Logo Search packages:      
Sourcecode: linux version File versions  Download package

sn_hwperf.c

/* 
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2004-2006 Silicon Graphics, Inc. All rights reserved.
 *
 * SGI Altix topology and hardware performance monitoring API.
 * Mark Goodwin <markgw@sgi.com>. 
 *
 * Creates /proc/sgi_sn/sn_topology (read-only) to export
 * info about Altix nodes, routers, CPUs and NumaLink
 * interconnection/topology.
 *
 * Also creates a dynamic misc device named "sn_hwperf"
 * that supports an ioctl interface to call down into SAL
 * to discover hw objects, topology and to read/write
 * memory mapped registers, e.g. for performance monitoring.
 * The "sn_hwperf" device is registered only after the procfs
 * file is first opened, i.e. only if/when it's needed. 
 *
 * This API is used by SGI Performance Co-Pilot and other
 * tools, see http://oss.sgi.com/projects/pcp
 */

#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/seq_file.h>
#include <linux/miscdevice.h>
#include <linux/utsname.h>
#include <linux/cpumask.h>
#include <linux/nodemask.h>
#include <linux/smp.h>
#include <linux/mutex.h>

#include <asm/processor.h>
#include <asm/topology.h>
#include <asm/uaccess.h>
#include <asm/sal.h>
#include <asm/sn/io.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/module.h>
#include <asm/sn/geo.h>
#include <asm/sn/sn2/sn_hwperf.h>
#include <asm/sn/addrs.h>

static void *sn_hwperf_salheap = NULL;
static int sn_hwperf_obj_cnt = 0;
static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
static int sn_hwperf_init(void);
static DEFINE_MUTEX(sn_hwperf_init_mutex);

#define cnode_possible(n)     ((n) < num_cnodes)

static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
{
      int e;
      u64 sz;
      struct sn_hwperf_object_info *objbuf = NULL;

      if ((e = sn_hwperf_init()) < 0) {
            printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
            goto out;
      }

      sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
      objbuf = vmalloc(sz);
      if (objbuf == NULL) {
            printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
            e = -ENOMEM;
            goto out;
      }

      e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
            0, sz, (u64) objbuf, 0, 0, NULL);
      if (e != SN_HWPERF_OP_OK) {
            e = -EINVAL;
            vfree(objbuf);
      }

out:
      *nobj = sn_hwperf_obj_cnt;
      *ret = objbuf;
      return e;
}

static int sn_hwperf_location_to_bpos(char *location,
      int *rack, int *bay, int *slot, int *slab)
{
      char type;

      /* first scan for an old style geoid string */
      if (sscanf(location, "%03d%c%02d#%d",
            rack, &type, bay, slab) == 4)
            *slot = 0; 
      else /* scan for a new bladed geoid string */
      if (sscanf(location, "%03d%c%02d^%02d#%d",
            rack, &type, bay, slot, slab) != 5)
            return -1; 
      /* success */
      return 0;
}

static int sn_hwperf_geoid_to_cnode(char *location)
{
      int cnode;
      geoid_t geoid;
      moduleid_t module_id;
      int rack, bay, slot, slab;
      int this_rack, this_bay, this_slot, this_slab;

      if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
            return -1;

      /*
       * FIXME: replace with cleaner for_each_XXX macro which addresses
       * both compute and IO nodes once ACPI3.0 is available.
       */
      for (cnode = 0; cnode < num_cnodes; cnode++) {
            geoid = cnodeid_get_geoid(cnode);
            module_id = geo_module(geoid);
            this_rack = MODULE_GET_RACK(module_id);
            this_bay = MODULE_GET_BPOS(module_id);
            this_slot = geo_slot(geoid);
            this_slab = geo_slab(geoid);
            if (rack == this_rack && bay == this_bay &&
                  slot == this_slot && slab == this_slab) {
                  break;
            }
      }

