ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
      if (sos->monarch) {
            ia64_wait_for_slaves(cpu, "MCA");

            /* Wakeup all the processors which are spinning in the
             * rendezvous loop.  They will leave SAL, then spin in the OS
             * with interrupts disabled until this monarch cpu leaves the
             * MCA handler.  That gets control back to the OS so we can
             * backtrace the other cpus, backtrace when spinning in SAL
             * does not work.
             */
            ia64_mca_wakeup_all();
      } else {
            while (cpu_isset(cpu, mca_cpu))
                  cpu_relax();      /* spin until monarch wakes us */
      }

      NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);

      /* Get the MCA error record and log it */
      ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);

      /* MCA error recovery */
      recover = (ia64_mca_ucmc_extension
            && ia64_mca_ucmc_extension(
                  IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
                  sos));

      if (recover) {
            sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
            rh->severity = sal_log_severity_corrected;
            ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
            sos->os_status = IA64_MCA_CORRECTED;
      } else {
            /* Dump buffered message to console */
            ia64_mlogbuf_finish(1);
      }

      if (__get_cpu_var(ia64_mca_tr_reload)) {
            mca_insert_tr(0x1); /*Reload dynamic itrs*/
            mca_insert_tr(0x2); /*Reload dynamic itrs*/
      }

      NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);

      if (atomic_dec_return(&mca_count) > 0) {
            int i;

            /* wake up the next monarch cpu,
             * and put this cpu in the rendez loop.
             */
            for_each_online_cpu(i) {
                  if (cpu_isset(i, mca_cpu)) {
                        monarch_cpu = i;
                        cpu_clear(i, mca_cpu);  /* wake next cpu */
                        while (monarch_cpu != -1)
                              cpu_relax();      /* spin until last cpu leaves */
                        set_curr_task(cpu, previous_current);
                        ia64_mc_info.imi_rendez_checkin[cpu]
                                    = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
                        return;
                  }
            }
      }
      set_curr_task(cpu, previous_current);
      ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
      monarch_cpu = -1; /* This frees the slaves and previous monarchs */
}

static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);

/*
 * ia64_mca_cmc_int_handler
 *
 *  This is corrected machine check interrupt handler.
 *    Right now the logs are extracted and displayed in a well-defined
 *    format.
 *
 * Inputs
 *      interrupt number
 *      client data arg ptr
 *
 * Outputs
 *    None
 */
static irqreturn_t
ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
{
      static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
      static int        index;
      static DEFINE_SPINLOCK(cmc_history_lock);

      IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
                   __func__, cmc_irq, smp_processor_id());

      /* SAL spec states this should run w/ interrupts enabled */
      local_irq_enable();

      spin_lock(&cmc_history_lock);
      if (!cmc_polling_enabled) {
            int i, count = 1; /* we know 1 happened now */
            unsigned long now = jiffies;

            for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
                  if (now - cmc_history[i] <= HZ)
                        count++;
            }

            IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
            if (count >= CMC_HISTORY_LENGTH) {

                  cmc_polling_enabled = 1;
                  spin_unlock(&cmc_history_lock);
                  /* If we're being hit with CMC interrupts, we won't
                   * ever execute the schedule_work() below.  Need to
                   * disable CMC interrupts on this processor now.
                   */
                  ia64_mca_cmc_vector_disable(NULL);
                  schedule_work(&cmc_disable_work);

                  /*
                   * Corrected errors will still be corrected, but
                   * make sure there's a log somewhere that indicates
                   * something is generating more than we can handle.
                   */
                  printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");

                  mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);

                  /* lock already released, get out now */
                  goto out;
            } else {
                  cmc_history[index++] = now;
                  if (index == CMC_HISTORY_LENGTH)
                        index = 0;
            }
      }
      spin_unlock(&cmc_history_lock);
out:
      /* Get the CMC error record and log it */
      ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);

      return IRQ_HANDLED;
}

/*
 *  ia64_mca_cmc_int_caller
 *
 *    Triggered by sw interrupt from CMC polling routine.  Calls
 *    real interrupt handler and either triggers a sw interrupt
 *    on the next cpu or does cleanup at the end.
 *
 * Inputs
 *    interrupt number
 *    client data arg ptr
 * Outputs
 *    handled
 */
static irqreturn_t
ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
{
      static int start_count = -1;
      unsigned int cpuid;

      cpuid = smp_processor_id();

      /* If first cpu, update count */
      if (start_count == -1)
            start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);

      ia64_mca_cmc_int_handler(cmc_irq, arg);

      cpuid = cpumask_next(cpuid+1, cpu_online_mask);

      if (cpuid < nr_cpu_ids) {
            platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
      } else {
            /* If no log record, switch out of polling mode */
            if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {

                  printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
                  schedule_work(&cmc_enable_work);
                  cmc_polling_enabled = 0;

