Logo Search packages:      
Sourcecode: linux version File versions  Download package

setup.c

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1999,2001-2006 Silicon Graphics, Inc. All rights reserved.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/kdev_t.h>
#include <linux/string.h>
#include <linux/screen_info.h>
#include <linux/console.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/serial.h>
#include <linux/irq.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/interrupt.h>
#include <linux/acpi.h>
#include <linux/compiler.h>
#include <linux/root_dev.h>
#include <linux/nodemask.h>
#include <linux/pm.h>
#include <linux/efi.h>

#include <asm/io.h>
#include <asm/sal.h>
#include <asm/machvec.h>
#include <asm/system.h>
#include <asm/processor.h>
#include <asm/vga.h>
#include <asm/sn/arch.h>
#include <asm/sn/addrs.h>
#include <asm/sn/pda.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/simulator.h>
#include <asm/sn/leds.h>
#include <asm/sn/bte.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/clksupport.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/geo.h>
#include <asm/sn/sn_feature_sets.h>
#include "xtalk/xwidgetdev.h"
#include "xtalk/hubdev.h"
#include <asm/sn/klconfig.h>


DEFINE_PER_CPU(struct pda_s, pda_percpu);

#define MAX_PHYS_MEMORY       (1UL << IA64_MAX_PHYS_BITS)   /* Max physical address supported */

extern void bte_init_node(nodepda_t *, cnodeid_t);

extern void sn_timer_init(void);
extern unsigned long last_time_offset;
extern void (*ia64_mark_idle) (int);
extern void snidle(int);

unsigned long sn_rtc_cycles_per_second;
EXPORT_SYMBOL(sn_rtc_cycles_per_second);

DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
EXPORT_PER_CPU_SYMBOL(__sn_hub_info);

DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_COMPACT_NODES]);
EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);

DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
EXPORT_PER_CPU_SYMBOL(__sn_nodepda);

char sn_system_serial_number_string[128];
EXPORT_SYMBOL(sn_system_serial_number_string);
u64 sn_partition_serial_number;
EXPORT_SYMBOL(sn_partition_serial_number);
u8 sn_partition_id;
EXPORT_SYMBOL(sn_partition_id);
u8 sn_system_size;
EXPORT_SYMBOL(sn_system_size);
u8 sn_sharing_domain_size;
EXPORT_SYMBOL(sn_sharing_domain_size);
u8 sn_coherency_id;
EXPORT_SYMBOL(sn_coherency_id);
u8 sn_region_size;
EXPORT_SYMBOL(sn_region_size);
int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */

short physical_node_map[MAX_NUMALINK_NODES];
static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];

EXPORT_SYMBOL(physical_node_map);

int num_cnodes;

static void sn_init_pdas(char **);
static void build_cnode_tables(void);

static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];

/*
 * The format of "screen_info" is strange, and due to early i386-setup
 * code. This is just enough to make the console code think we're on a
 * VGA color display.
 */
struct screen_info sn_screen_info = {
      .orig_x = 0,
      .orig_y = 0,
      .orig_video_mode = 3,
      .orig_video_cols = 80,
      .orig_video_ega_bx = 3,
      .orig_video_lines = 25,
      .orig_video_isVGA = 1,
      .orig_video_points = 16
};

/*
 * This routine can only be used during init, since
 * smp_boot_data is an init data structure.
 * We have to use smp_boot_data.cpu_phys_id to find
 * the physical id of the processor because the normal
 * cpu_physical_id() relies on data structures that
 * may not be initialized yet.
 */

static int __init pxm_to_nasid(int pxm)
{
      int i;
      int nid;

      nid = pxm_to_node(pxm);
      for (i = 0; i < num_node_memblks; i++) {
            if (node_memblk[i].nid == nid) {
                  return NASID_GET(node_memblk[i].start_paddr);
            }
      }
      return -1;
}

/**
 * early_sn_setup - early setup routine for SN platforms
 *
 * Sets up an initial console to aid debugging.  Intended primarily
 * for bringup.  See start_kernel() in init/main.c.
 */

void __init early_sn_setup(void)
{
      efi_system_table_t *efi_systab;
      efi_config_table_t *config_tables;
      struct ia64_sal_systab *sal_systab;
      struct ia64_sal_desc_entry_point *ep;
      char *p;
      int i, j;