      return cnode_possible(cnode) ? cnode : -1;
}

static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
{
      if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
            BUG();
      if (SN_HWPERF_FOREIGN(obj))
            return -1;
      return sn_hwperf_geoid_to_cnode(obj->location);
}

static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
                        struct sn_hwperf_object_info *objs)
{
      int ordinal;
      struct sn_hwperf_object_info *p;

      for (ordinal=0, p=objs; p != obj; p++) {
            if (SN_HWPERF_FOREIGN(p))
                  continue;
            if (SN_HWPERF_SAME_OBJTYPE(p, obj))
                  ordinal++;
      }

      return ordinal;
}

static const char *slabname_node =  "node"; /* SHub asic */
static const char *slabname_ionode =      "ionode"; /* TIO asic */
static const char *slabname_router =      "router"; /* NL3R or NL4R */
static const char *slabname_other = "other"; /* unknown asic */

static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
                  struct sn_hwperf_object_info *objs, int *ordinal)
{
      int isnode;
      const char *slabname = slabname_other;

      if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
            slabname = isnode ? slabname_node : slabname_ionode;
            *ordinal = sn_hwperf_obj_to_cnode(obj);
      }
      else {
            *ordinal = sn_hwperf_generic_ordinal(obj, objs);
            if (SN_HWPERF_IS_ROUTER(obj))
                  slabname = slabname_router;
      }

      return slabname;
}

static void print_pci_topology(struct seq_file *s)
{
      char *p;
      size_t sz;
      int e;

      for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
            if (!(p = kmalloc(sz, GFP_KERNEL)))
                  break;
            e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
            if (e == SALRET_OK)
                  seq_puts(s, p);
            kfree(p);
            if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
                  break;
      }
}

static inline int sn_hwperf_has_cpus(cnodeid_t node)
{
      return node < MAX_NUMNODES && node_online(node) && nr_cpus_node(node);
}

static inline int sn_hwperf_has_mem(cnodeid_t node)
{
      return node < MAX_NUMNODES && node_online(node) && NODE_DATA(node)->node_present_pages;
}

static struct sn_hwperf_object_info *
sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
      int nobj, int id)
{
      int i;
      struct sn_hwperf_object_info *p = objbuf;

      for (i=0; i < nobj; i++, p++) {
            if (p->id == id)
                  return p;
      }

      return NULL;

}

static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
      int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
{
      int e;
      struct sn_hwperf_object_info *nodeobj = NULL;
      struct sn_hwperf_object_info *op;
      struct sn_hwperf_object_info *dest;
      struct sn_hwperf_object_info *router;
      struct sn_hwperf_port_info ptdata[16];
      int sz, i, j;
      cnodeid_t c;
      int found_mem = 0;
      int found_cpu = 0;

      if (!cnode_possible(node))
            return -EINVAL;

      if (sn_hwperf_has_cpus(node)) {
            if (near_cpu_node)
                  *near_cpu_node = node;
            found_cpu++;
      }

      if (sn_hwperf_has_mem(node)) {
            if (near_mem_node)
                  *near_mem_node = node;
            found_mem++;
      }

      if (found_cpu && found_mem)
            return 0; /* trivially successful */

      /* find the argument node object */
      for (i=0, op=objbuf; i < nobj; i++, op++) {
            if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
                  continue;
            if (node == sn_hwperf_obj_to_cnode(op)) {
                  nodeobj = op;
                  break;
            }
      }
      if (!nodeobj) {
            e = -ENOENT;
            goto err;
      }

      /* get it's interconnect topology */
      sz = op->ports * sizeof(struct sn_hwperf_port_info);
      BUG_ON(sz > sizeof(ptdata));
      e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
                        SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
                        (u64)&ptdata, 0, 0, NULL);
      if (e != SN_HWPERF_OP_OK) {
            e = -EINVAL;
            goto err;
      }

