Logo Search packages:      
Sourcecode: linux version File versions  Download package

contig.c

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1998-2003 Hewlett-Packard Co
 *    David Mosberger-Tang <davidm@hpl.hp.com>
 *    Stephane Eranian <eranian@hpl.hp.com>
 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
 *
 * Routines used by ia64 machines with contiguous (or virtually contiguous)
 * memory.
 */
#include <linux/bootmem.h>
#include <linux/efi.h>
#include <linux/mm.h>
#include <linux/nmi.h>
#include <linux/swap.h>

#include <asm/meminit.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/mca.h>

#ifdef CONFIG_VIRTUAL_MEM_MAP
static unsigned long max_gap;
#endif

/**
 * show_mem - give short summary of memory stats
 *
 * Shows a simple page count of reserved and used pages in the system.
 * For discontig machines, it does this on a per-pgdat basis.
 */
void show_mem(void)
{
      int i, total_reserved = 0;
      int total_shared = 0, total_cached = 0;
      unsigned long total_present = 0;
      pg_data_t *pgdat;

      printk(KERN_INFO "Mem-info:\n");
      show_free_areas();
      printk(KERN_INFO "Node memory in pages:\n");
      for_each_online_pgdat(pgdat) {
            unsigned long present;
            unsigned long flags;
            int shared = 0, cached = 0, reserved = 0;

            pgdat_resize_lock(pgdat, &flags);
            present = pgdat->node_present_pages;
            for(i = 0; i < pgdat->node_spanned_pages; i++) {
                  struct page *page;
                  if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
                        touch_nmi_watchdog();
                  if (pfn_valid(pgdat->node_start_pfn + i))
                        page = pfn_to_page(pgdat->node_start_pfn + i);
                  else {
#ifdef CONFIG_VIRTUAL_MEM_MAP
                        if (max_gap < LARGE_GAP)
                              continue;
#endif
                        i = vmemmap_find_next_valid_pfn(pgdat->node_id,
                               i) - 1;
                        continue;
                  }
                  if (PageReserved(page))
                        reserved++;
                  else if (PageSwapCache(page))
                        cached++;
                  else if (page_count(page))
                        shared += page_count(page)-1;
            }
            pgdat_resize_unlock(pgdat, &flags);
            total_present += present;
            total_reserved += reserved;
            total_cached += cached;
            total_shared += shared;
            printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
                   "shrd: %10d, swpd: %10d\n", pgdat->node_id,
                   present, reserved, shared, cached);
      }
      printk(KERN_INFO "%ld pages of RAM\n", total_present);
      printk(KERN_INFO "%d reserved pages\n", total_reserved);
      printk(KERN_INFO "%d pages shared\n", total_shared);
      printk(KERN_INFO "%d pages swap cached\n", total_cached);
      printk(KERN_INFO "Total of %ld pages in page table cache\n",
             quicklist_total_size());
      printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
}


/* physical address where the bootmem map is located */
unsigned long bootmap_start;

/**
 * find_bootmap_location - callback to find a memory area for the bootmap
 * @start: start of region
 * @end: end of region
 * @arg: unused callback data
 *
 * Find a place to put the bootmap and return its starting address in
 * bootmap_start.  This address must be page-aligned.
 */
static int __init
find_bootmap_location (u64 start, u64 end, void *arg)
{
      u64 needed = *(unsigned long *)arg;
      u64 range_start, range_end, free_start;
      int i;

#if IGNORE_PFN0
      if (start == PAGE_OFFSET) {
            start += PAGE_SIZE;
            if (start >= end)
                  return 0;
      }
#endif

      free_start = PAGE_OFFSET;

      for (i = 0; i < num_rsvd_regions; i++) {
            range_start = max(start, free_start);
            range_end   = min(end, rsvd_region[i].start & PAGE_MASK);

            free_start = PAGE_ALIGN(rsvd_region[i].end);

            if (range_end <= range_start)
                  continue; /* skip over empty range */

            if (range_end - range_start >= needed) {
                  bootmap_start = __pa(range_start);
                  return -1;  /* done */
            }

            /* nothing more available in this segment */
            if (range_end == end)
                  return 0;
      }
      return 0;
}

#ifdef CONFIG_SMP
static void *cpu_data;
/**
 * per_cpu_init - setup per-cpu variables
 *
 * Allocate and setup per-cpu data areas.
 */
void * __cpuinit
per_cpu_init (void)
{
      static bool first_time = true;
      void *cpu0_data = __cpu0_per_cpu;
      unsigned int cpu;

      if (!first_time)
            goto skip;
      first_time = false;

      /*
       * get_free_pages() cannot be used before cpu_init() done.
       * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
       * to avoid that AP calls get_zeroed_page().
       */
      for_each_possible_cpu(cpu) {
            void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;

            memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
            __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
            per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];