      /*
       * Parse enough of the SAL tables to locate the SAL entry point. Since, console
       * IO on SN2 is done via SAL calls, early_printk won't work without this.
       *
       * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
       * Any changes to those file may have to be made here as well.
       */
      efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
      config_tables = __va(efi_systab->tables);
      for (i = 0; i < efi_systab->nr_tables; i++) {
            if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
                0) {
                  sal_systab = __va(config_tables[i].table);
                  p = (char *)(sal_systab + 1);
                  for (j = 0; j < sal_systab->entry_count; j++) {
                        if (*p == SAL_DESC_ENTRY_POINT) {
                              ep = (struct ia64_sal_desc_entry_point
                                    *)p;
                              ia64_sal_handler_init(__va
                                                (ep->sal_proc),
                                                __va(ep->gp));
                              return;
                        }
                        p += SAL_DESC_SIZE(*p);
                  }
            }
      }
      /* Uh-oh, SAL not available?? */
      printk(KERN_ERR "failed to find SAL entry point\n");
}

extern int platform_intr_list[];
static int __cpuinitdata shub_1_1_found;

/*
 * sn_check_for_wars
 *
 * Set flag for enabling shub specific wars
 */

static inline int __cpuinit is_shub_1_1(int nasid)
{
      unsigned long id;
      int rev;

      if (is_shub2())
            return 0;
      id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
      rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
      return rev <= 2;
}

static void __cpuinit sn_check_for_wars(void)
{
      int cnode;

      if (is_shub2()) {
            /* none yet */
      } else {
            for_each_online_node(cnode) {
                  if (is_shub_1_1(cnodeid_to_nasid(cnode)))
                        shub_1_1_found = 1;
            }
      }
}

/*
 * Scan the EFI PCDP table (if it exists) for an acceptable VGA console
 * output device.  If one exists, pick it and set sn_legacy_{io,mem} to
 * reflect the bus offsets needed to address it.
 *
 * Since pcdp support in SN is not supported in the 2.4 kernel (or at least
 * the one lbs is based on) just declare the needed structs here.
 *
 * Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf
 *
 * Returns 0 if no acceptable vga is found, !0 otherwise.
 *
 * Note:  This stuff is duped here because Altix requires the PCDP to
 * locate a usable VGA device due to lack of proper ACPI support.  Structures
 * could be used from drivers/firmware/pcdp.h, but it was decided that moving
 * this file to a more public location just for Altix use was undesirable.
 */

00247 struct hcdp_uart_desc {
      u8    pad[45];
};

00251 struct pcdp {
      u8    signature[4];     /* should be 'HCDP' */
      u32   length;
      u8    rev;        /* should be >=3 for pcdp, <3 for hcdp */
      u8    sum;
      u8    oem_id[6];
      u64   oem_tableid;
      u32   oem_rev;
      u32   creator_id;
      u32   creator_rev;
      u32   num_type0;
      struct hcdp_uart_desc uart[0];      /* num_type0 of these */
      /* pcdp descriptors follow */
}  __attribute__((packed));

00266 struct pcdp_device_desc {
      u8    type;
      u8    primary;
      u16   length;
      u16   index;
      /* interconnect specific structure follows */
      /* device specific structure follows that */
}  __attribute__((packed));

00275 struct pcdp_interface_pci {
      u8    type;       /* 1 == pci */
      u8    reserved;
      u16   length;
      u8    segment;
      u8    bus;
      u8    dev;
      u8    fun;
      u16   devid;
      u16   vendid;
      u32   acpi_interrupt;
      u64   mmio_tra;
      u64   ioport_tra;
      u8    flags;
      u8    translation;
}  __attribute__((packed));

00292 struct pcdp_vga_device {
      u8    num_eas_desc;
      /* ACPI Extended Address Space Desc follows */
}  __attribute__((packed));

/* from pcdp_device_desc.primary */
#define PCDP_PRIMARY_CONSOLE  0x01

/* from pcdp_device_desc.type */
#define PCDP_CONSOLE_INOUT    0x0
#define PCDP_CONSOLE_DEBUG    0x1
#define PCDP_CONSOLE_OUT      0x2
#define PCDP_CONSOLE_IN       0x3
#define PCDP_CONSOLE_TYPE_VGA 0x8

#define PCDP_CONSOLE_VGA      (PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT)

/* from pcdp_interface_pci.type */
#define PCDP_IF_PCI           1

/* from pcdp_interface_pci.translation */
#define PCDP_PCI_TRANS_IOPORT 0x02
#define PCDP_PCI_TRANS_MMIO   0x01