      /* find nearest node with cpus and nearest memory */
      for (router=NULL, j=0; j < op->ports; j++) {
            dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
            if (dest && SN_HWPERF_IS_ROUTER(dest))
                  router = dest;
            if (!dest || SN_HWPERF_FOREIGN(dest) ||
                !SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
                  continue;
            }
            c = sn_hwperf_obj_to_cnode(dest);
            if (!found_cpu && sn_hwperf_has_cpus(c)) {
                  if (near_cpu_node)
                        *near_cpu_node = c;
                  found_cpu++;
            }
            if (!found_mem && sn_hwperf_has_mem(c)) {
                  if (near_mem_node)
                        *near_mem_node = c;
                  found_mem++;
            }
      }

      if (router && (!found_cpu || !found_mem)) {
            /* search for a node connected to the same router */
            sz = router->ports * sizeof(struct sn_hwperf_port_info);
            BUG_ON(sz > sizeof(ptdata));
            e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
                              SN_HWPERF_ENUM_PORTS, router->id, sz,
                              (u64)&ptdata, 0, 0, NULL);
            if (e != SN_HWPERF_OP_OK) {
                  e = -EINVAL;
                  goto err;
            }
            for (j=0; j < router->ports; j++) {
                  dest = sn_hwperf_findobj_id(objbuf, nobj,
                        ptdata[j].conn_id);
                  if (!dest || dest->id == node ||
                      SN_HWPERF_FOREIGN(dest) ||
                      !SN_HWPERF_IS_NODE(dest) ||
                      SN_HWPERF_IS_IONODE(dest)) {
                        continue;
                  }
                  c = sn_hwperf_obj_to_cnode(dest);
                  if (!found_cpu && sn_hwperf_has_cpus(c)) {
                        if (near_cpu_node)
                              *near_cpu_node = c;
                        found_cpu++;
                  }
                  if (!found_mem && sn_hwperf_has_mem(c)) {
                        if (near_mem_node)
                              *near_mem_node = c;
                        found_mem++;
                  }
                  if (found_cpu && found_mem)
                        break;
            }
      }

      if (!found_cpu || !found_mem) {
            /* resort to _any_ node with CPUs and memory */
            for (i=0, op=objbuf; i < nobj; i++, op++) {
                  if (SN_HWPERF_FOREIGN(op) ||
                      SN_HWPERF_IS_IONODE(op) ||
                      !SN_HWPERF_IS_NODE(op)) {
                        continue;
                  }
                  c = sn_hwperf_obj_to_cnode(op);
                  if (!found_cpu && sn_hwperf_has_cpus(c)) {
                        if (near_cpu_node)
                              *near_cpu_node = c;
                        found_cpu++;
                  }
                  if (!found_mem && sn_hwperf_has_mem(c)) {
                        if (near_mem_node)
                              *near_mem_node = c;
                        found_mem++;
                  }
                  if (found_cpu && found_mem)
                        break;
            }
      }

      if (!found_cpu || !found_mem)
            e = -ENODATA;

err:
      return e;
}


static int sn_topology_show(struct seq_file *s, void *d)
{
      int sz;
      int pt;
      int e = 0;
      int i;
      int j;
      const char *slabname;
      int ordinal;
      char slice;
      struct cpuinfo_ia64 *c;
      struct sn_hwperf_port_info *ptdata;
      struct sn_hwperf_object_info *p;
      struct sn_hwperf_object_info *obj = d;    /* this object */
      struct sn_hwperf_object_info *objs = s->private; /* all objects */
      u8 shubtype;
      u8 system_size;
      u8 sharing_size;
      u8 partid;
      u8 coher;
      u8 nasid_shift;
      u8 region_size;
      u16 nasid_mask;
      int nasid_msb;

      if (obj == objs) {
            seq_printf(s, "# sn_topology version 2\n");
            seq_printf(s, "# objtype ordinal location partition"
                  " [attribute value [, ...]]\n");

