Logo Search packages:      
Sourcecode: linux version File versions  Download package

process.c

/*
 * Architecture-specific setup.
 *
 * Copyright (C) 1998-2003 Hewlett-Packard Co
 *    David Mosberger-Tang <davidm@hpl.hp.com>
 * 04/11/17 Ashok Raj   <ashok.raj@intel.com> Added CPU Hotplug Support
 *
 * 2005-10-07 Keith Owens <kaos@sgi.com>
 *          Add notify_die() hooks.
 */
#include <linux/cpu.h>
#include <linux/pm.h>
#include <linux/elf.h>
#include <linux/errno.h>
#include <linux/kallsyms.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/personality.h>
#include <linux/sched.h>
#include <linux/stddef.h>
#include <linux/thread_info.h>
#include <linux/unistd.h>
#include <linux/efi.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/kdebug.h>
#include <linux/utsname.h>
#include <linux/tracehook.h>

#include <asm/cpu.h>
#include <asm/delay.h>
#include <asm/elf.h>
#include <asm/irq.h>
#include <asm/kexec.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/sal.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/unwind.h>
#include <asm/user.h>

#include "entry.h"

#ifdef CONFIG_PERFMON
# include <asm/perfmon.h>
#endif

#include "sigframe.h"

void (*ia64_mark_idle)(int);

unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
EXPORT_SYMBOL(boot_option_idle_override);
void (*pm_idle) (void);
EXPORT_SYMBOL(pm_idle);
void (*pm_power_off) (void);
EXPORT_SYMBOL(pm_power_off);

void
ia64_do_show_stack (struct unw_frame_info *info, void *arg)
{
      unsigned long ip, sp, bsp;
      char buf[128];                /* don't make it so big that it overflows the stack! */

      printk("\nCall Trace:\n");
      do {
            unw_get_ip(info, &ip);
            if (ip == 0)
                  break;

            unw_get_sp(info, &sp);
            unw_get_bsp(info, &bsp);
            snprintf(buf, sizeof(buf),
                   " [<%016lx>] %%s\n"
                   "                                sp=%016lx bsp=%016lx\n",
                   ip, sp, bsp);
            print_symbol(buf, ip);
      } while (unw_unwind(info) >= 0);
}

void
show_stack (struct task_struct *task, unsigned long *sp)
{
      if (!task)
            unw_init_running(ia64_do_show_stack, NULL);
      else {
            struct unw_frame_info info;

            unw_init_from_blocked_task(&info, task);
            ia64_do_show_stack(&info, NULL);
      }
}

void
dump_stack (void)
{
      show_stack(NULL, NULL);
}

EXPORT_SYMBOL(dump_stack);

void
show_regs (struct pt_regs *regs)
{
      unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;

      print_modules();
      printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
                  smp_processor_id(), current->comm);
      printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
             regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
             init_utsname()->release);
      print_symbol("ip is at %s\n", ip);
      printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
             regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
      printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
             regs->ar_rnat, regs->ar_bspstore, regs->pr);
      printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
             regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
      printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
      printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
      printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
             regs->f6.u.bits[1], regs->f6.u.bits[0],
             regs->f7.u.bits[1], regs->f7.u.bits[0]);
      printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
             regs->f8.u.bits[1], regs->f8.u.bits[0],
             regs->f9.u.bits[1], regs->f9.u.bits[0]);
      printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
             regs->f10.u.bits[1], regs->f10.u.bits[0],
             regs->f11.u.bits[1], regs->f11.u.bits[0]);

      printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
      printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
      printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
      printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
      printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
      printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
      printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
      printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
      printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);

      if (user_mode(regs)) {
            /* print the stacked registers */
            unsigned long val, *bsp, ndirty;
            int i, sof, is_nat = 0;

            sof = regs->cr_ifs & 0x7f;    /* size of frame */
            ndirty = (regs->loadrs >> 19);
            bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
            for (i = 0; i < sof; ++i) {
                  get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
                  printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
                         ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
            }
      } else
            show_stack(NULL, NULL);
}