            } else {

                  mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
            }

            start_count = -1;
      }

      return IRQ_HANDLED;
}

/*
 *  ia64_mca_cmc_poll
 *
 *    Poll for Corrected Machine Checks (CMCs)
 *
 * Inputs   :   dummy(unused)
 * Outputs  :   None
 *
 */
static void
ia64_mca_cmc_poll (unsigned long dummy)
{
      /* Trigger a CMC interrupt cascade  */
      platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
}

/*
 *  ia64_mca_cpe_int_caller
 *
 *    Triggered by sw interrupt from CPE polling routine.  Calls
 *    real interrupt handler and either triggers a sw interrupt
 *    on the next cpu or does cleanup at the end.
 *
 * Inputs
 *    interrupt number
 *    client data arg ptr
 * Outputs
 *    handled
 */
#ifdef CONFIG_ACPI

static irqreturn_t
ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
{
      static int start_count = -1;
      static int poll_time = MIN_CPE_POLL_INTERVAL;
      unsigned int cpuid;

      cpuid = smp_processor_id();

      /* If first cpu, update count */
      if (start_count == -1)
            start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);

      ia64_mca_cpe_int_handler(cpe_irq, arg);

      cpuid = cpumask_next(cpuid+1, cpu_online_mask);

      if (cpuid < NR_CPUS) {
            platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
      } else {
            /*
             * If a log was recorded, increase our polling frequency,
             * otherwise, backoff or return to interrupt mode.
             */
            if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
                  poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
            } else if (cpe_vector < 0) {
                  poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
            } else {
                  poll_time = MIN_CPE_POLL_INTERVAL;

                  printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
                  enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
                  cpe_poll_enabled = 0;
            }

            if (cpe_poll_enabled)
                  mod_timer(&cpe_poll_timer, jiffies + poll_time);
            start_count = -1;
      }

      return IRQ_HANDLED;
}

/*
 *  ia64_mca_cpe_poll
 *
 *    Poll for Corrected Platform Errors (CPEs), trigger interrupt
 *    on first cpu, from there it will trickle through all the cpus.
 *
 * Inputs   :   dummy(unused)
 * Outputs  :   None
 *
 */
static void
ia64_mca_cpe_poll (unsigned long dummy)
{
      /* Trigger a CPE interrupt cascade  */
      platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
}

#endif /* CONFIG_ACPI */

static int
default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
{
      int c;
      struct task_struct *g, *t;
      if (val != DIE_INIT_MONARCH_PROCESS)
            return NOTIFY_DONE;
#ifdef CONFIG_KEXEC
      if (atomic_read(&kdump_in_progress))
            return NOTIFY_DONE;
#endif

      /*
       * FIXME: mlogbuf will brim over with INIT stack dumps.
       * To enable show_stack from INIT, we use oops_in_progress which should
       * be used in real oops. This would cause something wrong after INIT.
       */
      BREAK_LOGLEVEL(console_loglevel);
      ia64_mlogbuf_dump_from_init();

      printk(KERN_ERR "Processes interrupted by INIT -");
      for_each_online_cpu(c) {
            struct ia64_sal_os_state *s;
            t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
            s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
            g = s->prev_task;
            if (g) {
                  if (g->pid)
                        printk(" %d", g->pid);
                  else
                        printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
            }
      }
      printk("\n\n");
      if (read_trylock(&tasklist_lock)) {
            do_each_thread (g, t) {
                  printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
                  show_stack(t, NULL);
            } while_each_thread (g, t);
            read_unlock(&tasklist_lock);
      }
      /* FIXME: This will not restore zapped printk locks. */
      RESTORE_LOGLEVEL(console_loglevel);
      return NOTIFY_DONE;
}

/*
 * C portion of the OS INIT handler
 *
 * Called from ia64_os_init_dispatch
 *
 * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
 * this event.  This code is used for both monarch and slave INIT events, see
 * sos->monarch.
 *
 * All INIT events switch to the INIT stack and change the previous process to
 * blocked status.  If one of the INIT events is the monarch then we are
 * probably processing the nmi button/command.  Use the monarch cpu to dump all
 * the processes.  The slave INIT events all spin until the monarch cpu
 * returns.  We can also get INIT slave events for MCA, in which case the MCA
 * process is the monarch.
 */

void
ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
              struct ia64_sal_os_state *sos)
{
      static atomic_t slaves;
      static atomic_t monarchs;
      struct task_struct *previous_current;
      int cpu = smp_processor_id();
      struct ia64_mca_notify_die nd =
            { .sos = sos, .monarch_cpu = &monarch_cpu };

      NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);

      mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
            sos->proc_state_param, cpu, sos->monarch);
      salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);

      previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
      sos->os_status = IA64_INIT_RESUME;

      /* FIXME: Workaround for broken proms that drive all INIT events as
       * slaves.  The last slave that enters is promoted to be a monarch.
       * Remove this code in September 2006, that gives platforms a year to
       * fix their proms and get their customers updated.
       */
      if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
            mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
                    __func__, cpu);
            atomic_dec(&slaves);
            sos->monarch = 1;
      }

      /* FIXME: Workaround for broken proms that drive all INIT events as
       * monarchs.  Second and subsequent monarchs are demoted to slaves.
       * Remove this code in September 2006, that gives platforms a year to
       * fix their proms and get their customers updated.
       */
      if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
            mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
                         __func__, cpu);
            atomic_dec(&monarchs);
            sos->monarch = 0;
      }

      if (!sos->monarch) {
            ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;

#ifdef CONFIG_KEXEC
            while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
                  udelay(1000);
#else
            while (monarch_cpu == -1)
                  cpu_relax();      /* spin until monarch enters */
#endif

            NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
            NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);

#ifdef CONFIG_KEXEC
            while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
                  udelay(1000);
#else
            while (monarch_cpu != -1)
                  cpu_relax();      /* spin until monarch leaves */
#endif

            NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);

            mprintk("Slave on cpu %d returning to normal service.\n", cpu);
            set_curr_task(cpu, previous_current);
            ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
            atomic_dec(&slaves);
            return;
      }

      monarch_cpu = cpu;
      NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);

      /*
       * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
       * generated via the BMC's command-line interface, but since the console is on the
       * same serial line, the user will need some time to switch out of the BMC before
       * the dump begins.
       */
      mprintk("Delaying for 5 seconds...\n");
      udelay(5*1000000);
      ia64_wait_for_slaves(cpu, "INIT");
      /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
       * to default_monarch_init_process() above and just print all the
       * tasks.
       */
      NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
      NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);

      mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
      atomic_dec(&monarchs);
      set_curr_task(cpu, previous_current);
      monarch_cpu = -1;
      return;
}

static int __init
ia64_mca_disable_cpe_polling(char *str)
{
      cpe_poll_enabled = 0;
      return 1;
}

__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);

static struct irqaction cmci_irqaction = {
      .handler =  ia64_mca_cmc_int_handler,
      .flags =    IRQF_DISABLED,
      .name =           "cmc_hndlr"
};

static struct irqaction cmcp_irqaction = {
      .handler =  ia64_mca_cmc_int_caller,
      .flags =    IRQF_DISABLED,
      .name =           "cmc_poll"
};

static struct irqaction mca_rdzv_irqaction = {
      .handler =  ia64_mca_rendez_int_handler,
      .flags =    IRQF_DISABLED,
      .name =           "mca_rdzv"
};

static struct irqaction mca_wkup_irqaction = {
      .handler =  ia64_mca_wakeup_int_handler,
      .flags =    IRQF_DISABLED,
      .name =           "mca_wkup"
};

#ifdef CONFIG_ACPI
static struct irqaction mca_cpe_irqaction = {
      .handler =  ia64_mca_cpe_int_handler,
      .flags =    IRQF_DISABLED,
      .name =           "cpe_hndlr"
};

static struct irqaction mca_cpep_irqaction = {
      .handler =  ia64_mca_cpe_int_caller,
      .flags =    IRQF_DISABLED,
      .name =           "cpe_poll"
};
#endif /* CONFIG_ACPI */

/* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
 * these stacks can never sleep, they cannot return from the kernel to user
 * space, they do not appear in a normal ps listing.  So there is no need to
 * format most of the fields.
 */

static void __cpuinit
format_mca_init_stack(void *mca_data, unsigned long offset,
            const char *type, int cpu)
{
      struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
      struct thread_info *ti;
      memset(p, 0, KERNEL_STACK_SIZE);
      ti = task_thread_info(p);
      ti->flags = _TIF_MCA_INIT;
      ti->preempt_count = 1;
      ti->task = p;
      ti->cpu = cpu;
      p->stack = ti;
      p->state = TASK_UNINTERRUPTIBLE;
      cpu_set(cpu, p->cpus_allowed);
      INIT_LIST_HEAD(&p->tasks);
      p->parent = p->real_parent = p->group_leader = p;
      INIT_LIST_HEAD(&p->children);
      INIT_LIST_HEAD(&p->sibling);
      strncpy(p->comm, type, sizeof(p->comm)-1);
}