            if (ia64_sn_get_sn_info(0,
                  &shubtype, &nasid_mask, &nasid_shift, &system_size,
                  &sharing_size, &partid, &coher, &region_size))
                  BUG();
            for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
                  if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
                        break;
            }
            seq_printf(s, "partition %u %s local "
                  "shubtype %s, "
                  "nasid_mask 0x%016llx, "
                  "nasid_bits %d:%d, "
                  "system_size %d, "
                  "sharing_size %d, "
                  "coherency_domain %d, "
                  "region_size %d\n",

                  partid, utsname()->nodename,
                  shubtype ? "shub2" : "shub1", 
                  (u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
                  system_size, sharing_size, coher, region_size);

            print_pci_topology(s);
      }

      if (SN_HWPERF_FOREIGN(obj)) {
            /* private in another partition: not interesting */
            return 0;
      }

      for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
            if (obj->name[i] == ' ')
                  obj->name[i] = '_';
      }

      slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
      seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
            obj->sn_hwp_this_part ? "local" : "shared", obj->name);

      if (ordinal < 0 || (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj)))
            seq_putc(s, '\n');
      else {
            cnodeid_t near_mem = -1;
            cnodeid_t near_cpu = -1;

            seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));

            if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
                  ordinal, &near_mem, &near_cpu) == 0) {
                  seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
                        near_mem, near_cpu);
            }

            if (!SN_HWPERF_IS_IONODE(obj)) {
                  for_each_online_node(i) {
                        seq_printf(s, i ? ":%d" : ", dist %d",
                              node_distance(ordinal, i));
                  }
            }

            seq_putc(s, '\n');

            /*
             * CPUs on this node, if any
             */
            if (!SN_HWPERF_IS_IONODE(obj)) {
                  for_each_cpu_and(i, cpu_online_mask,
                               cpumask_of_node(ordinal)) {
                        slice = 'a' + cpuid_to_slice(i);
                        c = cpu_data(i);
                        seq_printf(s, "cpu %d %s%c local"
                                 " freq %luMHz, arch ia64",
                                 i, obj->location, slice,
                                 c->proc_freq / 1000000);
                        for_each_online_cpu(j) {
                              seq_printf(s, j ? ":%d" : ", dist %d",
                                       node_distance(
                                          cpu_to_node(i),
                                          cpu_to_node(j)));
                        }
                        seq_putc(s, '\n');
                  }
            }
      }

      if (obj->ports) {
            /*
             * numalink ports
             */
            sz = obj->ports * sizeof(struct sn_hwperf_port_info);
            if ((ptdata = kmalloc(sz, GFP_KERNEL)) == NULL)
                  return -ENOMEM;
            e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
                              SN_HWPERF_ENUM_PORTS, obj->id, sz,
                              (u64) ptdata, 0, 0, NULL);
            if (e != SN_HWPERF_OP_OK)
                  return -EINVAL;
            for (ordinal=0, p=objs; p != obj; p++) {
                  if (!SN_HWPERF_FOREIGN(p))
                        ordinal += p->ports;
            }
            for (pt = 0; pt < obj->ports; pt++) {
                  for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
                        if (ptdata[pt].conn_id == p->id) {
                              break;
                        }
                  }
                  seq_printf(s, "numalink %d %s-%d",
                      ordinal+pt, obj->location, ptdata[pt].port);

                  if (i >= sn_hwperf_obj_cnt) {
                        /* no connection */
                        seq_puts(s, " local endpoint disconnected"
                                  ", protocol unknown\n");
                        continue;
                  }

                  if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
                        /* both ends local to this partition */
                        seq_puts(s, " local");
                  else if (SN_HWPERF_FOREIGN(p))
                        /* both ends of the link in foreign partiton */
                        seq_puts(s, " foreign");
                  else
                        /* link straddles a partition */
                        seq_puts(s, " shared");