/* local support for deprecated console_print */
void
console_print(const char *s)
{
      printk(KERN_EMERG "%s", s);
}

void
do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
{
      if (fsys_mode(current, &scr->pt)) {
            /*
             * defer signal-handling etc. until we return to
             * privilege-level 0.
             */
            if (!ia64_psr(&scr->pt)->lp)
                  ia64_psr(&scr->pt)->lp = 1;
            return;
      }

#ifdef CONFIG_PERFMON
      if (current->thread.pfm_needs_checking)
            /*
             * Note: pfm_handle_work() allow us to call it with interrupts
             * disabled, and may enable interrupts within the function.
             */
            pfm_handle_work();
#endif

      /* deal with pending signal delivery */
      if (test_thread_flag(TIF_SIGPENDING)) {
            local_irq_enable();     /* force interrupt enable */
            ia64_do_signal(scr, in_syscall);
      }

      if (test_thread_flag(TIF_NOTIFY_RESUME)) {
            clear_thread_flag(TIF_NOTIFY_RESUME);
            tracehook_notify_resume(&scr->pt);
            if (current->replacement_session_keyring)
                  key_replace_session_keyring();
      }

      /* copy user rbs to kernel rbs */
      if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
            local_irq_enable();     /* force interrupt enable */
            ia64_sync_krbs();
      }

      local_irq_disable();    /* force interrupt disable */
}

static int pal_halt        = 1;
static int can_do_pal_halt = 1;

static int __init nohalt_setup(char * str)
{
      pal_halt = can_do_pal_halt = 0;
      return 1;
}
__setup("nohalt", nohalt_setup);

void
update_pal_halt_status(int status)
{
      can_do_pal_halt = pal_halt && status;
}

/*
 * We use this if we don't have any better idle routine..
 */
void
default_idle (void)
{
      local_irq_enable();
      while (!need_resched()) {
            if (can_do_pal_halt) {
                  local_irq_disable();
                  if (!need_resched()) {
                        safe_halt();
                  }
                  local_irq_enable();
            } else
                  cpu_relax();
      }
}

#ifdef CONFIG_HOTPLUG_CPU
/* We don't actually take CPU down, just spin without interrupts. */
static inline void play_dead(void)
{
      unsigned int this_cpu = smp_processor_id();

      /* Ack it */
      __get_cpu_var(cpu_state) = CPU_DEAD;

      max_xtp();
      local_irq_disable();
      idle_task_exit();
      ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
      /*
       * The above is a point of no-return, the processor is
       * expected to be in SAL loop now.
       */
      BUG();
}
#else
static inline void play_dead(void)
{
      BUG();
}
#endif /* CONFIG_HOTPLUG_CPU */

static void do_nothing(void *unused)
{
}

/*
 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
 * pm_idle and update to new pm_idle value. Required while changing pm_idle
 * handler on SMP systems.
 *
 * Caller must have changed pm_idle to the new value before the call. Old
 * pm_idle value will not be used by any CPU after the return of this function.
 */
void cpu_idle_wait(void)
{
      smp_mb();
      /* kick all the CPUs so that they exit out of pm_idle */
      smp_call_function(do_nothing, NULL, 1);
}
EXPORT_SYMBOL_GPL(cpu_idle_wait);

void __attribute__((noreturn))
cpu_idle (void)
{
      void (*mark_idle)(int) = ia64_mark_idle;
      int cpu = smp_processor_id();

      /* endless idle loop with no priority at all */
      while (1) {
            if (can_do_pal_halt) {
                  current_thread_info()->status &= ~TS_POLLING;
                  /*
                   * TS_POLLING-cleared state must be visible before we
                   * test NEED_RESCHED:
                   */
                  smp_mb();
            } else {
                  current_thread_info()->status |= TS_POLLING;
            }

            if (!need_resched()) {
                  void (*idle)(void);
#ifdef CONFIG_SMP
                  min_xtp();
#endif
                  rmb();
                  if (mark_idle)
                        (*mark_idle)(1);

                  idle = pm_idle;
                  if (!idle)
                        idle = default_idle;
                  (*idle)();
                  if (mark_idle)
                        (*mark_idle)(0);
#ifdef CONFIG_SMP
                  normal_xtp();
#endif
            }
            preempt_enable_no_resched();
            schedule();
            preempt_disable();
            check_pgt_cache();
            if (cpu_is_offline(cpu))
                  play_dead();
      }
}

void
ia64_save_extra (struct task_struct *task)
{
#ifdef CONFIG_PERFMON
      unsigned long info;
#endif

      if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
            ia64_save_debug_regs(&task->thread.dbr[0]);

