Logo Search packages:      
Sourcecode: linux version File versions  Download package

dma.h

/*
 * include/asm-alpha/dma.h
 *
 * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
 * use ISA-compatible dma.  The only extension is support for high-page
 * registers that allow to set the top 8 bits of a 32-bit DMA address.
 * This register should be written last when setting up a DMA address
 * as this will also enable DMA across 64 KB boundaries.
 */

/* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
 * Written by Hennus Bergman, 1992.
 * High DMA channel support & info by Hannu Savolainen
 * and John Boyd, Nov. 1992.
 */

#ifndef _ASM_DMA_H
#define _ASM_DMA_H

#include <linux/spinlock.h>
#include <asm/io.h>

#define dma_outb  outb
#define dma_inb         inb

/*
 * NOTES about DMA transfers:
 *
 *  controller 1: channels 0-3, byte operations, ports 00-1F
 *  controller 2: channels 4-7, word operations, ports C0-DF
 *
 *  - ALL registers are 8 bits only, regardless of transfer size
 *  - channel 4 is not used - cascades 1 into 2.
 *  - channels 0-3 are byte - addresses/counts are for physical bytes
 *  - channels 5-7 are word - addresses/counts are for physical words
 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
 *  - transfer count loaded to registers is 1 less than actual count
 *  - controller 2 offsets are all even (2x offsets for controller 1)
 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
 *  - page registers for 0-3 use bit 0, represent 64K pages
 *
 * DMA transfers are limited to the lower 16MB of _physical_ memory.  
 * Note that addresses loaded into registers must be _physical_ addresses,
 * not logical addresses (which may differ if paging is active).
 *
 *  Address mapping for channels 0-3:
 *
 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
 *    |  ...  |   |  ... |   |  ... |
 *    |  ...  |   |  ... |   |  ... |
 *    |  ...  |   |  ... |   |  ... |
 *   P7  ...  P0  A7 ... A0  A7 ... A0   
 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
 *
 *  Address mapping for channels 5-7:
 *
 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
 *    |  ...  |   \   \   ... \  \  \  ... \  \
 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
 *    |  ...  |     \   \   ... \  \  \  ... \
 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0   
 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
 *
 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
 * the hardware level, so odd-byte transfers aren't possible).
 *
 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
 * and up to 128K bytes may be transferred on channels 5-7 in one operation. 
 *
 */

#define MAX_DMA_CHANNELS      8

/*
  ISA DMA limitations on Alpha platforms,

  These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
  just a wiring limit.
*/

/* The maximum address for ISA DMA transfer on Alpha XL, due to an
   hardware SIO limitation, is 64MB.
*/
#define ALPHA_XL_MAX_ISA_DMA_ADDRESS            0x04000000UL

/* The maximum address for ISA DMA transfer on RUFFIAN,
   due to an hardware SIO limitation, is 16MB.
*/
#define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS 0x01000000UL

/* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
   due to an hardware SIO chip limitation, is 2GB.
*/
#define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS         0x80000000UL
#define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS         0x80000000UL

/*
  Maximum address for all the others is the complete 32-bit bus
  address space.
*/
#define ALPHA_MAX_ISA_DMA_ADDRESS         0x100000000UL

#ifdef CONFIG_ALPHA_GENERIC
# define MAX_ISA_DMA_ADDRESS        (alpha_mv.max_isa_dma_address)
#else
# if defined(CONFIG_ALPHA_XL)
#  define MAX_ISA_DMA_ADDRESS       ALPHA_XL_MAX_ISA_DMA_ADDRESS
# elif defined(CONFIG_ALPHA_RUFFIAN)
#  define MAX_ISA_DMA_ADDRESS       ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
# elif defined(CONFIG_ALPHA_SABLE)
#  define MAX_ISA_DMA_ADDRESS       ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
# elif defined(CONFIG_ALPHA_ALCOR)
#  define MAX_ISA_DMA_ADDRESS       ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
# else
#  define MAX_ISA_DMA_ADDRESS       ALPHA_MAX_ISA_DMA_ADDRESS
# endif
#endif

/* If we have the iommu, we don't have any address limitations on DMA.
   Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
   like i386. */
#define MAX_DMA_ADDRESS       (alpha_mv.mv_pci_tbi ?  \
                         ~0UL : IDENT_ADDR + 0x01000000)