#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
static void
sn_scan_pcdp(void)
{
      u8 *bp;
      struct pcdp *pcdp;
      struct pcdp_device_desc device;
      struct pcdp_interface_pci if_pci;
      extern struct efi efi;

      if (efi.hcdp == EFI_INVALID_TABLE_ADDR)
            return;           /* no hcdp/pcdp table */

      pcdp = __va(efi.hcdp);

      if (pcdp->rev < 3)
            return;           /* only support PCDP (rev >= 3) */

      for (bp = (u8 *)&pcdp->uart[pcdp->num_type0];
           bp < (u8 *)pcdp + pcdp->length;
           bp += device.length) {
            memcpy(&device, bp, sizeof(device));
            if (! (device.primary & PCDP_PRIMARY_CONSOLE))
                  continue;   /* not primary console */

            if (device.type != PCDP_CONSOLE_VGA)
                  continue;   /* not VGA descriptor */

            memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci));
            if (if_pci.type != PCDP_IF_PCI)
                  continue;   /* not PCI interconnect */

            if (if_pci.translation & PCDP_PCI_TRANS_IOPORT)
                  vga_console_iobase = if_pci.ioport_tra;

            if (if_pci.translation & PCDP_PCI_TRANS_MMIO)
                  vga_console_membase =
                        if_pci.mmio_tra | __IA64_UNCACHED_OFFSET;

            break; /* once we find the primary, we're done */
      }
}
#endif

static unsigned long sn2_rtc_initial;

/**
 * sn_setup - SN platform setup routine
 * @cmdline_p: kernel command line
 *
 * Handles platform setup for SN machines.  This includes determining
 * the RTC frequency (via a SAL call), initializing secondary CPUs, and
 * setting up per-node data areas.  The console is also initialized here.
 */
void __init sn_setup(char **cmdline_p)
{
      long status, ticks_per_sec, drift;
      u32 version = sn_sal_rev();
      extern void sn_cpu_init(void);

      sn2_rtc_initial = rtc_time();
      ia64_sn_plat_set_error_handling_features();     // obsolete
      ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV);
      ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES);
      /*
       * Note: The calls to notify the PROM of ACPI and PCI Segment
       *     support must be done prior to acpi_load_tables(), as
       *     an ACPI capable PROM will rebuild the DSDT as result
       *     of the call.
       */
      ia64_sn_set_os_feature(OSF_PCISEGMENT_ENABLE);
      ia64_sn_set_os_feature(OSF_ACPI_ENABLE);

      /* Load the new DSDT and SSDT tables into the global table list. */
      acpi_table_init();

#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
      /*
       * Handle SN vga console.
       *
       * SN systems do not have enough ACPI table information
       * being passed from prom to identify VGA adapters and the legacy
       * addresses to access them.  Until that is done, SN systems rely
       * on the PCDP table to identify the primary VGA console if one
       * exists.
       *
       * However, kernel PCDP support is optional, and even if it is built
       * into the kernel, it will not be used if the boot cmdline contains
       * console= directives.
       *
       * So, to work around this mess, we duplicate some of the PCDP code
       * here so that the primary VGA console (as defined by PCDP) will
       * work on SN systems even if a different console (e.g. serial) is
       * selected on the boot line (or CONFIG_EFI_PCDP is off).
       */

      if (! vga_console_membase)
            sn_scan_pcdp();

      /*
       *    Setup legacy IO space.
       *    vga_console_iobase maps to PCI IO Space address 0 on the
       *    bus containing the VGA console.
       */
      if (vga_console_iobase) {
            io_space[0].mmio_base =
                  (unsigned long) ioremap(vga_console_iobase, 0);
            io_space[0].sparse = 0;
      }

      if (vga_console_membase) {
            /* usable vga ... make tty0 the preferred default console */
            if (!strstr(*cmdline_p, "console="))
                  add_preferred_console("tty", 0, NULL);
      } else {
            printk(KERN_DEBUG "SGI: Disabling VGA console\n");
            if (!strstr(*cmdline_p, "console="))
                  add_preferred_console("ttySG", 0, NULL);
#ifdef CONFIG_DUMMY_CONSOLE
            conswitchp = &dummy_con;
#else
            conswitchp = NULL;
#endif                        /* CONFIG_DUMMY_CONSOLE */
      }
#endif                        /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */

      MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;