#ifdef CONFIG_PERFMON
      if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
            pfm_save_regs(task);

      info = __get_cpu_var(pfm_syst_info);
      if (info & PFM_CPUINFO_SYST_WIDE)
            pfm_syst_wide_update_task(task, info, 0);
#endif
}

void
ia64_load_extra (struct task_struct *task)
{
#ifdef CONFIG_PERFMON
      unsigned long info;
#endif

      if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
            ia64_load_debug_regs(&task->thread.dbr[0]);

#ifdef CONFIG_PERFMON
      if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
            pfm_load_regs(task);

      info = __get_cpu_var(pfm_syst_info);
      if (info & PFM_CPUINFO_SYST_WIDE) 
            pfm_syst_wide_update_task(task, info, 1);
#endif
}

/*
 * Copy the state of an ia-64 thread.
 *
 * We get here through the following  call chain:
 *
 *    from user-level:  from kernel:
 *
 *    <clone syscall>           <some kernel call frames>
 *    sys_clone            :
 *    do_fork                 do_fork
 *    copy_thread       copy_thread
 *
 * This means that the stack layout is as follows:
 *
 *    +---------------------+ (highest addr)
 *    |   struct pt_regs    |
 *    +---------------------+
 *    | struct switch_stack |
 *    +---------------------+
 *    |                     |
 *    |    memory stack     |
 *    |                     | <-- sp (lowest addr)
 *    +---------------------+
 *
 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
 * the stack is page aligned and the page size is at least 4KB, this is always the case,
 * so there is nothing to worry about.
 */
int
copy_thread(unsigned long clone_flags,
           unsigned long user_stack_base, unsigned long user_stack_size,
           struct task_struct *p, struct pt_regs *regs)
{
      extern char ia64_ret_from_clone;
      struct switch_stack *child_stack, *stack;
      unsigned long rbs, child_rbs, rbs_size;
      struct pt_regs *child_ptregs;
      int retval = 0;

#ifdef CONFIG_SMP
      /*
       * For SMP idle threads, fork_by_hand() calls do_fork with
       * NULL regs.
       */
      if (!regs)
            return 0;
#endif

      stack = ((struct switch_stack *) regs) - 1;

      child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
      child_stack = (struct switch_stack *) child_ptregs - 1;

      /* copy parent's switch_stack & pt_regs to child: */
      memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));

      rbs = (unsigned long) current + IA64_RBS_OFFSET;
      child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
      rbs_size = stack->ar_bspstore - rbs;

      /* copy the parent's register backing store to the child: */
      memcpy((void *) child_rbs, (void *) rbs, rbs_size);

      if (likely(user_mode(child_ptregs))) {
            if (clone_flags & CLONE_SETTLS)
                  child_ptregs->r13 = regs->r16;      /* see sys_clone2() in entry.S */
            if (user_stack_base) {
                  child_ptregs->r12 = user_stack_base + user_stack_size - 16;
                  child_ptregs->ar_bspstore = user_stack_base;
                  child_ptregs->ar_rnat = 0;
                  child_ptregs->loadrs = 0;
            }
      } else {
            /*
             * Note: we simply preserve the relative position of
             * the stack pointer here.  There is no need to
             * allocate a scratch area here, since that will have
             * been taken care of by the caller of sys_clone()
             * already.
             */
            child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
            child_ptregs->r13 = (unsigned long) p;          /* set `current' pointer */
      }
      child_stack->ar_bspstore = child_rbs + rbs_size;
      child_stack->b0 = (unsigned long) &ia64_ret_from_clone;

      /* copy parts of thread_struct: */
      p->thread.ksp = (unsigned long) child_stack - 16;

      /* stop some PSR bits from being inherited.
       * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
       * therefore we must specify them explicitly here and not include them in
       * IA64_PSR_BITS_TO_CLEAR.
       */
      child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
                         & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));