                  /*
                   * Unlikely, but strictly should query the LLP config
                   * registers because an NL4R can be configured to run
                   * NL3 protocol, even when not talking to an NL3 router.
                   * Ditto for node-node.
                   */
                  seq_printf(s, " endpoint %s-%d, protocol %s\n",
                        p->location, ptdata[pt].conn_port,
                        (SN_HWPERF_IS_NL3ROUTER(obj) ||
                        SN_HWPERF_IS_NL3ROUTER(p)) ?  "LLP3" : "LLP4");
            }
            kfree(ptdata);
      }

      return 0;
}

static void *sn_topology_start(struct seq_file *s, loff_t * pos)
{
      struct sn_hwperf_object_info *objs = s->private;

      if (*pos < sn_hwperf_obj_cnt)
            return (void *)(objs + *pos);

      return NULL;
}

static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
{
      ++*pos;
      return sn_topology_start(s, pos);
}

static void sn_topology_stop(struct seq_file *m, void *v)
{
      return;
}

/*
 * /proc/sgi_sn/sn_topology, read-only using seq_file
 */
static const struct seq_operations sn_topology_seq_ops = {
      .start = sn_topology_start,
      .next = sn_topology_next,
      .stop = sn_topology_stop,
      .show = sn_topology_show
};

00581 struct sn_hwperf_op_info {
      u64 op;
      struct sn_hwperf_ioctl_args *a;
      void *p;
      int *v0;
      int ret;
};

static void sn_hwperf_call_sal(void *info)
{
      struct sn_hwperf_op_info *op_info = info;
      int r;

      r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
                  op_info->a->arg, op_info->a->sz,
                  (u64) op_info->p, 0, 0, op_info->v0);
      op_info->ret = r;
}

static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
{
      u32 cpu;
      u32 use_ipi;
      int r = 0;
      cpumask_t save_allowed;
      
      cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
      use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
      op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;

      if (cpu != SN_HWPERF_ARG_ANY_CPU) {
            if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
                  r = -EINVAL;
                  goto out;
            }
      }

      if (cpu == SN_HWPERF_ARG_ANY_CPU || cpu == get_cpu()) {
            /* don't care, or already on correct cpu */
            sn_hwperf_call_sal(op_info);
      }
      else {
            if (use_ipi) {
                  /* use an interprocessor interrupt to call SAL */
                  smp_call_function_single(cpu, sn_hwperf_call_sal,
                        op_info, 1);
            }
            else {
                  /* migrate the task before calling SAL */ 
                  save_allowed = current->cpus_allowed;
                  set_cpus_allowed_ptr(current, cpumask_of(cpu));
                  sn_hwperf_call_sal(op_info);
                  set_cpus_allowed_ptr(current, &save_allowed);
            }
      }
      r = op_info->ret;

out:
      return r;
}

/* map SAL hwperf error code to system error code */
static int sn_hwperf_map_err(int hwperf_err)
{
      int e;

      switch(hwperf_err) {
      case SN_HWPERF_OP_OK:
            e = 0;
            break;

      case SN_HWPERF_OP_NOMEM:
            e = -ENOMEM;
            break;

      case SN_HWPERF_OP_NO_PERM:
            e = -EPERM;
            break;

      case SN_HWPERF_OP_IO_ERROR:
            e = -EIO;
            break;

      case SN_HWPERF_OP_BUSY:
            e = -EBUSY;
            break;

      case SN_HWPERF_OP_RECONFIGURE:
            e = -EAGAIN;
            break;

      case SN_HWPERF_OP_INVAL:
      default:
            e = -EINVAL;
            break;
      }

      return e;
}

/*
 * ioctl for "sn_hwperf" misc device
 */
static long sn_hwperf_ioctl(struct file *fp, u32 op, unsigned long arg)
{
      struct sn_hwperf_ioctl_args a;
      struct cpuinfo_ia64 *cdata;
      struct sn_hwperf_object_info *objs;
      struct sn_hwperf_object_info *cpuobj;
      struct sn_hwperf_op_info op_info;
      void *p = NULL;
      int nobj;
      char slice;
      int node;
      int r;
      int v0;
      int i;
      int j;