            /*
             * percpu area for cpu0 is moved from the __init area
             * which is setup by head.S and used till this point.
             * Update ar.k3.  This move is ensures that percpu
             * area for cpu0 is on the correct node and its
             * virtual address isn't insanely far from other
             * percpu areas which is important for congruent
             * percpu allocator.
             */
            if (cpu == 0)
                  ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
                            (unsigned long)__per_cpu_start);

            cpu_data += PERCPU_PAGE_SIZE;
      }
skip:
      return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
}

static inline void
alloc_per_cpu_data(void)
{
      cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
                           PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
}

/**
 * setup_per_cpu_areas - setup percpu areas
 *
 * Arch code has already allocated and initialized percpu areas.  All
 * this function has to do is to teach the determined layout to the
 * dynamic percpu allocator, which happens to be more complex than
 * creating whole new ones using helpers.
 */
void __init
setup_per_cpu_areas(void)
{
      struct pcpu_alloc_info *ai;
      struct pcpu_group_info *gi;
      unsigned int cpu;
      ssize_t static_size, reserved_size, dyn_size;
      int rc;

      ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
      if (!ai)
            panic("failed to allocate pcpu_alloc_info");
      gi = &ai->groups[0];

      /* units are assigned consecutively to possible cpus */
      for_each_possible_cpu(cpu)
            gi->cpu_map[gi->nr_units++] = cpu;

      /* set parameters */
      static_size = __per_cpu_end - __per_cpu_start;
      reserved_size = PERCPU_MODULE_RESERVE;
      dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
      if (dyn_size < 0)
            panic("percpu area overflow static=%zd reserved=%zd\n",
                  static_size, reserved_size);

      ai->static_size         = static_size;
      ai->reserved_size = reserved_size;
      ai->dyn_size            = dyn_size;
      ai->unit_size           = PERCPU_PAGE_SIZE;
      ai->atom_size           = PAGE_SIZE;
      ai->alloc_size          = PERCPU_PAGE_SIZE;

      rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
      if (rc)
            panic("failed to setup percpu area (err=%d)", rc);

      pcpu_free_alloc_info(ai);
}
#else
#define alloc_per_cpu_data() do { } while (0)
#endif /* CONFIG_SMP */

/**
 * find_memory - setup memory map
 *
 * Walk the EFI memory map and find usable memory for the system, taking
 * into account reserved areas.
 */
void __init
find_memory (void)
{
      unsigned long bootmap_size;

      reserve_memory();

      /* first find highest page frame number */
      min_low_pfn = ~0UL;
      max_low_pfn = 0;
      efi_memmap_walk(find_max_min_low_pfn, NULL);
      max_pfn = max_low_pfn;
      /* how many bytes to cover all the pages */
      bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;

      /* look for a location to hold the bootmap */
      bootmap_start = ~0UL;
      efi_memmap_walk(find_bootmap_location, &bootmap_size);
      if (bootmap_start == ~0UL)
            panic("Cannot find %ld bytes for bootmap\n", bootmap_size);

      bootmap_size = init_bootmem_node(NODE_DATA(0),
                  (bootmap_start >> PAGE_SHIFT), 0, max_pfn);

      /* Free all available memory, then mark bootmem-map as being in use. */
      efi_memmap_walk(filter_rsvd_memory, free_bootmem);
      reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);

      find_initrd();

      alloc_per_cpu_data();
}

static int count_pages(u64 start, u64 end, void *arg)
{
      unsigned long *count = arg;

      *count += (end - start) >> PAGE_SHIFT;
      return 0;
}

/*
 * Set up the page tables.
 */

void __init
paging_init (void)
{
      unsigned long max_dma;
      unsigned long max_zone_pfns[MAX_NR_ZONES];

      num_physpages = 0;
      efi_memmap_walk(count_pages, &num_physpages);

      memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
#ifdef CONFIG_ZONE_DMA
      max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
      max_zone_pfns[ZONE_DMA] = max_dma;
#endif
      max_zone_pfns[ZONE_NORMAL] = max_low_pfn;

#ifdef CONFIG_VIRTUAL_MEM_MAP
      efi_memmap_walk(filter_memory, register_active_ranges);
      efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
      if (max_gap < LARGE_GAP) {
            vmem_map = (struct page *) 0;
            free_area_init_nodes(max_zone_pfns);
      } else {
            unsigned long map_size;

            /* allocate virtual_mem_map */

            map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
                  sizeof(struct page));
            VMALLOC_END -= map_size;
            vmem_map = (struct page *) VMALLOC_END;
            efi_memmap_walk(create_mem_map_page_table, NULL);

            /*
             * alloc_node_mem_map makes an adjustment for mem_map
             * which isn't compatible with vmem_map.
             */
            NODE_DATA(0)->node_mem_map = vmem_map +
                  find_min_pfn_with_active_regions();
            free_area_init_nodes(max_zone_pfns);

            printk("Virtual mem_map starts at 0x%p\n", mem_map);
      }
#else /* !CONFIG_VIRTUAL_MEM_MAP */
      add_active_range(0, 0, max_low_pfn);
      free_area_init_nodes(max_zone_pfns);
#endif /* !CONFIG_VIRTUAL_MEM_MAP */
      zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
}

Generated by  Doxygen 1.6.0   Back to index