      /*
       * Build the tables for managing cnodes.
       */
      build_cnode_tables();

      status =
          ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
                         &drift);
      if (status != 0 || ticks_per_sec < 100000) {
            printk(KERN_WARNING
                   "unable to determine platform RTC clock frequency, guessing.\n");
            /* PROM gives wrong value for clock freq. so guess */
            sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
      } else
            sn_rtc_cycles_per_second = ticks_per_sec;

      platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;

      printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);

      /*
       * we set the default root device to /dev/hda
       * to make simulation easy
       */
      ROOT_DEV = Root_HDA1;

      /*
       * Create the PDAs and NODEPDAs for all the cpus.
       */
      sn_init_pdas(cmdline_p);

      ia64_mark_idle = &snidle;

      /*
       * For the bootcpu, we do this here. All other cpus will make the
       * call as part of cpu_init in slave cpu initialization.
       */
      sn_cpu_init();

#ifdef CONFIG_SMP
      init_smp_config();
#endif
      screen_info = sn_screen_info;

      sn_timer_init();

      /*
       * set pm_power_off to a SAL call to allow
       * sn machines to power off. The SAL call can be replaced
       * by an ACPI interface call when ACPI is fully implemented
       * for sn.
       */
      pm_power_off = ia64_sn_power_down;
      current->thread.flags |= IA64_THREAD_MIGRATION;
}

/**
 * sn_init_pdas - setup node data areas
 *
 * One time setup for Node Data Area.  Called by sn_setup().
 */
static void __init sn_init_pdas(char **cmdline_p)
{
      cnodeid_t cnode;

      /*
       * Allocate & initialize the nodepda for each node.
       */
      for_each_online_node(cnode) {
            nodepdaindr[cnode] =
                alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
            memset(nodepdaindr[cnode]->phys_cpuid, -1,
                sizeof(nodepdaindr[cnode]->phys_cpuid));
            spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
      }

      /*
       * Allocate & initialize nodepda for TIOs.  For now, put them on node 0.
       */
      for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++)
            nodepdaindr[cnode] =
                alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));

      /*
       * Now copy the array of nodepda pointers to each nodepda.
       */
      for (cnode = 0; cnode < num_cnodes; cnode++)
            memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
                   sizeof(nodepdaindr));

      /*
       * Set up IO related platform-dependent nodepda fields.
       * The following routine actually sets up the hubinfo struct
       * in nodepda.
       */
      for_each_online_node(cnode) {
            bte_init_node(nodepdaindr[cnode], cnode);
      }

      /*
       * Initialize the per node hubdev.  This includes IO Nodes and
       * headless/memless nodes.
       */
      for (cnode = 0; cnode < num_cnodes; cnode++) {
            hubdev_init_node(nodepdaindr[cnode], cnode);
      }
}

/**
 * sn_cpu_init - initialize per-cpu data areas
 * @cpuid: cpuid of the caller
 *
 * Called during cpu initialization on each cpu as it starts.
 * Currently, initializes the per-cpu data area for SNIA.
 * Also sets up a few fields in the nodepda.  Also known as
 * platform_cpu_init() by the ia64 machvec code.
 */
void __cpuinit sn_cpu_init(void)
{
      int cpuid;
      int cpuphyid;
      int nasid;
      int subnode;
      int slice;
      int cnode;
      int i;
      static int wars_have_been_checked, set_cpu0_number;

      cpuid = smp_processor_id();
      if (cpuid == 0 && IS_MEDUSA()) {
            if (ia64_sn_is_fake_prom())
                  sn_prom_type = 2;
            else
                  sn_prom_type = 1;
            printk(KERN_INFO "Running on medusa with %s PROM\n",
                   (sn_prom_type == 1) ? "real" : "fake");
      }

      memset(pda, 0, sizeof(pda));
      if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2,
                        &sn_hub_info->nasid_bitmask,
                        &sn_hub_info->nasid_shift,
                        &sn_system_size, &sn_sharing_domain_size,
                        &sn_partition_id, &sn_coherency_id,
                        &sn_region_size))
            BUG();
      sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;

      /*
       * Don't check status. The SAL call is not supported on all PROMs
       * but a failure is harmless.
       * Architechtuallly, cpu_init is always called twice on cpu 0. We
       * should set cpu_number on cpu 0 once.
       */
      if (cpuid == 0) {
            if (!set_cpu0_number) {
                  (void) ia64_sn_set_cpu_number(cpuid);
                  set_cpu0_number = 1;
            }
      } else
            (void) ia64_sn_set_cpu_number(cpuid);