/* 8237 DMA controllers */
#define IO_DMA1_BASE    0x00  /* 8 bit slave DMA, channels 0..3 */
#define IO_DMA2_BASE    0xC0  /* 16 bit master DMA, ch 4(=slave input)..7 */

/* DMA controller registers */
#define DMA1_CMD_REG          0x08  /* command register (w) */
#define DMA1_STAT_REG         0x08  /* status register (r) */
#define DMA1_REQ_REG            0x09    /* request register (w) */
#define DMA1_MASK_REG         0x0A  /* single-channel mask (w) */
#define DMA1_MODE_REG         0x0B  /* mode register (w) */
#define DMA1_CLEAR_FF_REG     0x0C  /* clear pointer flip-flop (w) */
#define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
#define DMA1_RESET_REG        0x0D  /* Master Clear (w) */
#define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
#define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
#define DMA1_EXT_MODE_REG     (0x400 | DMA1_MODE_REG)

#define DMA2_CMD_REG          0xD0  /* command register (w) */
#define DMA2_STAT_REG         0xD0  /* status register (r) */
#define DMA2_REQ_REG            0xD2    /* request register (w) */
#define DMA2_MASK_REG         0xD4  /* single-channel mask (w) */
#define DMA2_MODE_REG         0xD6  /* mode register (w) */
#define DMA2_CLEAR_FF_REG     0xD8  /* clear pointer flip-flop (w) */
#define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
#define DMA2_RESET_REG        0xDA  /* Master Clear (w) */
#define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
#define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
#define DMA2_EXT_MODE_REG     (0x400 | DMA2_MODE_REG)

#define DMA_ADDR_0              0x00    /* DMA address registers */
#define DMA_ADDR_1              0x02
#define DMA_ADDR_2              0x04
#define DMA_ADDR_3              0x06
#define DMA_ADDR_4              0xC0
#define DMA_ADDR_5              0xC4
#define DMA_ADDR_6              0xC8
#define DMA_ADDR_7              0xCC

#define DMA_CNT_0               0x01    /* DMA count registers */
#define DMA_CNT_1               0x03
#define DMA_CNT_2               0x05
#define DMA_CNT_3               0x07
#define DMA_CNT_4               0xC2
#define DMA_CNT_5               0xC6
#define DMA_CNT_6               0xCA
#define DMA_CNT_7               0xCE

#define DMA_PAGE_0              0x87    /* DMA page registers */
#define DMA_PAGE_1              0x83
#define DMA_PAGE_2              0x81
#define DMA_PAGE_3              0x82
#define DMA_PAGE_5              0x8B
#define DMA_PAGE_6              0x89
#define DMA_PAGE_7              0x8A

#define DMA_HIPAGE_0          (0x400 | DMA_PAGE_0)
#define DMA_HIPAGE_1          (0x400 | DMA_PAGE_1)
#define DMA_HIPAGE_2          (0x400 | DMA_PAGE_2)
#define DMA_HIPAGE_3          (0x400 | DMA_PAGE_3)
#define DMA_HIPAGE_4          (0x400 | DMA_PAGE_4)
#define DMA_HIPAGE_5          (0x400 | DMA_PAGE_5)
#define DMA_HIPAGE_6          (0x400 | DMA_PAGE_6)
#define DMA_HIPAGE_7          (0x400 | DMA_PAGE_7)

#define DMA_MODE_READ   0x44  /* I/O to memory, no autoinit, increment, single mode */
#define DMA_MODE_WRITE  0x48  /* memory to I/O, no autoinit, increment, single mode */
#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */

#define DMA_AUTOINIT    0x10

extern spinlock_t  dma_spin_lock;

static __inline__ unsigned long claim_dma_lock(void)
{
      unsigned long flags;
      spin_lock_irqsave(&dma_spin_lock, flags);
      return flags;
}

static __inline__ void release_dma_lock(unsigned long flags)
{
      spin_unlock_irqrestore(&dma_spin_lock, flags);
}

/* enable/disable a specific DMA channel */
static __inline__ void enable_dma(unsigned int dmanr)
{
      if (dmanr<=3)
            dma_outb(dmanr,  DMA1_MASK_REG);
      else
            dma_outb(dmanr & 3,  DMA2_MASK_REG);
}

static __inline__ void disable_dma(unsigned int dmanr)
{
      if (dmanr<=3)
            dma_outb(dmanr | 4,  DMA1_MASK_REG);
      else
            dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
}