      /*
       * NOTE: The calling convention considers all floating point
       * registers in the high partition (fph) to be scratch.  Since
       * the only way to get to this point is through a system call,
       * we know that the values in fph are all dead.  Hence, there
       * is no need to inherit the fph state from the parent to the
       * child and all we have to do is to make sure that
       * IA64_THREAD_FPH_VALID is cleared in the child.
       *
       * XXX We could push this optimization a bit further by
       * clearing IA64_THREAD_FPH_VALID on ANY system call.
       * However, it's not clear this is worth doing.  Also, it
       * would be a slight deviation from the normal Linux system
       * call behavior where scratch registers are preserved across
       * system calls (unless used by the system call itself).
       */
#     define THREAD_FLAGS_TO_CLEAR  (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
                               | IA64_THREAD_PM_VALID)
#     define THREAD_FLAGS_TO_SET    0
      p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
                     | THREAD_FLAGS_TO_SET);
      ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */

#ifdef CONFIG_PERFMON
      if (current->thread.pfm_context)
            pfm_inherit(p, child_ptregs);
#endif
      return retval;
}

static void
do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
{
      unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
      unsigned long uninitialized_var(ip);      /* GCC be quiet */
      elf_greg_t *dst = arg;
      struct pt_regs *pt;
      char nat;
      int i;

      memset(dst, 0, sizeof(elf_gregset_t));    /* don't leak any kernel bits to user-level */

      if (unw_unwind_to_user(info) < 0)
            return;

      unw_get_sp(info, &sp);
      pt = (struct pt_regs *) (sp + 16);

      urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);

      if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
            return;

      ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
              &ar_rnat);

      /*
       * coredump format:
       *    r0-r31
       *    NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
       *    predicate registers (p0-p63)
       *    b0-b7
       *    ip cfm user-mask
       *    ar.rsc ar.bsp ar.bspstore ar.rnat
       *    ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
       */

      /* r0 is zero */
      for (i = 1, mask = (1UL << i); i < 32; ++i) {
            unw_get_gr(info, i, &dst[i], &nat);
            if (nat)
                  nat_bits |= mask;
            mask <<= 1;
      }
      dst[32] = nat_bits;
      unw_get_pr(info, &dst[33]);

      for (i = 0; i < 8; ++i)
            unw_get_br(info, i, &dst[34 + i]);

      unw_get_rp(info, &ip);
      dst[42] = ip + ia64_psr(pt)->ri;
      dst[43] = cfm;
      dst[44] = pt->cr_ipsr & IA64_PSR_UM;

      unw_get_ar(info, UNW_AR_RSC, &dst[45]);
      /*
       * For bsp and bspstore, unw_get_ar() would return the kernel
       * addresses, but we need the user-level addresses instead:
       */
      dst[46] = urbs_end;     /* note: by convention PT_AR_BSP points to the end of the urbs! */
      dst[47] = pt->ar_bspstore;
      dst[48] = ar_rnat;
      unw_get_ar(info, UNW_AR_CCV, &dst[49]);
      unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
      unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
      dst[52] = pt->ar_pfs;   /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
      unw_get_ar(info, UNW_AR_LC, &dst[53]);
      unw_get_ar(info, UNW_AR_EC, &dst[54]);
      unw_get_ar(info, UNW_AR_CSD, &dst[55]);
      unw_get_ar(info, UNW_AR_SSD, &dst[56]);
}

void
do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
{
      elf_fpreg_t *dst = arg;
      int i;

      memset(dst, 0, sizeof(elf_fpregset_t));   /* don't leak any "random" bits */

      if (unw_unwind_to_user(info) < 0)
            return;

      /* f0 is 0.0, f1 is 1.0 */

      for (i = 2; i < 32; ++i)
            unw_get_fr(info, i, dst + i);

      ia64_flush_fph(task);
      if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
            memcpy(dst + 32, task->thread.fph, 96*16);
}

void
do_copy_regs (struct unw_frame_info *info, void *arg)
{
      do_copy_task_regs(current, info, arg);
}

void
do_dump_fpu (struct unw_frame_info *info, void *arg)
{
      do_dump_task_fpu(current, info, arg);
}

void
ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
{
      unw_init_running(do_copy_regs, dst);
}