      /*
       * The boot cpu makes this call again after platform initialization is
       * complete.
       */
      if (nodepdaindr[0] == NULL)
            return;

      for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
            if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
                  break;

      cpuphyid = get_sapicid();

      if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
            BUG();

      for (i=0; i < MAX_NUMNODES; i++) {
            if (nodepdaindr[i]) {
                  nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
                  nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
                  nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
            }
      }

      cnode = nasid_to_cnodeid(nasid);

      sn_nodepda = nodepdaindr[cnode];

      pda->led_address =
          (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
      pda->led_state = LED_ALWAYS_SET;
      pda->hb_count = HZ / 2;
      pda->hb_state = 0;
      pda->idle_flag = 0;

      if (cpuid != 0) {
            /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
            memcpy(sn_cnodeid_to_nasid,
                   (&per_cpu(__sn_cnodeid_to_nasid, 0)),
                   sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
      }

      /*
       * Check for WARs.
       * Only needs to be done once, on BSP.
       * Has to be done after loop above, because it uses this cpu's
       * sn_cnodeid_to_nasid table which was just initialized if this
       * isn't cpu 0.
       * Has to be done before assignment below.
       */
      if (!wars_have_been_checked) {
            sn_check_for_wars();
            wars_have_been_checked = 1;
      }
      sn_hub_info->shub_1_1_found = shub_1_1_found;

      /*
       * Set up addresses of PIO/MEM write status registers.
       */
      {
            u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
            u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
                  SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
            u64 *pio;
            pio = is_shub1() ? pio1 : pio2;
            pda->pio_write_status_addr =
               (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]);
            pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
      }

      /*
       * WAR addresses for SHUB 1.x.
       */
      if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
            int buddy_nasid;
            buddy_nasid =
                cnodeid_to_nasid(numa_node_id() ==
                             num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
            pda->pio_shub_war_cam_addr =
                (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
                                                SH1_PI_CAM_CONTROL);
      }
}

/*
 * Build tables for converting between NASIDs and cnodes.
 */
static inline int __init board_needs_cnode(int type)
{
      return (type == KLTYPE_SNIA || type == KLTYPE_TIO);
}

void __init build_cnode_tables(void)
{
      int nasid;
      int node;
      lboard_t *brd;

      memset(physical_node_map, -1, sizeof(physical_node_map));
      memset(sn_cnodeid_to_nasid, -1,
                  sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));

      /*
       * First populate the tables with C/M bricks. This ensures that
       * cnode == node for all C & M bricks.
       */
      for_each_online_node(node) {
            nasid = pxm_to_nasid(node_to_pxm(node));
            sn_cnodeid_to_nasid[node] = nasid;
            physical_node_map[nasid] = node;
      }

      /*
       * num_cnodes is total number of C/M/TIO bricks. Because of the 256 node
       * limit on the number of nodes, we can't use the generic node numbers 
       * for this. Note that num_cnodes is incremented below as TIOs or
       * headless/memoryless nodes are discovered.
       */
      num_cnodes = num_online_nodes();

      /* fakeprom does not support klgraph */
      if (IS_RUNNING_ON_FAKE_PROM())
            return;

      /* Find TIOs & headless/memoryless nodes and add them to the tables */
      for_each_online_node(node) {
            kl_config_hdr_t *klgraph_header;
            nasid = cnodeid_to_nasid(node);
            klgraph_header = ia64_sn_get_klconfig_addr(nasid);
            BUG_ON(klgraph_header == NULL);
            brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info);
            while (brd) {
                  if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) {
                        sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid;
                        physical_node_map[brd->brd_nasid] = num_cnodes++;
                  }
                  brd = find_lboard_next(brd);
            }
      }
}

int
nasid_slice_to_cpuid(int nasid, int slice)
{
      long cpu;

      for (cpu = 0; cpu < nr_cpu_ids; cpu++)
            if (cpuid_to_nasid(cpu) == nasid &&
                              cpuid_to_slice(cpu) == slice)
                  return cpu;

      return -1;
}

int sn_prom_feature_available(int id)
{
      if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS)
            return 0;
      return test_bit(id, sn_prom_features);
}

void
sn_kernel_launch_event(void)
{
      /* ignore status until we understand possible failure, if any*/
      if (ia64_sn_kernel_launch_event())
            printk(KERN_ERR "KEXEC is not supported in this PROM, Please update the PROM.\n");
}
EXPORT_SYMBOL(sn_prom_feature_available);


Generated by  Doxygen 1.6.0   Back to index