/* Clear the 'DMA Pointer Flip Flop'.
 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
 * Use this once to initialize the FF to a known state.
 * After that, keep track of it. :-)
 * --- In order to do that, the DMA routines below should ---
 * --- only be used while interrupts are disabled! ---
 */
static __inline__ void clear_dma_ff(unsigned int dmanr)
{
      if (dmanr<=3)
            dma_outb(0,  DMA1_CLEAR_FF_REG);
      else
            dma_outb(0,  DMA2_CLEAR_FF_REG);
}

/* set mode (above) for a specific DMA channel */
static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
{
      if (dmanr<=3)
            dma_outb(mode | dmanr,  DMA1_MODE_REG);
      else
            dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
}

/* set extended mode for a specific DMA channel */
static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
{
      if (dmanr<=3)
            dma_outb(ext_mode | dmanr,  DMA1_EXT_MODE_REG);
      else
            dma_outb(ext_mode | (dmanr&3),  DMA2_EXT_MODE_REG);
}

/* Set only the page register bits of the transfer address.
 * This is used for successive transfers when we know the contents of
 * the lower 16 bits of the DMA current address register.
 */
static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
{
      switch(dmanr) {
            case 0:
                  dma_outb(pagenr, DMA_PAGE_0);
                  dma_outb((pagenr >> 8), DMA_HIPAGE_0);
                  break;
            case 1:
                  dma_outb(pagenr, DMA_PAGE_1);
                  dma_outb((pagenr >> 8), DMA_HIPAGE_1);
                  break;
            case 2:
                  dma_outb(pagenr, DMA_PAGE_2);
                  dma_outb((pagenr >> 8), DMA_HIPAGE_2);
                  break;
            case 3:
                  dma_outb(pagenr, DMA_PAGE_3);
                  dma_outb((pagenr >> 8), DMA_HIPAGE_3);
                  break;
            case 5:
                  dma_outb(pagenr & 0xfe, DMA_PAGE_5);
                  dma_outb((pagenr >> 8), DMA_HIPAGE_5);
                  break;
            case 6:
                  dma_outb(pagenr & 0xfe, DMA_PAGE_6);
                  dma_outb((pagenr >> 8), DMA_HIPAGE_6);
                  break;
            case 7:
                  dma_outb(pagenr & 0xfe, DMA_PAGE_7);
                  dma_outb((pagenr >> 8), DMA_HIPAGE_7);
                  break;
      }
}


/* Set transfer address & page bits for specific DMA channel.
 * Assumes dma flipflop is clear.
 */
static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
{
      if (dmanr <= 3)  {
          dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
            dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
      }  else  {
          dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
          dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
      }
      set_dma_page(dmanr, a>>16);   /* set hipage last to enable 32-bit mode */
}


/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
 * a specific DMA channel.
 * You must ensure the parameters are valid.
 * NOTE: from a manual: "the number of transfers is one more
 * than the initial word count"! This is taken into account.
 * Assumes dma flip-flop is clear.
 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
 */
static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
{
        count--;
      if (dmanr <= 3)  {
          dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
          dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
        } else {
          dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
          dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
        }
}


/* Get DMA residue count. After a DMA transfer, this
 * should return zero. Reading this while a DMA transfer is
 * still in progress will return unpredictable results.
 * If called before the channel has been used, it may return 1.
 * Otherwise, it returns the number of _bytes_ left to transfer.
 *
 * Assumes DMA flip-flop is clear.
 */
static __inline__ int get_dma_residue(unsigned int dmanr)
{
      unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
                               : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;

      /* using short to get 16-bit wrap around */
      unsigned short count;

      count = 1 + dma_inb(io_port);
      count += dma_inb(io_port) << 8;
      
      return (dmanr<=3)? count : (count<<1);
}


/* These are in kernel/dma.c: */
extern int request_dma(unsigned int dmanr, const char * device_id);     /* reserve a DMA channel */
extern void free_dma(unsigned int dmanr); /* release it again */
#define KERNEL_HAVE_CHECK_DMA
extern int check_dma(unsigned int dmanr);

/* From PCI */

#ifdef CONFIG_PCI
extern int isa_dma_bridge_buggy;
#else
#define isa_dma_bridge_buggy  (0)
#endif


#endif /* _ASM_DMA_H */

Generated by  Doxygen 1.6.0   Back to index