/* Caller prevents this from being called after init */
static void * __init_refok mca_bootmem(void)
{
      return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
                          KERNEL_STACK_SIZE, 0);
}

/* Do per-CPU MCA-related initialization.  */
void __cpuinit
ia64_mca_cpu_init(void *cpu_data)
{
      void *pal_vaddr;
      void *data;
      long sz = sizeof(struct ia64_mca_cpu);
      int cpu = smp_processor_id();
      static int first_time = 1;

      /*
       * Structure will already be allocated if cpu has been online,
       * then offlined.
       */
      if (__per_cpu_mca[cpu]) {
            data = __va(__per_cpu_mca[cpu]);
      } else {
            if (first_time) {
                  data = mca_bootmem();
                  first_time = 0;
            } else
                  data = __get_free_pages(GFP_KERNEL, get_order(sz));
            if (!data)
                  panic("Could not allocate MCA memory for cpu %d\n",
                              cpu);
      }
      format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
            "MCA", cpu);
      format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
            "INIT", cpu);
      __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);

      /*
       * Stash away a copy of the PTE needed to map the per-CPU page.
       * We may need it during MCA recovery.
       */
      __get_cpu_var(ia64_mca_per_cpu_pte) =
            pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));

      /*
       * Also, stash away a copy of the PAL address and the PTE
       * needed to map it.
       */
      pal_vaddr = efi_get_pal_addr();
      if (!pal_vaddr)
            return;
      __get_cpu_var(ia64_mca_pal_base) =
            GRANULEROUNDDOWN((unsigned long) pal_vaddr);
      __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
                                                PAGE_KERNEL));
}

static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
{
      unsigned long flags;

      local_irq_save(flags);
      if (!cmc_polling_enabled)
            ia64_mca_cmc_vector_enable(NULL);
      local_irq_restore(flags);
}

static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
                              unsigned long action,
                              void *hcpu)
{
      int hotcpu = (unsigned long) hcpu;

      switch (action) {
      case CPU_ONLINE:
      case CPU_ONLINE_FROZEN:
            smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
                               NULL, 0);
            break;
      }
      return NOTIFY_OK;
}

static struct notifier_block mca_cpu_notifier __cpuinitdata = {
      .notifier_call = mca_cpu_callback
};

/*
 * ia64_mca_init
 *
 *  Do all the system level mca specific initialization.
 *
 *    1. Register spinloop and wakeup request interrupt vectors
 *
 *    2. Register OS_MCA handler entry point
 *
 *    3. Register OS_INIT handler entry point
 *
 *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
 *
 *  Note that this initialization is done very early before some kernel
 *  services are available.
 *
 *  Inputs  :   None
 *
 *  Outputs :   None
 */
void __init
ia64_mca_init(void)
{
      ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
      ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
      ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
      int i;
      long rc;
      struct ia64_sal_retval isrv;
      unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
      static struct notifier_block default_init_monarch_nb = {
            .notifier_call = default_monarch_init_process,
            .priority = 0/* we need to notified last */
      };

      IA64_MCA_DEBUG("%s: begin\n", __func__);

      /* Clear the Rendez checkin flag for all cpus */
      for(i = 0 ; i < NR_CPUS; i++)
            ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;

      /*
       * Register the rendezvous spinloop and wakeup mechanism with SAL
       */

      /* Register the rendezvous interrupt vector with SAL */
      while (1) {
            isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
                                    SAL_MC_PARAM_MECHANISM_INT,
                                    IA64_MCA_RENDEZ_VECTOR,
                                    timeout,
                                    SAL_MC_PARAM_RZ_ALWAYS);
            rc = isrv.status;
            if (rc == 0)
                  break;
            if (rc == -2) {
                  printk(KERN_INFO "Increasing MCA rendezvous timeout from "
                        "%ld to %ld milliseconds\n", timeout, isrv.v0);
                  timeout = isrv.v0;
                  NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
                  continue;
            }
            printk(KERN_ERR "Failed to register rendezvous interrupt "
                   "with SAL (status %ld)\n", rc);
            return;
      }

      /* Register the wakeup interrupt vector with SAL */
      isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
                              SAL_MC_PARAM_MECHANISM_INT,
                              IA64_MCA_WAKEUP_VECTOR,
                              0, 0);
      rc = isrv.status;
      if (rc) {
            printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
                   "(status %ld)\n", rc);
            return;
      }

      IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);

      ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
      /*
       * XXX - disable SAL checksum by setting size to 0; should be
       *    ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
       */
      ia64_mc_info.imi_mca_handler_size   = 0;

      /* Register the os mca handler with SAL */
      if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
                               ia64_mc_info.imi_mca_handler,
                               ia64_tpa(mca_hldlr_ptr->gp),
                               ia64_mc_info.imi_mca_handler_size,
                               0, 0, 0)))
      {
            printk(KERN_ERR "Failed to register OS MCA handler with SAL "
                   "(status %ld)\n", rc);
            return;
      }

      IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
                   ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));

      /*
       * XXX - disable SAL checksum by setting size to 0, should be
       * size of the actual init handler in mca_asm.S.
       */
      ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
      ia64_mc_info.imi_monarch_init_handler_size      = 0;
      ia64_mc_info.imi_slave_init_handler       = ia64_tpa(init_hldlr_ptr_slave->fp);
      ia64_mc_info.imi_slave_init_handler_size  = 0;

      IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
                   ia64_mc_info.imi_monarch_init_handler);

      /* Register the os init handler with SAL */
      if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
                               ia64_mc_info.imi_monarch_init_handler,
                               ia64_tpa(ia64_getreg(_IA64_REG_GP)),
                               ia64_mc_info.imi_monarch_init_handler_size,
                               ia64_mc_info.imi_slave_init_handler,
                               ia64_tpa(ia64_getreg(_IA64_REG_GP)),
                               ia64_mc_info.imi_slave_init_handler_size)))
      {
            printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
                   "(status %ld)\n", rc);
            return;
      }
      if (register_die_notifier(&default_init_monarch_nb)) {
            printk(KERN_ERR "Failed to register default monarch INIT process\n");
            return;
      }

      IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);

      /*
       *  Configure the CMCI/P vector and handler. Interrupts for CMC are
       *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
       */
      register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
      register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
      ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */

      /* Setup the MCA rendezvous interrupt vector */
      register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);

      /* Setup the MCA wakeup interrupt vector */
      register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);

#ifdef CONFIG_ACPI
      /* Setup the CPEI/P handler */
      register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
#endif

      /* Initialize the areas set aside by the OS to buffer the
       * platform/processor error states for MCA/INIT/CMC
       * handling.
       */
      ia64_log_init(SAL_INFO_TYPE_MCA);
      ia64_log_init(SAL_INFO_TYPE_INIT);
      ia64_log_init(SAL_INFO_TYPE_CMC);
      ia64_log_init(SAL_INFO_TYPE_CPE);

      mca_init = 1;
      printk(KERN_INFO "MCA related initialization done\n");
}

/*
 * ia64_mca_late_init
 *
 *    Opportunity to setup things that require initialization later
 *    than ia64_mca_init.  Setup a timer to poll for CPEs if the
 *    platform doesn't support an interrupt driven mechanism.
 *
 *  Inputs  :   None
 *  Outputs :   Status
 */
static int __init
ia64_mca_late_init(void)
{
      if (!mca_init)
            return 0;

      register_hotcpu_notifier(&mca_cpu_notifier);

      /* Setup the CMCI/P vector and handler */
      init_timer(&cmc_poll_timer);
      cmc_poll_timer.function = ia64_mca_cmc_poll;

      /* Unmask/enable the vector */
      cmc_polling_enabled = 0;
      schedule_work(&cmc_enable_work);

      IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);

#ifdef CONFIG_ACPI
      /* Setup the CPEI/P vector and handler */
      cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
      init_timer(&cpe_poll_timer);
      cpe_poll_timer.function = ia64_mca_cpe_poll;

      {
            struct irq_desc *desc;
            unsigned int irq;

            if (cpe_vector >= 0) {
                  /* If platform supports CPEI, enable the irq. */
                  irq = local_vector_to_irq(cpe_vector);
                  if (irq > 0) {
                        cpe_poll_enabled = 0;
                        desc = irq_desc + irq;
                        desc->status |= IRQ_PER_CPU;
                        setup_irq(irq, &mca_cpe_irqaction);
                        ia64_cpe_irq = irq;
                        ia64_mca_register_cpev(cpe_vector);
                        IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
                              __func__);
                        return 0;
                  }
                  printk(KERN_ERR "%s: Failed to find irq for CPE "
                              "interrupt handler, vector %d\n",
                              __func__, cpe_vector);
            }
            /* If platform doesn't support CPEI, get the timer going. */
            if (cpe_poll_enabled) {
                  ia64_mca_cpe_poll(0UL);
                  IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
            }
      }
#endif

      return 0;
}

device_initcall(ia64_mca_late_init);

Generated by  Doxygen 1.6.0   Back to index