      /* only user requests are allowed here */
      if ((op & SN_HWPERF_OP_MASK) < 10) {
            r = -EINVAL;
            goto error;
      }
      r = copy_from_user(&a, (const void __user *)arg,
            sizeof(struct sn_hwperf_ioctl_args));
      if (r != 0) {
            r = -EFAULT;
            goto error;
      }

      /*
       * Allocate memory to hold a kernel copy of the user buffer. The
       * buffer contents are either copied in or out (or both) of user
       * space depending on the flags encoded in the requested operation.
       */
      if (a.ptr) {
            p = vmalloc(a.sz);
            if (!p) {
                  r = -ENOMEM;
                  goto error;
            }
      }

      if (op & SN_HWPERF_OP_MEM_COPYIN) {
            r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
            if (r != 0) {
                  r = -EFAULT;
                  goto error;
            }
      }

      switch (op) {
      case SN_HWPERF_GET_CPU_INFO:
            if (a.sz == sizeof(u64)) {
                  /* special case to get size needed */
                  *(u64 *) p = (u64) num_online_cpus() *
                        sizeof(struct sn_hwperf_object_info);
            } else
            if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
                  r = -ENOMEM;
                  goto error;
            } else
            if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
                  int cpuobj_index = 0;

                  memset(p, 0, a.sz);
                  for (i = 0; i < nobj; i++) {
                        if (!SN_HWPERF_IS_NODE(objs + i))
                              continue;
                        node = sn_hwperf_obj_to_cnode(objs + i);
                        for_each_online_cpu(j) {
                              if (node != cpu_to_node(j))
                                    continue;
                              cpuobj = (struct sn_hwperf_object_info *) p + cpuobj_index++;
                              slice = 'a' + cpuid_to_slice(j);
                              cdata = cpu_data(j);
                              cpuobj->id = j;
                              snprintf(cpuobj->name,
                                     sizeof(cpuobj->name),
                                     "CPU %luMHz %s",
                                     cdata->proc_freq / 1000000,
                                     cdata->vendor);
                              snprintf(cpuobj->location,
                                     sizeof(cpuobj->location),
                                     "%s%c", objs[i].location,
                                     slice);
                        }
                  }

                  vfree(objs);
            }
            break;

      case SN_HWPERF_GET_NODE_NASID:
            if (a.sz != sizeof(u64) ||
               (node = a.arg) < 0 || !cnode_possible(node)) {
                  r = -EINVAL;
                  goto error;
            }
            *(u64 *)p = (u64)cnodeid_to_nasid(node);
            break;

      case SN_HWPERF_GET_OBJ_NODE:
            i = a.arg;
            if (a.sz != sizeof(u64) || i < 0) {
                  r = -EINVAL;
                  goto error;
            }
            if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
                  if (i >= nobj) {
                        r = -EINVAL;
                        vfree(objs);
                        goto error;
                  }
                  if (objs[i].id != a.arg) {
                        for (i = 0; i < nobj; i++) {
                              if (objs[i].id == a.arg)
                                    break;
                        }
                  }
                  if (i == nobj) {
                        r = -EINVAL;
                        vfree(objs);
                        goto error;
                  }

                  if (!SN_HWPERF_IS_NODE(objs + i) &&
                      !SN_HWPERF_IS_IONODE(objs + i)) {
                        r = -ENOENT;
                        vfree(objs);
                        goto error;
                  }

                  *(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
                  vfree(objs);
            }
            break;

      case SN_HWPERF_GET_MMRS:
      case SN_HWPERF_SET_MMRS:
      case SN_HWPERF_OBJECT_DISTANCE:
            op_info.p = p;
            op_info.a = &a;
            op_info.v0 = &v0;
            op_info.op = op;
            r = sn_hwperf_op_cpu(&op_info);
            if (r) {
                  r = sn_hwperf_map_err(r);
                  a.v0 = v0;
                  goto error;
            }
            break;

      default:
            /* all other ops are a direct SAL call */
            r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
                        a.arg, a.sz, (u64) p, 0, 0, &v0);
            if (r) {
                  r = sn_hwperf_map_err(r);
                  goto error;
            }
            a.v0 = v0;
            break;
      }