int
dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
{
      unw_init_running(do_dump_fpu, dst);
      return 1;   /* f0-f31 are always valid so we always return 1 */
}

long
sys_execve (const char __user *filename,
          const char __user *const __user *argv,
          const char __user *const __user *envp,
          struct pt_regs *regs)
{
      char *fname;
      int error;

      fname = getname(filename);
      error = PTR_ERR(fname);
      if (IS_ERR(fname))
            goto out;
      error = do_execve(fname, argv, envp, regs);
      putname(fname);
out:
      return error;
}

pid_t
kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
{
      extern void start_kernel_thread (void);
      unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
      struct {
            struct switch_stack sw;
            struct pt_regs pt;
      } regs;

      memset(&regs, 0, sizeof(regs));
      regs.pt.cr_iip = helper_fptr[0];    /* set entry point (IP) */
      regs.pt.r1 = helper_fptr[1];        /* set GP */
      regs.pt.r9 = (unsigned long) fn;    /* 1st argument */
      regs.pt.r11 = (unsigned long) arg;  /* 2nd argument */
      /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read.  */
      regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
      regs.pt.cr_ifs = 1UL << 63;         /* mark as valid, empty frame */
      regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
      regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
      regs.sw.pr = (1 << PRED_KERNEL_STACK);
      return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
}
EXPORT_SYMBOL(kernel_thread);

/* This gets called from kernel_thread() via ia64_invoke_thread_helper().  */
int
kernel_thread_helper (int (*fn)(void *), void *arg)
{
      return (*fn)(arg);
}

/*
 * Flush thread state.  This is called when a thread does an execve().
 */
void
flush_thread (void)
{
      /* drop floating-point and debug-register state if it exists: */
      current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
      ia64_drop_fpu(current);
}

/*
 * Clean up state associated with current thread.  This is called when
 * the thread calls exit().
 */
void
exit_thread (void)
{

      ia64_drop_fpu(current);
#ifdef CONFIG_PERFMON
       /* if needed, stop monitoring and flush state to perfmon context */
      if (current->thread.pfm_context)
            pfm_exit_thread(current);

      /* free debug register resources */
      if (current->thread.flags & IA64_THREAD_DBG_VALID)
            pfm_release_debug_registers(current);
#endif
}

unsigned long
get_wchan (struct task_struct *p)
{
      struct unw_frame_info info;
      unsigned long ip;
      int count = 0;

      if (!p || p == current || p->state == TASK_RUNNING)
            return 0;

      /*
       * Note: p may not be a blocked task (it could be current or
       * another process running on some other CPU.  Rather than
       * trying to determine if p is really blocked, we just assume
       * it's blocked and rely on the unwind routines to fail
       * gracefully if the process wasn't really blocked after all.
       * --davidm 99/12/15
       */
      unw_init_from_blocked_task(&info, p);
      do {
            if (p->state == TASK_RUNNING)
                  return 0;
            if (unw_unwind(&info) < 0)
                  return 0;
            unw_get_ip(&info, &ip);
            if (!in_sched_functions(ip))
                  return ip;
      } while (count++ < 16);
      return 0;
}

void
cpu_halt (void)
{
      pal_power_mgmt_info_u_t power_info[8];
      unsigned long min_power;
      int i, min_power_state;

      if (ia64_pal_halt_info(power_info) != 0)
            return;

      min_power_state = 0;
      min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
      for (i = 1; i < 8; ++i)
            if (power_info[i].pal_power_mgmt_info_s.im
                && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
                  min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
                  min_power_state = i;
            }

      while (1)
            ia64_pal_halt(min_power_state);
}

void machine_shutdown(void)
{
#ifdef CONFIG_HOTPLUG_CPU
      int cpu;

      for_each_online_cpu(cpu) {
            if (cpu != smp_processor_id())
                  cpu_down(cpu);
      }
#endif
#ifdef CONFIG_KEXEC
      kexec_disable_iosapic();
#endif
}

void
machine_restart (char *restart_cmd)
{
      (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
      (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
}

void
machine_halt (void)
{
      (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
      cpu_halt();
}

void
machine_power_off (void)
{
      if (pm_power_off)
            pm_power_off();
      machine_halt();
}


Generated by  Doxygen 1.6.0   Back to index