      if (op & SN_HWPERF_OP_MEM_COPYOUT) {
            r = copy_to_user((void __user *)a.ptr, p, a.sz);
            if (r != 0) {
                  r = -EFAULT;
                  goto error;
            }
      }

error:
      vfree(p);

      return r;
}

static const struct file_operations sn_hwperf_fops = {
      .unlocked_ioctl = sn_hwperf_ioctl,
      .llseek = noop_llseek,
};

static struct miscdevice sn_hwperf_dev = {
      MISC_DYNAMIC_MINOR,
      "sn_hwperf",
      &sn_hwperf_fops
};

static int sn_hwperf_init(void)
{
      u64 v;
      int salr;
      int e = 0;

      /* single threaded, once-only initialization */
      mutex_lock(&sn_hwperf_init_mutex);

      if (sn_hwperf_salheap) {
            mutex_unlock(&sn_hwperf_init_mutex);
            return e;
      }

      /*
       * The PROM code needs a fixed reference node. For convenience the
       * same node as the console I/O is used.
       */
      sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();

      /*
       * Request the needed size and install the PROM scratch area.
       * The PROM keeps various tracking bits in this memory area.
       */
      salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
                         (u64) SN_HWPERF_GET_HEAPSIZE, 0,
                         (u64) sizeof(u64), (u64) &v, 0, 0, NULL);
      if (salr != SN_HWPERF_OP_OK) {
            e = -EINVAL;
            goto out;
      }

      if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
            e = -ENOMEM;
            goto out;
      }
      salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
                         SN_HWPERF_INSTALL_HEAP, 0, v,
                         (u64) sn_hwperf_salheap, 0, 0, NULL);
      if (salr != SN_HWPERF_OP_OK) {
            e = -EINVAL;
            goto out;
      }

      salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
                         SN_HWPERF_OBJECT_COUNT, 0,
                         sizeof(u64), (u64) &v, 0, 0, NULL);
      if (salr != SN_HWPERF_OP_OK) {
            e = -EINVAL;
            goto out;
      }
      sn_hwperf_obj_cnt = (int)v;

out:
      if (e < 0 && sn_hwperf_salheap) {
            vfree(sn_hwperf_salheap);
            sn_hwperf_salheap = NULL;
            sn_hwperf_obj_cnt = 0;
      }
      mutex_unlock(&sn_hwperf_init_mutex);
      return e;
}

int sn_topology_open(struct inode *inode, struct file *file)
{
      int e;
      struct seq_file *seq;
      struct sn_hwperf_object_info *objbuf;
      int nobj;

      if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
            e = seq_open(file, &sn_topology_seq_ops);
            seq = file->private_data;
            seq->private = objbuf;
      }

      return e;
}

int sn_topology_release(struct inode *inode, struct file *file)
{
      struct seq_file *seq = file->private_data;

      vfree(seq->private);
      return seq_release(inode, file);
}

int sn_hwperf_get_nearest_node(cnodeid_t node,
      cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
{
      int e;
      int nobj;
      struct sn_hwperf_object_info *objbuf;

      if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
            e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
                  node, near_mem_node, near_cpu_node);
            vfree(objbuf);
      }

      return e;
}

static int __devinit sn_hwperf_misc_register_init(void)
{
      int e;

      if (!ia64_platform_is("sn2"))
            return 0;

      sn_hwperf_init();

      /*
       * Register a dynamic misc device for hwperf ioctls. Platforms
       * supporting hotplug will create /dev/sn_hwperf, else user
       * can to look up the minor number in /proc/misc.
       */
      if ((e = misc_register(&sn_hwperf_dev)) != 0) {
            printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
            "register misc device for \"%s\"\n", sn_hwperf_dev.name);
      }

      return e;
}

device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
EXPORT_SYMBOL(sn_hwperf_get_nearest_node);

Generated by  Doxygen 1.6.0   Back to index